The Lab Streaming Layer —
Introduction and Overview

Christian A Kothe, CTO

@ intheon

The Lab Streaming Layer

Started in 2012 at SCCN
 Funding from ARL, ONR, NIH, DARPA, NASA
e Quite popular (32k demo views on YouTube)

e Goals

— Unify real-time data access and recording file formats
across many device types (EEG/EXG, NIRS, MoCap, Eye
tracking, Audio, etc) and hardware/software vendors

— Same workflow for both simple experiments and
complex multi-modal / multi-person etc. setups

— Provide built-in time-synchronization solution

&

Design Tradeoffs

* Designed for “lab-scale” recording operations:
— Local: use VPN/broker/bridges to scale across the internet

— Up to 20 streams per computer fine, 30-100 considered heavy
load, likely needs high-end hardware beyond 100 streams
(limited by # of USB ports, etc.)

— Up to 10 computers involved per recording fine, >20 considered
excessive, likely requires high-end networking equipment
beyond 50 computers

* Designed for “human-scale” operating range:
— Not a perfect fit for high-energy physics

— Sub-milisecond time synchronization out of the box
(microsecond precision can only be achieved with user-supplied
(e.g., GPS/PTP) time stamps)

— Latency <1ms, throughput up to 2MHz and 100MB/s (raw video)

&

The LSL Data Flow

Stimulus
Presentation

Misc Devices (e.g.,
PhaseSpace)

_________________ 4 ————
I .
EEG Hardware (e.g. | | (Real-Time
BioSemi, MINDO) I libls| Viewers
| |
libls| ||
h < $\°@Q
libls| S s> s y
Yarke, Lab =5 i Recording
2 . Moca Program
Steaming X
2 Layer | oo
_ 0ol Ntrofs; e libls!)
libls| Online
) L Processing

LSL Can Be Easily Integrated Into
Programs

% in=tantiate the library

lib = 1=l loadlib():

¥ make a new stream outlet (name: BioSemi, type: EEG, 8 channel=s, 100H=z)
info = 121 =s=treaminfo(lib, 'BioSemi', "EEG',8,100, 'cf float32', "'myuid');
outlet = 1=l outlet (info);

% send data into the outlet, =ample by =s=ample (8 random numbers each)

while true
outlet.push sample (randni(8,1)):
pause (0.01) ;

end

Sample code for sending 8ch EEG (MATLAB)

LSL Can Be Easily Integrated Into
Programs

lib = 1s1 loadlib{();

T try resolve an EEG =stream
result = {}:
while isempty(result)
result = 1l=21 resolve byprop(lib, "type', '"EEG"); end
¥ create a new inlet from the first result

inlet = 1l=21 inlet(result{l});

while true
% get data from the inlet and print it
[vec,ts] = inlet.pull sample():;
fprintf('%.2f\t',vec); fprintf('%.5f\n',ts):
end

Sample code for receiving EEG data (MATLAB)

The LSL Software Stack

* The core piece of LSL is a network protocol, a
library, and various language interfaces for it

Other
Languages

C/C++ Python MATLAB Java
Header Wrapper Wrapper Wrapper

LSL Application Programming Interface (API)

Library (liblsl), cross-platform (C++)

LSL Protocol

The LSL Software Ecosystem

* The larger ecosystem includes Documentation,
User Guides, Example Programs, Acquisition
Programs, Generic Tools

e Largely open source (except vendor solutions)

Acquisition Programs (EEG, Eye Generic
tracking, Human Interfaces, Viewers,
Motion Capture, Multimedia) Recorder

Example Wiki
Programs Documentation

SO -

LSL Support from Industry

s

BrainTrain

BRAIN PRODUCTS

Solutions for neurophysiological re

EHEUHD _,\/\Cognionics

0:0s: arﬂ-m@ur@
.. mares @oeensc

pbehavioral .
systems @ |ntheOn ENMOTIV

WEARABLE :::
InteraXxon Sensing

*Incomplete List

Some EEG Solutions Supported by LSL

LSL supports 30+ EEG systems and over 20 other device classes

Research grade Consumer oriented
BRAIN PRODUCTS g WEARABLE
T Sensing

nionics SCTENCES

EGI

dense array EEG

emotive S —

nu\ i

J—

Interaxon
Neur—DSIFg
neuroelectrics @ S ayae
256 128 64 32 16 4 1

High Channel Density Low

Some Other Device Types on LSL

Eve Trackers

Motion Capture

Game Controllers

Mice, Keyboards

Serial Port

Soundcards & (some) frame grabber cards
Wearable EMG/ECG devices

Photodiodes, temperature probes, etc

Some LSL-Compatible Stimulus
Presentation Software

_— — EventIDE
e
Presentation

_____ = o

..... - —— _

-: iy] ﬂ"

Q unity B
Unity (with plugin) @ T G :

PsychoPy

PsychToolbox
UNREAL
ENGINE
@ Unreal (with plugin)

Useful Tools: LabRecor

er

' Lab Recorder
File Help
Recording Control

Start Stop

Enable RCS RCS Port: |22345

Record from Streams

O SimpleStream (DESKTOP-KLO548U)
[MyEventStream (DESKTOP-KL(O548U)

Select All Select None

Update

- [m|
Saving to...
C:\Wsers\Chad\Documents\CurrentStudy
exp005iplock_Test. xdf
Study Root |C: Wsers\Chad\Documents\CurrentStudy | Browse...
File Name Template |exp‘}’m\blod¢_%b.xdf | [Jems

Block/Task (%b): | Test

Exp num (%%n) | 5

Participant (%p) |PO01

Session (%s) |s001 |
Acq. (%ea) | |
Modality {%om) | eeg - |

The LabRecorder can record any number of LSL
streams simultaneously into a single file (XDF)

Useful Tools: Viewers

). Figure 1: LSL:Stream'MyStream'
File Edt View Insert Tools Desktop Window Help

AEE RN PRI

=10l x|

MyStream
T T T T

Ch7

Ch6 7

Chs

R N A e R T M LT LN

2 gl g g g A o R i g

A At A AR, A AR

I I I | I I I | I |
208 206.5 207 207.5 208 208.5 209 209.5 210 2106

MATLAB Viewer (included)

dar=caaaa

| (2) Band pass filtered signal (8 to 10 Hz, FIR) |

(5) System waits
| and triggers event
exactly at P1/2 in
original 10 Hz
oscillation.

A A RV VA VA VAT AV AV, YAV AVArL A

| (3) System identified phase |

SRRY Sy
1 I o U A, /
S e e

A
g ’ (4) System predicts phase into future rw-‘«, .

. M
U b
Pl ..
o % i " W
0

l (1) Unfiltered signal (10 Hz + noise) |

e L P

SigViewer (offline)

0t o e
Mot CETOR ST

Mo Rate: g
G s

B]
emtate: ey

N G

Mot TS BT
st 00

o ceTCE
P Rt 53055

e G et S Gty (i)

PO 3381 P71

AFT-483 e,

AF8-0.22 Pt Al A

TP10- 3166 Ny

Right AUX - 29 87

MuselLSL Viewer

Useful Tools: Real-Time Processing

{priy

Connectivity

®
—

~y Custom LSL Data L] Data mmw_
& \'\:\ s
Q Diagnostics
an : LSL Input FIR Filter
88 ciomentuie ot oo [e
Feature Extraction W7 Time series view - o X
X4 | File System
[| Formatting
{2} | Machine Learning
£ Network
LSL LSL 0sC TCP
3 L L k2
L5L Input Ot%ut Oﬁiﬁ:ut TCP Input
TCP
L
TCP \ | Outpy
INF
INF
INF
INF

—

NeuroPype Academic Edition

Useful Tools: Real-Time Processing

Eile Edit Help Window

IEEELER AR EAR
£ scenarioLaml 38 £ » testioml * 38 |

,%? | Channel 0

Channel 1

Channel 2

¥ Show unstable

Channel 3|---—----~---=-"="-"“-"““"-““““““ - tion .
Channel 4
-
WY Chamnel 5|__ N a confusion matrix out:

Channel &

I‘-'Iatr'lx\bisplav Univa I‘_Iati\‘_lll Statistics
L i A A A a2
W
D i
S
W

5

Channel 7
brm & quadratic matrix of

Channel 8

Channel § s M inputs to N outputs b

IChannel 10
plexes streamed matrix t

-- ks if @ matrix contains

udly Matr Display a streamed matrix
L= [Presentation

- |E| P300 Magic Card Visualisation Presents a matrix of images t

- -
| | > | | »
b @ 9 Messages
System load : [4.9% @

/

OpenViBE

Useful Tools: Command-Line Utils

LSL comes with small utilities out of the box
Can quickly diagnose network issues etc.

E.g., FindAllStreams, ReceiveData,
SendData, ReceiveStringMarkers,
SendStringMarkers

Generally available for all platforms

3 Using LSL

(Quick Demo)

A Typical Experiment Setup with LSL

* “Record data from 2 devices while running a
custom stimulus presentation script”

e Software needed for recording
— Your experiment script (sends event markers)
— Vendor A Application (e.g., sends EEG)
— Vendor B Application (e.g., sends MoCap data)
— Recording Program (LabRecorder)

A Typical Experimenter Workflow

1. Start EEG & MoCap apps, turn on LSL streaming if needed

rFUY | USe AUXLNENNEIS | (CNeck)
01
Oz
02

PO10 ﬂ

Enable Active Shield [V (check)

Link .

/4

2. Start experiment script in ready mode

PRESS STRHREI

3. Open LabRecorder, confirm all LSL streams are there, and
then click “Start”

Recording Control Storage Location
Stop C:\Recordings\Curren

Record from Streams

BioSemi

PhaseSpace
SNAP-Markers

Coding with LSL: Event Markers

I import random
| import time

|
| from pylsl import StreamInfo, StreamOutlet

declare your marker stream information

I info = StreamInfo('MyMarkerStream', ‘Markers', 1, 0,
I # create an outlet, now the stream 1is visible
I outlet = StreamOQutlet(info)

I
| while True:

| # send an event marker

I outlet.push_sample(["Some Event Marker"])
I # do something else

| time.sleep(random.random()*3)

I

'string’,

‘myuniqueid2345"')

Example Code for sending event markers over LSL (Python)

Coding with LSL: Sending Time Series

import time
from random import random as rand

from pylsl import StreamInfo, StreamOutlet

create stream info
info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234")

| # create an outlet

outlet = StreamOutlet(info)

I while True:

make a new random 8-channel sample and send it

mysample = [rand(), rand(), rand(), rand(), rand(), rand(), rand(), rand()]
outlet.push_sample(mysample)

wait for a bit until we send the next sample

time.sleep(0.01)

Example Code for sending a multi-channel time series over LSL (Python)

Coding with LSL: Receving Time Series

| from pylsl import StreamInlet, resolve_stream

we wait until we find a stream with type EEG on the lab network... (or
more than one)
I streams = resolve_stream('type', "'EEG')

V4 now that we have it, we create an inlet to read from it
linlet = StreamInlet(streams[@])

|

| while True:

| # wait to get the next sample, also get its timestamp
I sample, timestamp = inlet.pull _sample()

| print(timestamp, sample)

Example Code for receiving a multi-channel time series over LSL (Python)

Some Facts Worth Knowing

* LSL doesn’t reorder samples — the data you get out on the other side is always
in-order

e LSL doesn’t spuriously drop or lose samples (unless the network connection is
interrupted for a long time, default 5 min.)

* For LSL, it’s all just samples: one program can send whole chunks at a time,
and the other side can read it sample-by-sample, or vice versa

Samples 1...k
Metadata
M | | [l | | [[Vi]

<?’}<rrl version="1.8"2> IW IW IW E
<info> ‘

<name>BioSemi< /name> + eee

<type>EEG</type>

<channel_count>8</ch m IV_n m E

<nominal srate>108</

e ST T B ST O i oy RN ts ts ts ts

* When a program first starts reading from a stream, it will begin reading from
the stream’s next submitted sample onward (e.g., from sample #10053 on)

Some Facts Worth Knowing

* You can add any amount of meta-data to a stream, and for posterity’s
sake, you should:

info = StreamInfo('BioSemi’', 'EEG', 8, 100, 'float32', 'myuid2424")

add some meta-data (follow the spec at https://github.com/sccn/xdf/wiki/Meta-Data)
info.desc().append child("reference").append _child value("label”, "Nasion")

add some more meta-data

channels
for c in
chan

chan.
chan.
chan.

info.desc().append child("channels™)

"c3", "c4", "cz", "FPz", "POz", "CPz", "O1", "02"]:
channels.append child("channel™)

append_child _value("name", c)

append_child value("unit"”, "microvolts")
append_child value("type", "EEG")

I — 1l

* For best compatibility, LSL apps should adhere to the meta-data
conventions set forth by the XDF (Extensible Data Format) project,
which can be found at: https://github.com/sccn/xdf/wiki/Meta-Data

https://github.com/sccn/xdf/wiki/Meta-Data

Thanks!

Questions?

Next speaker: Arnaud Delorme

	The Lab Streaming Layer – Introduction and Overview
	The Lab Streaming Layer
	Design Tradeoffs
	The LSL Data Flow
	LSL Can Be Easily Integrated Into Programs
	LSL Can Be Easily Integrated Into Programs
	The LSL Software Stack
	The LSL Software Ecosystem
	LSL Support from Industry
	Some EEG Solutions Supported by LSL
	Some Other Device Types on LSL
	Some LSL-Compatible Stimulus Presentation Software
	Useful Tools: LabRecorder
	Useful Tools: Viewers
	Useful Tools: Real-Time Processing
	Useful Tools: Real-Time Processing
	Useful Tools: Command-Line Utils
	3 Using LSL
	(Quick Demo)
	A Typical Experiment Setup with LSL
	A Typical Experimenter Workflow
	Coding with LSL: Event Markers
	Coding with LSL: Sending Time Series
	Coding with LSL: Receving Time Series
	Some Facts Worth Knowing
	Some Facts Worth Knowing
	Thanks!

