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The Lab Streaming Layer

Started in 2012 at SCCN
 Funding from ARL, ONR, NIH, DARPA, NASA
e Quite popular (32k demo views on YouTube)

e Goals

— Unify real-time data access and recording file formats
across many device types (EEG/EXG, NIRS, MoCap, Eye
tracking, Audio, etc) and hardware/software vendors

— Same workflow for both simple experiments and
complex multi-modal / multi-person etc. setups

— Provide built-in time-synchronization solution

&



Design Tradeoffs

* Designed for “lab-scale” recording operations:
— Local: use VPN/broker/bridges to scale across the internet

— Up to 20 streams per computer fine, 30-100 considered heavy
load, likely needs high-end hardware beyond 100 streams
(limited by # of USB ports, etc.)

— Up to 10 computers involved per recording fine, >20 considered
excessive, likely requires high-end networking equipment
beyond 50 computers

* Designed for “human-scale” operating range:
— Not a perfect fit for high-energy physics

— Sub-milisecond time synchronization out of the box
(microsecond precision can only be achieved with user-supplied
(e.g., GPS/PTP) time stamps)

— Latency <1ms, throughput up to 2MHz and 100MB/s (raw video)
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The LSL Data Flow
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LSL Can Be Easily Integrated Into
Programs

% in=tantiate the library

lib = 1=l loadlib():

¥ make a new stream outlet (name: BioSemi, type: EEG, 8 channel=s, 100H=z)
info = 121 =s=treaminfo(lib, 'BioSemi', "EEG',8,100, 'cf float32', "'myuid');
outlet = 1=l outlet (info);

% send data into the outlet, =ample by =s=ample (8 random numbers each)

while true
outlet.push sample (randni(8,1)):
pause (0.01) ;

end

Sample code for sending 8ch EEG (MATLAB)



LSL Can Be Easily Integrated Into
Programs

lib = 1s1 loadlib{();

T try resolve an EEG =stream
result = {}:
while isempty(result)
result = 1l=21 resolve byprop(lib, "type', '"EEG"); end
¥ create a new inlet from the first result

inlet = 1l=21 inlet(result{l});

while true
% get data from the inlet and print it
[vec,ts] = inlet.pull sample():;
fprintf('%.2f\t',vec); fprintf('%.5f\n',ts):
end

Sample code for receiving EEG data (MATLAB)



The LSL Software Stack

* The core piece of LSL is a network protocol, a
library, and various language interfaces for it

Other
Languages

C/C++ Python MATLAB Java
Header Wrapper Wrapper Wrapper

LSL Application Programming Interface (API)

Library (liblsl), cross-platform (C++)

LSL Protocol




The LSL Software Ecosystem

* The larger ecosystem includes Documentation,
User Guides, Example Programs, Acquisition
Programs, Generic Tools

e Largely open source (except vendor solutions)

Acquisition Programs (EEG, Eye Generic
tracking, Human Interfaces, Viewers,
Motion Capture, Multimedia) Recorder

Example Wiki
Programs Documentation

SO -



LSL Support from Industry
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Some EEG Solutions Supported by LSL

LSL supports 30+ EEG systems and over 20 other device classes
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Some Other Device Types on LSL

Eve Trackers

Motion Capture

Game Controllers

Mice, Keyboards

Serial Port

Soundcards & (some) frame grabber cards
Wearable EMG/ECG devices

Photodiodes, temperature probes, etc



Some LSL-Compatible Stimulus
Presentation Software
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Useful Tools: LabRecor

er

# ' Lab Recorder
File Help
Recording Control

Start Stop

Enable RCS RCS Port: |22345

Record from Streams

O SimpleStream (DESKTOP-KLO548U)
[ MyEventStream (DESKTOP-KL(O548U)

Select All Select None

Update

- [m|
Saving to...
C:\Wsers\Chad\Documents\CurrentStudy
exp005iplock_Test. xdf
Study Root |C: Wsers\Chad\Documents\CurrentStudy | Browse...
File Name Template |exp‘}’m\blod¢_%b.xdf | [Jems

Block/Task (%b): | Test

Exp num (%%n) | 5

Participant (%p)  |PO01

Session (%s) |s001 |
Acq. (%ea) | |
Modality {%om) | eeg - |

The LabRecorder can record any number of LSL
streams simultaneously into a single file (XDF)




Useful Tools: Viewers

). Figure 1: LSL:Stream'MyStream'
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Useful Tools: Real-Time Processing
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Useful Tools: Real-Time Processing
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Useful Tools: Command-Line Utils

LSL comes with small utilities out of the box
Can quickly diagnose network issues etc.

E.g., FindAllStreams, ReceiveData,
SendData, ReceiveStringMarkers,
SendStringMarkers

Generally available for all platforms



3 Using LSL



(Quick Demo)



A Typical Experiment Setup with LSL

* “Record data from 2 devices while running a
custom stimulus presentation script”

e Software needed for recording
— Your experiment script (sends event markers)
— Vendor A Application (e.g., sends EEG)
— Vendor B Application (e.g., sends MoCap data)
— Recording Program (LabRecorder)



A Typical Experimenter Workflow

1. Start EEG & MoCap apps, turn on LSL streaming if needed

rFUY | USe AUXLNENNEIS | (CNeck)
01
Oz
02

PO10 ﬂ

Enable Active Shield [V (check)

Link .

/4

2. Start experiment script in ready mode

PRESS STRHREI

3. Open LabRecorder, confirm all LSL streams are there, and
then click “Start”

Recording Control Storage Location
Stop C:\Recordings\Curren

Record from Streams

BioSemi

PhaseSpace
SNAP-Markers



Coding with LSL: Event Markers

I import random
| import time

|
| from pylsl import StreamInfo, StreamOutlet

# declare your marker stream information

I info = StreamInfo('MyMarkerStream', ‘Markers', 1, 0,
I # create an outlet, now the stream 1is visible
I outlet = StreamOQutlet(info)

I
| while True:

| # send an event marker

I outlet.push_sample(["Some Event Marker"])
I # do something else

| time.sleep(random.random()*3)

I

'string’,

‘myuniqueid2345"')

Example Code for sending event markers over LSL (Python)



Coding with LSL: Sending Time Series

import time
from random import random as rand

from pylsl import StreamInfo, StreamOutlet

# create stream info
info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234")

| # create an outlet

outlet = StreamOutlet(info)

I while True:

# make a new random 8-channel sample and send it

mysample = [rand(), rand(), rand(), rand(), rand(), rand(), rand(), rand()]
outlet.push_sample(mysample)

# wait for a bit until we send the next sample

time.sleep(0.01)

Example Code for sending a multi-channel time series over LSL (Python)



Coding with LSL: Receving Time Series

| from pylsl import StreamInlet, resolve_stream

# we wait until we find a stream with type EEG on the lab network... (or
more than one)
I streams = resolve_stream('type', "'EEG')

V4 now that we have it, we create an inlet to read from it
linlet = StreamInlet(streams[@])

|

| while True:

| # wait to get the next sample, also get its timestamp
I sample, timestamp = inlet.pull _sample()

| print(timestamp, sample)

Example Code for receiving a multi-channel time series over LSL (Python)



Some Facts Worth Knowing

* LSL doesn’t reorder samples — the data you get out on the other side is always
in-order

e LSL doesn’t spuriously drop or lose samples (unless the network connection is
interrupted for a long time, default 5 min.)

* For LSL, it’s all just samples: one program can send whole chunks at a time,
and the other side can read it sample-by-sample, or vice versa

Samples 1...k
Metadata
M | | [l | | [ [Vi]

<?’}<rrl version="1.8"2> IW IW IW E
<info> ‘

<name>BioSemi< /name> + eee

<type>EEG</type>

<channel_count>8</ch m IV_n m E

<nominal srate>108</

e ST T B ST O i oy RN ts ts ts ts

* When a program first starts reading from a stream, it will begin reading from
the stream’s next submitted sample onward (e.g., from sample #10053 on)



Some Facts Worth Knowing

* You can add any amount of meta-data to a stream, and for posterity’s
sake, you should:

info = StreamInfo('BioSemi’', 'EEG', 8, 100, 'float32', 'myuid2424")

# add some meta-data (follow the spec at https://github.com/sccn/xdf/wiki/Meta-Data)
info.desc().append child("reference").append _child value("label”, "Nasion")

# add some more meta-data

channels
for c in
chan

chan.
chan.
chan.

info.desc().append child("channels™)

"c3", "c4", "cz", "FPz", "POz", "CPz", "O1", "02"]:
channels.append child("channel™)

append_child _value("name", c)

append_child value("unit"”, "microvolts")
append_child value("type", "EEG")

I — 1l

* For best compatibility, LSL apps should adhere to the meta-data
conventions set forth by the XDF (Extensible Data Format) project,
which can be found at: https://github.com/sccn/xdf/wiki/Meta-Data



https://github.com/sccn/xdf/wiki/Meta-Data

Thanks!

Questions?

Next speaker: Arnaud Delorme
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