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ABSTRACT

Two models of information acquisition in visual scanning are described. A descriptive
model identifies the role of event salience, effort, expectancy and value in influencing where and
when people look at different channels to sample information in dynamic environments. An
optimal prescriptive model accounts for the role of expectancy and value, as these characterize
the properties of channels necessary to serve tasks that may differ in their importance. The
prescriptive model is validated against the data from four experiments in which skilled pilots
flew a high fidelity visual flight simulator, while engaged in traffic detection with (Experiments
1, 3, and 4) and without (Experiment 2) a cockpit traffic display, and with different forms of data
link displays (Experiment 4). All four experiments provided a good fit between model
predictions and the percentage of time that pilots spent viewing different areas of interest in the
airplane environment. Implications of the model to training optimal strategies, and to possible
refinement of training policies are described.

INTRODUCTION

Models of visual information acquisition can generally be placed into one or two
categories of two sorts. On the one hand, psychol ogists have extensively modeled the process of
visual search (e.g., Brogan, Gale, & Carr, 1993; Wolfe, 1994; Neisser, Novick, & Lazar, 1964;
Teichner & Mocharnuk, 1979). In such endeavors they have contrasted serial and parallel search
models, and created hybrid models in between (Bundensen & Pedersen, 1983), and such models
have been useful in both basic laboratory paradigms as well as more applied domains such as
those involved in searching graphs (Gillan & Lewis, 1994; Lohse, 1993), maps (Wickens, Kroft,
& Yeh, 2000), menus (Fisher & Tan, 1989) or roadway environments (Theeuwes, 1994). A key
facet of such modelsisthe emphasis on locating asingle target, and an emphasis on search time
asthe critical dependent variable (although see Drury, 1975 for the importance of accuracy in
search models).

In contrast to search models, another class of models has focused on supervisory
control/sampling, using, primarily visual sampling or scanning as a dependent variable (e.g.,
Moray, 1986; Senders, 1964, 1983; Carbonell, 1966; Carbonnell, Ward, & Senders, 1968; Ellis
& Stark, 1986; Sheridan, 1970). Such models have typically been more engineering based, and
focus very much on the eye (as measured by visual scanning) asa*single server queue’. Four
key features distinguish these from the visual search models above. (1) The operator is not
looking for a static target, but is rather supervising a series of dynamic processes, such as
temperature gauges, or aircraft movements. (2) The primary focus of the modelsis on noticing
critical events at relatively consistent spatial locations, rather than finding critical tar gets at
uncertain locations. (3) The key dependent variable is not target detection RT, but isinstead the
proportion of visual attention distributed to various “areas of interest” (AOIs) as afunction of the
guantitative properties of those AQOIs. (4) The process of defining specified AOls means that the
challengein visual attention is not so much knowing whereto look (e.g., to find atarget), but in
knowing when to look wher e to assure that the dynamic processes are under control, and that
the necessary information to understand those processesis retrieved in atimely manner.

A characteristic that permeates many of the visual sampling modelsisthat of optimal
strategies of attention allocation, designed to maximize or minimize some benefit or cost



function, given the scarce resources of the “single server queue’ (visual attention). Asan
example, Senders (1964) original search model focused on the optimum sampling of different
dynamic AOIs as afunction of the bandwidth (event rate) of signalslocated there, employing
optimal sampling theory. His model was subsequently elaborated by others (Sheridan, 1970;
Sheridan & Rouse, 1971; Carbonell, 1966; Carbonnell, Ward, & Senders, 1968; Tulga &
Sheridan, 1980; see Moray, 1986 for a good review) to account for value, in addition to
bandwidth, and to dictate optimal scanning strategies, given the expected value of perceiving
information at different AOIs (or the expected cost of missing critical events at those AQIS).
Such models, echoing normative expected value models of decision making (e.g., Edwards,
1961), penalize attention allocation performance to the extent that channels that contain high
probability and important (valuable) events are undersampled. That is, attention allocation
should be directly proportional to the product of probability and value.

The expected value model may be considered optimal or prescriptive in the sense that
only two properties should drive the allocation of attention: expectancy and value. An operator
who possesses awell calibrated mental model (Smallwood, 1967), that captures the objective
levels of these two parameters will minimize the chance of missing important information. Of
course expectancy is driven not only by the bandwidth or frequency of events occurring along a
channel, but also by any contextual cueing that may signal the appearance of information along
an otherwise low bandwidth channel. This might, for example, characterize the role of an alarm,
signaling the operator to look at the visual display of the indicator variable that triggered the
alarm. Under normal circumstances the indicator changes rarely (low bandwidth) but now will be
sampled at atime other than that dictated by its low bandwidth. One general finding that comes
from the earlier research on sampling, is that people tend to sample low bandwidth channels
somewhat more frequently than the optimal models predict, a characteristic attributed, in part, to
peopl€e’ s limited working memory of the exact state of a channel when it was last sampled
(Sheridan, 1970; Moray, 1986).

In addition to expectancy and value, there are two other important factors that also
influence the frequency of visual sampling. First, Kvalseth (1977) and Sheridan (1970) have both
identified the inhibiting role of information access effort required to sample information. Eye
movements are “cheap” but not “free”, and in some environments when a head movement is also
required to sample information, the cost of such samples can be quite high (while wearing
cumbersome head gear or, for the pilot, making head movements while engaged in vertical or
lateral maneuvering can cause vestibular disorientation). In addition to the effort required by
attention movement, the effort required of concurrent cognitive or perceptual tasks can also
inhibit the control of visual scanning (Liu & Wickens, 1992) or information access. The second
additional factor isthe salience or conspicuity of an event that occurs on a channel (or within an
AQl), afactor that can capture attention. While this property received little attention from the
engineering models of supervisory sampling, it has been a cornerstone of the psychological
models of visual search, with explicit focus on the concept of “attentional capture” and its causes
(Yantis, 1993; Wolfe, 1994; Folk, Remington, & Johnston, 1992; Pashler, Johnston, & Ruthruff,
2001).

Given the above discussion, it should then be feasible to combine the influence of the
four factors driving visual attention into a descriptive model of scanning, characterizing the



distribution of visual attention across areas of interest, (or the probability that a given area will
be attended)

(1)  P(A) =sS—6&EF + (exEX)(WV).

We may refer to this as the SEEV model, as derived from its terms. Each term in capital lettersis
acharacteristic of a particular environment that is determined by (1) the physical properties of
events (Salience = S), (2) the physical distance between a previously fixated and a current AOI,
or the demands of concurrent tasks (Effort = EF), (3) an information-related measure of event
expectancy (e.g., bandwidth, event rate; Expectancy = EX), and (4) an objective measure of the
value (=V) of processing information at the AOI in question (or the cost of failing to attend
there). The coefficients, s, ef, ex, and v, represent the relative influence of these four factors on
human scanning.

It is apparent from the model and the previous discussion, that the two added components
(S and EF) that distinguish the optimal prescriptive model, from its descriptive counterpart may
exert agreater or lesser influence on scanning to the extent that designers have adhered to good
human factors practice in display layout, by correlating EF with EX, and Swith V. In particular,
to the extent that high expectancy, high bandwidth sources of information are close together (low
EF), thiswill attenuate the inhibitory role of effort in seeking information. Such a correlation
represents the frequency of use principle of display layout (Wickens, Vincow, Schopper, &
Lincoln, 1997). To the extent that valuable information is made salient when it occurs, this will
assure the capture of attention when important events occur: for example, the role of alarmsin
good human factors practice (Stanton, 1994). Correspondingly, making less valuable events less
salient will inhibit undesirable failures to focus attention appropriately.

It is aso apparent that effective training, creating awell calibrated mental model
(Smallwood, 1967) of expectancy and value, should be used to overcome any potentially
negative influences of salience and effort, when these are not explicitly correlated with value and
effort respectively. Indeed Moray (1986) observes that those empirical evaluations of the
information sampling models that have used more highly trained operators (such as skilled
pilots;, Carbonnell, Ward, & Senders, 1968) tend to show fewer departures from optimal
prescriptions, than those employing less skilled subjects (e.g., Sheridan & Rouse, 1971).

As noted above, some researchers have evaluated components of the model, although
they have typically done so either in relatively “abstract” context free environments (e.g.,
Senders, 1964; Kvalseth, 1977; Sheridan & Rouse, 1971), or, when evaluated in more realistic
settings, with more skilled participants (e.g., Carbonnell et a., 1968; Moray, Richards, & Low,
1980), have done so with only a small sample of subjects. Furthermore, the model validations
that were carried out, were typically accomplished on only asingle set of participants. Lacking
was any cross validation, whereby the model fits obtained on one sample were validated on
another sample. The goal of the research we report here is to provide validation and cross
validation of aversion of the expected value model of information seeking and attention
allocation, with alarger sample of well trained pilots.



The Optimal Prescriptive Model

Our model aso extends previous models of information sampling in an important respect.
While previous models have defined properties of each AOI or channel, purely in terms of the
bandwidth and value of events along that channel, we explicitly consider the many—to one
mappings of tasks to channels, and channels to tasks in complex environments that makes this
parameter assignment more difficult and requires the integration of models of information
seeking with those of task management (Chou, Madhavan, & Funk, 1996; Dismukes, 2001,
Raby & Wickens, 1994). Thisintegration is shown schematically in Figure 1. At the top, the
simpler models such as those of Senders (1964) and Carbonell (1966) assign tasks, values and
bandwidths on a 1-1 mapping to AOIs. At the bottom, we see the structure of the current
expected value model, as explicitly used in the framework of a pilot scanning three areas of
interest (the instrument panel, the outside world, and a cockpit display of traffic information, or
CDTI) to support two different tasks: the task of aviating, which involves maintaining accurate
control over the “inner loop” aircraft flight parameters of pitch, roll and yaw, in order to keep the
aircraft from stalling, and the task of navigating which, in our paradigm, requires the pilot to be
aware of, and (if necessary) navigate around, any other air traffic in the forward path.

Within aviation, thereis a clearly established task priority hierarchy which sets aviating
to be amore important task than navigating (although both are more important than
communicating; Schutte & Trujillo, 1996). After all, a plane cannot navigate if itslift is not
sufficient to keep it in the sky (afailure to aviate), whereas a plane can aviate (fly) even if its
heading and altitude are unknown (failure to navigate). As shown in Figure 1, this task hierarchy
defines the importance or value (V) of AOIsthat serve the respective tasks. However aircraft
piloting also is such that, for example, the task of aviating (knowing the attitude of the aircraft
relative to the horizon) can be supported both by the attitude indicator on the instrument panel
(IP), and by the view of the true horizon in the outside world (OW). Correspondingly, the
detection of traffic to be avoided (supporting navigation with heading or altitude changes) can
also be supported by both the direct view of that traffic out the window (OW) and the cockpit
traffic display (CDTI). These relations are also shown in Figure 1.

Accordingly, as shown at the bottom of Figure 1, an expected value model would predict
that the probability of attending to a particular AOI isrelated to the sum, across all tasks
supported by that AOI, of the value of those tasks, multiplied by the degree of relevance
(importance) of the AOI for the task in question, and by the bandwidth of their informational
“events’. Expressed computationally, thisis then represented by the prescriptive, or optimal
form of the model (in contrast to the descriptive Equation 1) as.

n
(2 P(AOI) = Z (bBy)(rRy)(Vy)
t=1

wheret = tasks, numbering 1-N.



SIMPLE SCAN MODEL (Senders)
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Figure 1. Representation of different scanning models.



Notice that Expectancy is incorporated by bandwidth, while Value isincorporated by the
product of relevance and the value (rank) of the task in the priority hierarchy. Whether
“bandwidth” is assumed to be a genera property of an AOI (and therefore can sit outside the
summation), or is assumed to be a specific property of each task serviced by the AOI (and
therefore must sit inside the summation, as shown in Equation (2)), may be determined by the
particular application. Equation (2) is obviously different from the original SEEV descriptive
model (Equation 1), in that the former does not contain the non-optimal salience and effort
factors. Our goal isto assess how accurately the smpler optimal model can account for the
performance of well trained pilots. After we report the results of this exercise, we will discuss the
possible influences of salience and effort.

In providing numerical predictions for such amodel, two general steps are required. First,
as shown in Figure 2, matrices must be set up, to accommodate the different parameter estimates
of bandwidth, relevance and value, that will be imposed in the varying conditions whose visual
scanning (attention allocation) measures can be employed to validate the model. Second (and
more challenging), one must assign the numerical coefficientsto the different cells of the matrix,
across the varying conditions, in order to compute model predictions.

Bandwidth AOI
A B C

Relevance A B C Priority
X X
Task Y Y
V4 Z

Figure 2. Generic matrices used to compute scanning predictions from the model shown in
equation (2). Three AOI's (A, B, C) are depicted. The label “task” includes both separate tasks
(such as aviate, navigate) as well as the same task under different conditions (such as aviating
while maneuvering, or while flying straight and level). Thus there will be as many data points to
predict, asthere are cellsin the “Relevance” matrix.

Rather than trying to estimate absolute values of some of these parameters, the approach
we take in coefficient assignment is based on a*“lowest ordinal algorithm”. That is, across the
range of conditions and AOIs employed (i.e., the rows and columns of the matricesin Figure 2),
we simply order the values from highest to lowest (e.g., aviating priority is higher than



navigating priority). Second, we assign the lowest values of these parameters that can still
preserve all ordinal relations within the rows and columns of the matrices. As an example we
shall encounter below, we may, in condition I, initially assign aviating a priority value of 2,
higher than navigating (lower priority = 1); but once we include another condition, I1, in which
aviating is more important than it was in condition I, then aviating will need to take on two lower
priority values (1 and 2), and so the priority value of aviating must be elevated to become 3.
Generally wetry to apply integer values. Thislowest ordinal algorithm has the advantage that
coefficients can be set based on simple relationships that multiple model users should agree
upon.

MODEL VALIDATION

We report below the data from four aviation experiments used to generate data to validate
(Experiments 1 and 2) and cross validate (Experiments 3 and 4) the optimum expected value
model. The procedural details of Experiments 1, 2 and 3 are reported el sewhere (Wickens,
Helleberg, & Xu, in press; Helleberg & Wickens, in press). However these articles do not report
the efforts to model the scanning data which we report here.

All four experiments have the following common features.

Participants. All experiments employed well trained pilots who were flight instructors at
the University of Illinois Institute of Aviation. Flight hours ranged from X to Y. All participants
were paid for their participation.

Tasks/AQIls. Pilots ways flew a general aviation flight simulator, with full outside
visua projection (Figure 3) on a series of flight legs, defined by target altitude, heading and
airspeed parameters (Figure 4). On most legs, one or more traffic aircraft was potentially visible.
The pilots primary task was aways to aviate. That is, to maintain stability of the aircraft by
appropriate control of attitude (pitch and roll). Asin conventional non-automated flying, pitch
and roll also controlled altitude and heading respectively. These components of altitude and
heading were fundamental to the second task, navigating, which involved flying the aircraft
either in adirection specified by instructions, or in such away as to avoid other traffic aircraft in
the nearby airspace. Finally, in Experiment 4, a communications task was added, requiring the
pilot to either listen to or look at strings of communications data.

These tasks were performed across various conditions, to be described in more detail
below (e.g., while flying straight or maneuvering); conditions that were assumed to change
coefficients of the model. During some trials, eye movements were measured on an Applied Life
Sciences eye movement recorder, coupled with a head tracker, in order to establish the
proportion of time that the visual gaze spent within each of four AOIs: the Outside World (OW),
the Instrument Panel (IP), a Cockpit Display of Traffic Information (CDTI) and a source of data-
linked communications information (DL). Only the OW and the IP were present across all
experiments and experimental conditions. In all four experiments we also measured different
aspects of performance, which were used to assess the pilots allocation of resources to tasks
(e.g., flight path error, traffic detection, communication readbacks). These data are reported
elsewhere (Helleberg & Wickens, in press, Wickens et al., in press).



Figure 3. The simulation environment, showing the CDTI to the left and the instrument panel
(IP) to theright.

General Procedures. Each pilot participated for between 5 and 10 hoursin one of the
experiments. Pilots were instructed to assume that they were in visual meteorological conditions,
in which other traffic was potentially visible, and it was thereby important for them to call out
“traffic in sight” once they had spotted any traffic aircraft in the outside world. In most
conditions they were also to assume direct responsibility for maneuvering the aircraft, in any
manner they chose, in order to avoid creating a conflict or “loss of separation” with any traffic
aircraft. This conflict event was normally defined to occur when atraffic aircraft flew both
within 15 miles of the pilots' aircraft and within 1000 vertical feet of altitude. Except when
maneuvering, pilots were instructed to come to, or stay on, the flight parameters of heading
altitude and airspeed that were instructed at the beginning of each leg. Following each maneuver,
pilots were instructed to return to the original target parameters. Each flight leg lasted between
four and seven minutes, and a given flight scenario consisted of 10 or 11 consecutive legs.

Analyses. In all experiments reported below, we analyze the mean scanning data
(percentage dwell time) across all pilotsin the experiment, as a function of condition and AOI,
and correlate these data with the model predictions for the AOI/condition in question. We do not
here report individual pilot data (but see Wickens, Helleberg, Kroft, Talleur, & Xu, 2001). In the
following, we described the specific characteristics of each experiment, and its model fitting in
turn.



Typical ATC Command: | -

“Cessna 1851 Zulu, Fly Heading 070,
Climb and Maintain 5500, and 140 K nots.”

Typical Cross-Country Scenario

Includes: 6 conflict legs
4 non-conflict legs (one transponder off leg)

Figure 4.



Experiments 1 and 2. Free flight/baseline. In these two experiments, atotal of 17 pilots
had their eye tracking recorded as they engaged in a series of flight simulations designed to
examine the impact of free flight responsibilities on visual scanning. Seven pilots provided
scanning datain the free flight/CDTI experiment, in which they were required to maneuver in
order to avoid aloss of separation with a“conflict aircraft”. The CDTI was a coplanar display
presenting both a map view and rear-view vertical situation display. Predictor lines were
presented on both ownship and traffic aircraft (see Wickens, Gempler, & Morphew, 2000 for
details). Conflict aircraft were present on 60% of the flight legs (defined by a given heading,
atitude and airspeed requirement). The remaining 40% (non-conflict legs) contained traffic
aircraft, ultimately visible in the outside world and the CDTI, but these aircraft were not on a
conflict path.

In order to provide a non-free flight baseline, against which to compare the scanning
behavior of the seven free flight pilots, a second group of 10 pilots (for which good scanning
measures were available) flew a simulation experiment (2: baseline) after the free flight
experiment had been completed. In Experiment 2, these pilots flew the same set of conflict
avoidance profiles (as did the free flight pilots), but these maneuver profiles were now instructed
by asimulated air traffic controller. As a consequence, the nature of the flight profile (and hence,
of the information seen in the instrument panel and outside world) was essentially equivalent
between the two experiments. The primary difference between the experiments was the presence
of the CDTI, and the acceptance of sole responsibility for traffic avoidance navigation by
pilotsin the free flight experiment. For pilots in the baseline experiment, this responsibility was
shared with ATC.

For the purposes of model fitting then, there were four trial types, defined by crossing
experiment (baseline vs. free flight) with leg (conflict maneuver vs. nonconflict straight and
level). When these four trial types are crossed with the three (free flight) or two (baseline) AQIs,
atotal of 10 model predictions can be made, as represented by the two matrices in the top of
Table 1. Parameter values for the bandwidth matrix in Table 1 were estimated as follows: The
highest value was assumed for the instrument panel, asit contains six instruments, and one of
these, the attitude indicator or artificial horizon, is that which represents the highest bandwidth
(state changing) aspect of aircraft dynamics (Harris & Christhilf, 1980; Bellenkes, Wickens, &
Kramer, 1997; Wickens, in press). The next lower ordinal value was assumed for the outside
world, because it too contains the high bandwidth horizon (the true horizon), but does not
contain the additional four dynamic instruments contained by the instrument panel. The lowest
value was assumed for the CDTI, because this instrument does not contain the high BW artificial
horizon, athough it does represent lower bandwidth aspects of heading, altitude and vertical
speed. This ordinal relation of bandwidth across AOI was preserved for both conflict and non-
conflict legs. However on the latter, the coefficients were halved, because the absence of |ateral
or vertical maneuvering on these legsis assumed to reduce the frequency of changesin the
instruments. Because of the yoking of behavior of pilotsin the baseline condition to that of pilots
in the free flight condition, the identical set of inputs was assumed to be visible for both sets of
pilots. Hence the bandwidth coefficient values of the IP and OW in the baseline condition match
those in free flight (when the CDTI was removed).
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Table 1. Parameter values assumed for Experiment 1 (free flight) and Experiment 2 (baseline).

AOI
Parameter IP ow CDTI
Bandwidth (B) | Freeflight (Conf) 3 2 1
Freeflight (Nconf) 2 1 0.5
Baseline (Conf) 3 2
Baseline (Nconf) 2 1
Relevance (R) | Aviate (FF) 2 1 0 Priority (V) | Aviate (FF) 3
Navigate (FF) 1 2 2 Navigate (FF) 2
Aviate (Base) 2 1 Aviate (Base) 3
Navigate (Base) 1 2 Navigate (Base) | 1

The relevance coefficients in the second matrix of Table 1 were determined initially by
the logic shown in Figure 1. Thusit was assumed that the relevance of the instrument panel for
aviating was greater than that of the outside world. This assumption was made since the
instrument panel contained four channels of aviating information (pitch, bank, airspeed and
vertical speed), aways visible, whereas the OW contained only 2 (pitch and bank of the true
horizon), which could sometimes be obscured. The CDTI contained no direct representation of
attitude or airspeed. For the navigation task, we assumed that the instrument panel took on less
relevance since it had no representation of traffic, the primary issue in navigation. Relevance was
not however set to 0, since the IP did contain altitude and heading information necessary for
complying with navigational maneuvering plans. For navigating (traffic avoidance), the
relevance of both the OW and the CDTI was set to be greater than their value for aviating, as
well as greater than the relevance value of the IP.

Finally, the priority coefficients were assigned on the basis of the “aviate-navigate” task
hierarchy underlying aviation as described above (Schutte & Trujillo, 1996). However the
importance or priority of navigating was assigned a higher value in free flight than in the
baseline, since in the free flight condition the pilot was the only person responsible for this task,
whereas in the baseline condition navigation (traffic avoidance) was primarily the responsibility
of ATC. That is, the ssmulated controller provided instructions of heading altitude and airspeed
that were guaranteed to avoid the loss of separation.

In analyzing the visual scan data, it should be noted that the differences in percentage
dwell timein the three AOI’s, across the various conditions were statistically significant
(Wickens et al., in press). Hence we have confidence in the generalizability of our findings.
Figure 5 shows the data for the scan measures (percentage of dwell time within each AOI)
regressed against the model predictions for the 10 different conditions. The product moment
correlation between model predictions and scanning parameters was r = 0.89, indicating that
79% of the variance of scanning was accounted for by model predictions. Examination of Figure
5 suggests that the major source of variance accounted for by the model is the difference between
the three AOI’s, shown by the three clusters of points. However, even within the clusters, thereis
atendency for the points to align themselves with the regression line, particularly within the IP
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(the cluster of four points on the upper right). Further examination of the regression plot reveals
that pilots scanned the OW less, in the free flight condition, then the model predicts.
Nevertheless, the fit of the model by the datais quite satisfactory. There are of course justifiable
ways that the model coefficients could be changed which could improve the fit still further. As
one example, it could be assumed that the CDTI does have some relevance to aviating, given that
the vertical profile predictor display on the CDTI shows avery salient vertical trend indicator.
Replacing the O inthis cell of Table 1 with a 1 actually increases the model fit to r = 0.90.

Model obtained vs. predicted attention allocation: Freeflight-

Baseline
0,
o 100% y = 0.6256x + 0.1498
£ 80% R’ = 0.7898
I—
o
5 60% —
o\o /
- 40%
[¢D)
< ey
g 20% - A
0% ‘ ‘ ‘ ‘
0% 20% 40% 60% 80% 100%

Model Predicted % Dwell Time

Figure 5. Model prediction versus scan (percentage dwell time) performance for Experiments 1
and 2. CDTI: squares; OW: triangles; IP: circles; Conflict: small; Nonconflict: large; Free flight:
dark shading; Baseline: lighter shading.

Experiment 3: Modality and traffic density. Rather than pursuing parameter adjustment of
Experiment 1 data to optimize the current model fit, we chose instead to apply the parameters of
the model used in Experiment 1, to anew set of data, collected in a different experiment, with
some different manipulations. In Experiment 3, a different set of pilots (N=12) engaged in the
same genera flight simulation (using the same equipment) as in Experiments 1 and 2. However,
for the purposes of model prediction, the following important changes were made. (1) All trials
were “free flight” in that pilots were required to judge traffic conflicts on their own, and to
maneuver if necessary to avoid traffic. (2) Ninety percent of the trials were non-conflict (straight
and level), and only those non-conflict trial data will be reported (although maneuvers were not
required on thetrias, this discrimination was challenging for the pilots). (3) On 2/3 of the trials,
pilots received information about traffic, asin Experiment 1, on a CDTI. On the remaining third
of the trials, pilots received the same essential information, delivered auditorally (e.g., “traffic

12



2:00 low, 4 miles’). The CDTI was not present as an AOI on these trials. (On half of the CDTI
trials, pilots received traffic information redundantly on the auditory channel, a distinction that
will not be relevant to the current modeling effort). (4) On half of the flight legs, there was only
one traffic aircraft, whereas on the other legs, four aircraft were encountered, hence greatly
elevating the bandwidth of any AQI that represented traffic.

Table 2 presents the coefficients used for the model in Experiment 3. In essence, we have
borrowed the coefficients from the non-conflict free flight trials from Experiment 1 (see Table
1). These values are represented across the top rows of the three panels within Table 2. In the
second row of the bandwidth panel, given the increase in traffic, we have increased the
bandwidth parameters for the two AOIs that present traffic information, the OW and the CDTI.
We provide a greater increase (x4) for the CDTI than for the OW (x2) because all four traffic
aircraft are typicaly visible on the CDTI, whereas the narrower scope of the OW view, presents
roughly two traffic aircraft at any given time. These values are replicated on the two rows below
for the two relevant columns, as was done in Experiments 1 and 2 (e.g., without the CDTI).

Table 2. Parameter values for Experiment 3: traffic density and modality.

AOI
Parameter IP  OW CDTI
Bandwidth (B) | Visual (1) 2 1 0.5
Visual (4) 2 2 2
Auditory (1) 2 1
Auditory (4) 2 2
Relevance (R) | Aviate (V) 3 1 0 Priority (V) | Aviate 3
Navigate (V) | 1 2 2 Navigate | 2
Aviate (A) 3 1
Navigate (A) | 2 3

The relevance parameters in Experiment 3 are the same as they were for the
corresponding condition from Experiment 2 with the following important exception. Unlike
Experiments 1 and 2, where the relevance values were the same across the two experimental
conditions (baseline and free flight), here we increase the relevance of the OW for navigation in
the auditory, relative to the visual condition (increase from 2 to 3). Therationale for thisincrease
isthat, in the auditory condition, the OW isthe only source of information available for traffic
detection and maneuvering. Hence, it must be viewed as more relevant than either the CDTI or
the OW in the visua conditions (both relevance = 2), since in these visual conditions the two
AOQIs share agood bit of redundant information regarding where the traffic is located.

Priority parametersin this free flight condition were set to their respective values for
aviating and navigating as they were in the free flight conditions (Experiment 1). Using these
parameter values, the model predictions, plotted against the scanning data, are depicted in Figure
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6. The model predictions are here extremely well fit by the obtained data, with r = 0.974, or 95%
of the variance accounted for. Indeed there seems to be few ways in which the model fit could be
improved.

Model predicted vs. obtained attention allocation: Modality
and traffic density
100%
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Figure 6. Modd fit of Experiment 3. Squares=CDT]I. Triangles=OW. Circles=IP. Small=1
traffic. Large=4 traffic. Dark=Visual CDTI. Light=Auditory.

Experiment 4: Communications. In this experiment, whose details are reported in
Helleberg and Wickens (in press), the same general procedures were followed. Again, pilots (N
= 17) participated in the same genera scenario, although under baseline (ATC responsibility)
rather than free flight conditions. Asin Experiment 3, most trials did not involve maneuvering to
avoid traffic, so our modeling is of the straight and level flights. In this experiment, asin
Experiments 1 and 2, there was only one traffic aircraft. The primary difference between this
experiment and the other three was the comparison between a visual data link display to present
communications information regarding flight parameters, radio settings, etc., and a configuration
in which the same communications information was presented auditorally. This change imposed
two additional changes to the modeling effort. First, we now added a third task, communications,
which logically falls at the bottom of the priority hierarchy. Thus now there are three tasks with
priorities assigned to aviate (=3), navigate (=2) and communicate (=1) (Schutte & Trujillo,
1996). Second, the data link task adds two AOIls. When communication information was
presented visually, the AOI isadatalink display, located in the same position as the CDTI
display in Experiments 2 and 3 (see Figure 2). When the datalink communications information
was presented auditorally, pilots were forced to write down the communications messages, so as
not to forget them (some of these messages were quite lengthy). This requirement defined an
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AOQI of the clipboard, located on the pilot’s lap just below the yoke. Between legs, we varied the
length of the ATC communications from two to six “chunks’ of relevant information (i.e.,
heading, altitude, airspeed, communications frequency/tower name, transponder code, altimeter
setting); hence this varied the effective bandwidth of information “delivered along” (or inherent
in) the communications AQI (datalink display or clipboard).

The matrix for Experiment 4 is shown in Table 3. The format corresponds relatively well
with that in Tables 1 and 2, with the following exceptions. First, the bandwidth of the added
communications AOI is set to ordinal values, based upon message length. These are somewhat
arbitrarily set to increment in values of 0.5. Second, the highest value of the communications
channel (2.5) is set below the bandwidth value of the OW (=3). This ordering isjustified because
even at the highest communications load, the total number of “chunks’ of communications
information (6) is considerably less than the number of events — state changes in pitch and roll of
the far horizon — that characterize the OW. (Note that this forces us to increase the OW
bandwidth value from 1.0, its value in corresponding conditions of Experiments 1 and 2, to 3.0.)
As a consequence we must increase the IP bandwidth to 4, in order to preserve the ordina
relationship across AOIS). Third, we define different AOIs for the visual (data link) condition
than for the auditory (clipboard) condition, since these are located in spatialy different regions.
However the parameter sets for these two AOI locations do not differ. Fourth, given the added
task (communications) we now add this task to the priority matrix. Fifth, we assign these
communications channels some (but minimal) relevance to both aviating and navigating, given
that they deliver target values that influence the flight controls of pitch and bank (aviating) as
well asthe navigational parameters (navigating).

Table 3. Parameter values for Experiment 4: communications experiment.

AOI
Parameter COM COM
IP OW DL Clip
Bandwidth (B) | Com Load 2 4 2 0.5 0
Visual/Red Com Load 3 4 2 1 0
Com Load 4 4 2 15 0
ComLoad 5 4 2 2 0
Com Load 6 4 2 25 0
Bandwidth (B) | Com Load 2 4 2 0 0.5
Auditory Com Load 3 4 2 0 1
Com Load 4 4 2 0 15
ComLoad 5 4 2 0 2
Com Load 6 4 2 0 25
Relevance (R) | Aviate 3 1 1 1 Priority (V) | Aviate 3
Navigate 1 2 1 1 Navigate 2
Communicate | O 0 2 2 Communicate | 1
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Figure 7 presents the results of the model fitting exercise. As with Experiments 1 and 2,
statistical analyses reveal that the conditions differ from each other (Helleberg & Wickens, in
press), so that the variance in data points that are modeled is “meaningful”. The regression
analysis of obtained on predicted scanning percentages revealed a very high degree of fit, withr
=0.97, or 95% of the variance accounted for. While the figure reveals that a large proportion of
the shared variance can be accounted for by the scanning differences between the three AOIs
(and particular, between the IP in the upper right, and the other two AOIsto the lower |€ft), itis
also noteworthy that in each of the three AOI clusters, the variance in data points lies along, or
relatively parallel to the regression line, indicating that variance in task characteristics, captured
by the model, is also reflected in the data.

Model obtained vs. predicted attention allocation:
Communications
100%
y = 1.0243x - 0.0384

© g0y R = 0.9491
=
=
T
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[
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Figure 7. Moddl fit of Experiment 4. Dark=auditory. Light=visual. The six communicative |oad
points are not separately labeled, but fall in monotonic order.

DISCUSSION

We have tested an expected value model of information acquisition (assessed
operationally by visual scanning), against the data generated by well trained pilots, in three
operationally meaningful simulations carried out on a high fidelity flight ssmulator. The model is
relatively simple, involving only two parameters, of expectancy and value, and afairly simple
heuristic for assigning those parameter values to particular conditions, according to the lowest set
of values that preserve ordinal relations across tasks, conditions, and AQIs.
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In spite of this simplicity, which we believe reflects the valued attribute of model
parsimony, the model has done a reasonably good job in predicting between-condition variance
in visua scanning. In theinitial model development experiment, nearly 80% of the variance was
accounted for. More impressively, in the two cross validation experiments, the model fits
increased, accounting for 95% of the variance in both cases. It is noteworthy that thisincreasein
variance accounted for with cross validation, isin contrast to the decrease that is typically found
as regression models are cross validated. The difference here of courseisthat we did not use the
least-squared-deviation regression line itself to define the weights of parameters of our model
(thereby increasing the risk of capitalizing on chance), asistypically done in regression model
fitting. Instead, our model weights were defined a-priori, on the basis of what we believe are
cognitively plausible (and therefore defendable) hypotheses regarding pilot goals (priority and
relevance) and environmental characteristics (bandwidth).

It is appropriate to ask how the architecture of the current model would fare with simpler
assumptions. There are several ways of testing this. One way isto replace the coefficientsin the
three matrices with the same values that are now reassigned randomly to the cells. We tried such
an approach, and in all three experiments, the correlation between prediction and data was near
0. A second way would be to systematically “freeze” the parameters of eachterminturnto a
constant value, in order to find out how much (or little) the predictions suffer, without the
contributions of that particular component.

The results of our modeling effort suggests that well trained pilots are indeed quite
optimal in allocating attention, a conclusion agreeing with that offered by Moray (1986) in his
comparison of model fitting results applied to novice subjects (substantial departures from
optimality) and more trained experts (fewer departures). As a consequence, we feel confident
that the model can serve as somewhat of a“gold standard” for training attention allocation skills
in different complex environments; or for remedial training of particular pilots, who show severe
departures from the optimal prescriptions. We believe that our data also have at |east three other
implications or ramifications.

First, both the optimal prescriptions and our observed performance revealed that pilots
scanned the instrument panel much more than the outside world, at aratio that approximated 2:1
across experiments. Thisratio stands in marked contrast to aratio of 1:3 whichistypically
argued to be the appropriate scanning ratio for pilotsin visua conditions, according to the
Airman’s Information Manual (AOPA Air Safety Foundation, 1993). The empirical basis for
developing this 1:3 standard is not entirely clear, but it is noteworthy that it would appear to
contradict, to some degree, the aviate-navigate-communicate hierarchy that underlies the current
model.

The second important aspect of our data relates to the first, and can be stated in terms of a
guestion: does this lower than recommended scan of the outside world (both predicted and
obtained) place the pilot “at risk” for detecting traffic? In all four experiments we did record the
latency and accuracy to call out “traffic in sight”, and an analysis of individual differences
between pilotsindeed revealed that those who scanned the OW relatively more, did detect the
traffic relatively sooner (Wickens, 2001). However this conclusion does not necessarily mean
that those conditions that induced more OW scanning necessarily supported better detection, and
indeed consideration of our experimental results (Wickenset al., in press) revealed only a weak
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between-condition relationship between OW scanning and detection performance. In particular,
during a small number of trials in Experiment 1 (free flight), we would present an aircraft in the
OW which was not present on the CDTI, to assess whether the reduced OW scanning resulting
as attention was allocated to the CDTI, would harm this traffic detection. Such harm was
observed dlightly, but only on the first encounter with such an unannounced traffic aircraft (there
were four to five additional encounters during the experiment), and then only when the aircraft
was itself of poor visibility/conspicuity. Thus, it does not appear that this lower value of OW
scanning places the pilot much at risk.

Thethird issueisin turn related to the second, and this concerns the potential role of
conspicuity or salience, aswell as effort in directing scanning; that is, the two components of the
descriptive SEEV model that were not a part of the optima EV model. With regard to Salience —
the attention-capturing properties of an event —is would appear that the statistical averaging
technique we used here (average PDT across atrial) would not be the best way of capturing a
salience effect. Therole of salience, defined as a property of an event, rather than as a channel or
AOQI, would be to shorten the latency of attention allocation following an event, rather than to
alter the overall distribution of attention to that AQI relative to others. Stated in more intuitive
terms, you do not necessarily look more frequently at channels where salient events occur; and
indeed, it might be optimal to look at these channels less frequently, since you know that your
attention ismore likely to be captured by those more salient eventsin your periphera vision.

In contrast to salience, it islikely that effort did play some role in influencing scanning,
although this role was not extensive (given the high variance accounted for, by the prescriptive
model that excluded a salience influence). The inhibitory role of effort (inhibiting longer distance
scans) was suggested indirectly by the analysis of dwell duration in Experiments 1 and 2. In both
experiments we observed relatively long dwells on the instrument panel; periods averaging as
long as 6 seconds (baseline) or 3.5 seconds (free flight), during which the eye stayed on the
instrument panel, scanning different instruments, but not venturing to examine the outside world
or (in Experiment 1), the CDTI. We label this the “in the neighborhood” heuristic of scanning,
whereby the operator chooses to make several short saccades to coupled AQIs (in the
neighborhood), rather than making repeated long distance excursions out (to the OW) and back
(to the IP). Such a choice thereby reduces the effort of information access. An important
observation is that these long ‘in the neighborhood” dwells were reduced considerably in their
duration in free flight, compared to the baseline condition, suggesting that the added
responsibilities of traffic monitoring availed in freeflight, by increasing the importance of the
outside world, thereby suppressed the inhibitory role of effort. Stated in terms of the coefficients
of equation (1), the weighting of v is considerably greater than the weighting of ef. Thisthenis
another statement of support for the optimality of pilot scan.

Itisalso likely that effort played some role in modulating the scan patterns of Experiment
4, given that the communications AOI on the clipboard was located farther from the OW and the
IP, than was the communications AQOI on the datalink display. Accordingly, following the same
application of the “in the neighborhood” heuristic described in the context of Experiments 1 and
2, we would predict longer dwells on the clipboard AQI than on the Datalink display, a
prediction consistent with the data which revealed a mean dwell duration of 2 and 1 seconds
respectively (Helleberg & Wickens, in press). (These data are consistent with the role of effort,
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but certainly do not confirm its role, since other features of the two AOIls differed besides their
distance from the IP and OW.)

As the two foregoing examples suggest, whileit is possible to identify the role of effort in
inhibiting attention allocation, it is probably more challenging to ascertain a physical metric of
effort that would predict differencesin scanning. A simple metric would be to assume that effort
isalinear function of the visual angle of separation, but such an assumption does not account for
differences between eye movements and head movements. The role of effort, and itsreflection in
dwell durations as well as percent dwell time on AOIs will require considerable added
complexity of the model. However the ability to incorporate an effort component will provide a
valuable means of predicting more or less optimal display layouts, when “optimal” is defined in
terms of the location of instruments (Wickens, Vincow, Schopper, & Lincoln, 1997)

Conclusions

In conclusion, we have shown how arelatively simple model of the top down,
knowledge-based forces that should drive attention accounts for a high degree of variance in
pilot scanning, across arange of conditions and cockpit configurations. Naturally there is more to
visual attention than foveal vision (inferred by scanning), and more to attention than visual
attention, so that the model has limitations as a genera attention model. Nevertheless, we believe
that it can serve as auseful component of more general models of human performance, and
serves to supply an important link between the two research domains of supervisory sampling
and task management as well as providing or valuable reminder of the extent to which well
trained operators are optional.
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