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ABSTRACT 

 Two models of information acquisition in visual scanning are described. A descriptive 
model identifies the role of event salience, effort, expectancy and value in influencing where and 
when people look at different channels to sample information in dynamic environments. An 
optimal prescriptive model accounts for the role of expectancy and value, as these characterize 
the properties of channels necessary to serve tasks that may differ in their importance. The 
prescriptive model is validated against the data from four experiments in which skilled pilots 
flew a high fidelity visual flight simulator, while engaged in traffic detection with (Experiments 
1, 3, and 4) and without (Experiment 2) a cockpit traffic display, and with different forms of data 
link displays (Experiment 4). All four experiments provided a good fit between model 
predictions and the percentage of time that pilots spent viewing different areas of interest in the 
airplane environment. Implications of the model to training optimal strategies, and to possible 
refinement of training policies are described. 

INTRODUCTION 

 Models of visual information acquisition can generally be placed into one or two 
categories of two sorts. On the one hand, psychologists have extensively modeled the process of 
visual search (e.g., Brogan, Gale, & Carr, 1993; Wolfe, 1994; Neisser, Novick, & Lazar, 1964; 
Teichner & Mocharnuk, 1979). In such endeavors they have contrasted serial and parallel search 
models, and created hybrid models in between (Bundensen & Pedersen, 1983), and such models 
have been useful in both basic laboratory paradigms as well as more applied domains such as 
those involved in searching graphs (Gillan & Lewis, 1994; Lohse, 1993), maps (Wickens, Kroft, 
& Yeh, 2000), menus (Fisher & Tan, 1989) or roadway environments (Theeuwes, 1994). A key 
facet of such models is the emphasis on locating a single target, and an emphasis on search time 
as the critical dependent variable (although see Drury, 1975 for the importance of accuracy in 
search models). 

 In contrast to search models, another class of models has focused on supervisory 
control/sampling, using, primarily visual sampling or scanning as a dependent variable (e.g., 
Moray, 1986; Senders, 1964, 1983; Carbonell, 1966; Carbonnell, Ward, & Senders, 1968; Ellis 
& Stark, 1986; Sheridan, 1970). Such models have typically been more engineering based, and 
focus very much on the eye (as measured by visual scanning) as a “single server queue”. Four 
key features distinguish these from the visual search models above. (1) The operator is not 
looking for a static target, but is rather supervising a series of dynamic processes, such as 
temperature gauges, or aircraft movements. (2) The primary focus of the models is on noticing 
critical events at relatively consistent spatial locations, rather than finding critical targets at 
uncertain locations. (3) The key dependent variable is not target detection RT, but is instead the 
proportion of visual attention distributed to various “areas of interest” (AOIs) as a function of the 
quantitative properties of those AOIs. (4) The process of defining specified AOIs means that the 
challenge in visual attention is not so much knowing where to look (e.g., to find a target), but in 
knowing when to look where to assure that the dynamic processes are under control, and that 
the necessary information to understand those processes is retrieved in a timely manner. 

 A characteristic that permeates many of the visual sampling models is that of optimal 
strategies of attention allocation, designed to maximize or minimize some benefit or cost 
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function, given the scarce resources of the “single server queue” (visual attention). As an 
example, Senders’ (1964) original search model focused on the optimum sampling of different 
dynamic AOIs’ as a function of the bandwidth (event rate) of signals located there, employing 
optimal sampling theory. His model was subsequently elaborated by others (Sheridan, 1970; 
Sheridan & Rouse, 1971; Carbonell, 1966; Carbonnell, Ward, & Senders, 1968; Tulga & 
Sheridan, 1980; see Moray, 1986 for a good review) to account for value, in addition to 
bandwidth, and to dictate optimal scanning strategies, given the expected value of perceiving 
information at different AOIs (or the expected cost of missing critical events at those AOIs). 
Such models, echoing normative expected value models of decision making (e.g., Edwards, 
1961), penalize attention allocation performance to the extent that channels that contain high 
probability and important (valuable) events are undersampled. That is, attention allocation 
should be directly proportional to the product of probability and value. 

 The expected value model may be considered optimal or prescriptive in the sense that 
only two properties should drive the allocation of attention: expectancy and value. An operator 
who possesses a well calibrated mental model (Smallwood, 1967), that captures the objective 
levels of these two parameters will minimize the chance of missing important information. Of 
course expectancy is driven not only by the bandwidth or frequency of events occurring along a 
channel, but also by any contextual cueing that may signal the appearance of information along 
an otherwise low bandwidth channel. This might, for example, characterize the role of an alarm, 
signaling the operator to look at the visual display of the indicator variable that triggered the 
alarm. Under normal circumstances the indicator changes rarely (low bandwidth) but now will be 
sampled at a time other than that dictated by its low bandwidth. One general finding that comes 
from the earlier research on sampling, is that people tend to sample low bandwidth channels 
somewhat more frequently than the optimal models predict, a characteristic attributed, in part, to 
people’s limited working memory of the exact state of a channel when it was last sampled 
(Sheridan, 1970; Moray, 1986). 

 In addition to expectancy and value, there are two other important factors that also 
influence the frequency of visual sampling. First, Kvalseth (1977) and Sheridan (1970) have both 
identified the inhibiting role of information access effort required to sample information. Eye 
movements are “cheap” but not “free”, and in some environments when a head movement is also 
required to sample information, the cost of such samples can be quite high (while wearing 
cumbersome head gear or, for the pilot, making head movements while engaged in vertical or 
lateral maneuvering can cause vestibular disorientation). In addition to the effort required by 
attention movement, the effort required of concurrent cognitive or perceptual tasks can also 
inhibit the control of visual scanning (Liu & Wickens, 1992) or information access. The second 
additional factor is the salience or conspicuity of an event that occurs on a channel (or within an 
AOI), a factor that can capture attention. While this property received little attention from the 
engineering models of supervisory sampling, it has been a cornerstone of the psychological 
models of visual search, with explicit focus on the concept of “attentional capture” and its causes 
(Yantis, 1993; Wolfe, 1994; Folk, Remington, & Johnston, 1992; Pashler, Johnston, & Ruthruff, 
2001). 

 Given the above discussion, it should then be feasible to combine the influence of the 
four factors driving visual attention into a descriptive model of scanning, characterizing the 
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distribution of visual attention across areas of interest, (or the probability that a given area will 
be attended) 

 (1) P(A) = sS – efEF + (exEX)(vV). 

We may refer to this as the SEEV model, as derived from its terms. Each term in capital letters is 
a characteristic of a particular environment that is determined by (1) the physical properties of 
events (Salience = S), (2) the physical distance between a previously fixated and a current AOI, 
or the demands of concurrent tasks (Effort = EF), (3) an information-related measure of event 
expectancy (e.g., bandwidth, event rate; Expectancy = EX), and (4) an objective measure of the 
value (=V) of processing information at the AOI in question (or the cost of failing to attend 
there). The coefficients, s, ef, ex, and v, represent the relative influence of these four factors on 
human scanning. 

 It is apparent from the model and the previous discussion, that the two added components 
(S and EF) that distinguish the optimal prescriptive model, from its descriptive counterpart may 
exert a greater or lesser influence on scanning to the extent that designers have adhered to good 
human factors practice in display layout, by correlating EF with EX, and S with V. In particular, 
to the extent that high expectancy, high bandwidth sources of information are close together (low 
EF), this will attenuate the inhibitory role of effort in seeking information. Such a correlation 
represents the frequency of use principle of display layout (Wickens, Vincow, Schopper, & 
Lincoln, 1997). To the extent that valuable information is made salient when it occurs, this will 
assure the capture of attention when important events occur: for example, the role of alarms in 
good human factors practice (Stanton, 1994). Correspondingly, making less valuable events less 
salient will inhibit undesirable failures to focus attention appropriately.  

 It is also apparent that effective training, creating a well calibrated mental model 
(Smallwood, 1967) of expectancy and value, should be used to overcome any potentially 
negative influences of salience and effort, when these are not explicitly correlated with value and 
effort respectively. Indeed Moray (1986) observes that those empirical evaluations of the 
information sampling models that have used more highly trained operators (such as skilled 
pilots; Carbonnell, Ward, & Senders, 1968) tend to show fewer departures from optimal 
prescriptions, than those employing less skilled subjects (e.g., Sheridan & Rouse, 1971). 

 As noted above, some researchers have evaluated components of the model, although 
they have typically done so either in relatively “abstract” context free environments (e.g., 
Senders, 1964; Kvalseth, 1977; Sheridan & Rouse, 1971), or, when evaluated in more realistic 
settings, with more skilled participants (e.g., Carbonnell et al., 1968; Moray, Richards, & Low, 
1980), have done so with only a small sample of subjects. Furthermore, the model validations 
that were carried out, were typically accomplished on only a single set of participants. Lacking 
was any cross validation, whereby the model fits obtained on one sample were validated on 
another sample. The goal of the research we report here is to provide validation and cross 
validation of a version of the expected value model of information seeking and attention 
allocation, with a larger sample of well trained pilots. 
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The Optimal Prescriptive Model 

 Our model also extends previous models of information sampling in an important respect. 
While previous models have defined properties of each AOI or channel, purely in terms of the 
bandwidth and value of events along that channel, we explicitly consider the many—to one 
mappings of tasks to channels, and channels to tasks in complex environments that makes this 
parameter assignment more difficult and requires the integration of models of information 
seeking with those of task management (Chou, Madhavan, & Funk, 1996; Dismukes, 2001; 
Raby & Wickens, 1994). This integration is shown schematically in Figure 1. At the top, the 
simpler models such as those of Senders (1964) and Carbonell (1966) assign tasks, values and 
bandwidths on a 1-1 mapping to AOIs. At the bottom, we see the structure of the current 
expected value model, as explicitly used in the framework of a pilot scanning three areas of 
interest (the instrument panel, the outside world, and a cockpit display of traffic information, or 
CDTI) to support two different tasks: the task of aviating, which involves maintaining accurate 
control over the “inner loop” aircraft flight parameters of pitch, roll and yaw, in order to keep the 
aircraft from stalling, and the task of navigating which, in our paradigm, requires the pilot to be 
aware of, and (if necessary) navigate around, any other air traffic in the forward path. 

 Within aviation, there is a clearly established task priority hierarchy which sets aviating 
to be a more important task than navigating (although both are more important than 
communicating; Schutte & Trujillo, 1996). After all, a plane cannot navigate if its lift is not 
sufficient to keep it in the sky (a failure to aviate), whereas a plane can aviate (fly) even if its 
heading and altitude are unknown (failure to navigate). As shown in Figure 1, this task hierarchy 
defines the importance or value (V) of AOIs that serve the respective tasks. However aircraft 
piloting also is such that, for example, the task of aviating (knowing the attitude of the aircraft 
relative to the horizon) can be supported both by the attitude indicator on the instrument panel 
(IP), and by the view of the true horizon in the outside world (OW). Correspondingly, the 
detection of traffic to be avoided (supporting navigation with heading or altitude changes) can 
also be supported by both the direct view of that traffic out the window (OW) and the cockpit 
traffic display (CDTI). These relations are also shown in Figure 1. 

 Accordingly, as shown at the bottom of Figure 1, an expected value model would predict 
that the probability of attending to a particular AOI is related to the sum, across all tasks 
supported by that AOI, of the value of those tasks, multiplied by the degree of relevance 
(importance) of the AOI for the task in question, and by the bandwidth of their informational 
“events”. Expressed computationally, this is then represented by the prescriptive, or optimal 
form of the model (in contrast to the descriptive Equation 1) as: 

  n 
 (2) P(AOIj) =  Σ (bBt)(rRt)(Vt) 
 t=1 

where t = tasks, numbering 1-N. 
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SIMPLE SCAN MODEL (Senders) 
 
 AOI1 Task 1 Value 1, BW 1 
 
 
 AOI2 Task 2 Value 2, BW 2 
 

AVIATION SCAN MODEL 
 
  AOI1 
 Task 1 V1 (Aviate) 
  AOI2 
 
 AOI3  
 

 
Visual Attention (Scan) to AOI = 
 
∑ [(BW x relevance(value) of AOI to task x task priority] 
 
 
Figure 1. Representation of different scanning models. 

Task 2 V2 (Navigate) 
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 Notice that Expectancy is incorporated by bandwidth, while Value is incorporated by the 
product of relevance and the value (rank) of the task in the priority hierarchy. Whether 
“bandwidth” is assumed to be a general property of an AOI (and therefore can sit outside the 
summation), or is assumed to be a specific property of each task serviced by the AOI (and 
therefore must sit inside the summation, as shown in Equation (2)), may be determined by the 
particular application. Equation (2) is obviously different from the original SEEV descriptive 
model (Equation 1), in that the former does not contain the non-optimal salience and effort 
factors. Our goal is to assess how accurately the simpler optimal model can account for the 
performance of well trained pilots. After we report the results of this exercise, we will discuss the 
possible influences of salience and effort. 

 In providing numerical predictions for such a model, two general steps are required. First, 
as shown in Figure 2, matrices must be set up, to accommodate the different parameter estimates 
of bandwidth, relevance and value, that will be imposed in the varying conditions whose visual 
scanning (attention allocation) measures can be employed to validate the model. Second (and 
more challenging), one must assign the numerical coefficients to the different cells of the matrix, 
across the varying conditions, in order to compute model predictions. 

 

Bandwidth  AOI   

  A B C   

       

       

Relevance  A B C  Priority 

 X    X  

Task Y    Y  

 Z    Z  

 
Figure 2. Generic matrices used to compute scanning predictions from the model shown in 
equation (2). Three AOI’s (A, B, C) are depicted. The label “task” includes both separate tasks 
(such as aviate, navigate) as well as the same task under different conditions (such as aviating 
while maneuvering, or while flying straight and level). Thus there will be as many data points to 
predict, as there are cells in the “Relevance” matrix. 

 

 Rather than trying to estimate absolute values of some of these parameters, the approach 
we take in coefficient assignment is based on a “lowest ordinal algorithm”. That is, across the 
range of conditions and AOIs employed (i.e., the rows and columns of the matrices in Figure 2), 
we simply order the values from highest to lowest (e.g., aviating priority is higher than 
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navigating priority). Second, we assign the lowest values of these parameters that can still 
preserve all ordinal relations within the rows and columns of the matrices. As an example we 
shall encounter below, we may, in condition I, initially assign aviating a priority value of 2, 
higher than navigating (lower priority = 1); but once we include another condition, II, in which 
aviating is more important than it was in condition I, then aviating will need to take on two lower 
priority values (1 and 2), and so the priority value of aviating must be elevated to become 3. 
Generally we try to apply integer values. This lowest ordinal algorithm has the advantage that 
coefficients can be set based on simple relationships that multiple model users should agree 
upon. 

MODEL VALIDATION 

 We report below the data from four aviation experiments used to generate data to validate 
(Experiments 1 and 2) and cross validate (Experiments 3 and 4) the optimum expected value 
model. The procedural details of Experiments 1, 2 and 3 are reported elsewhere (Wickens, 
Helleberg, & Xu, in press; Helleberg & Wickens, in press). However these articles do not report 
the efforts to model the scanning data which we report here. 

 All four experiments have the following common features. 

 Participants. All experiments employed well trained pilots who were flight instructors at 
the University of Illinois Institute of Aviation. Flight hours ranged from X to Y. All participants 
were paid for their participation. 

 Tasks/AOIs. Pilots always flew a general aviation flight simulator, with full outside 
visual projection (Figure 3) on a series of flight legs, defined by target altitude, heading and 
airspeed parameters (Figure 4). On most legs, one or more traffic aircraft was potentially visible. 
The pilots primary task was always to aviate. That is, to maintain stability of the aircraft by 
appropriate control of attitude (pitch and roll). As in conventional non-automated flying, pitch 
and roll also controlled altitude and heading respectively. These components of altitude and 
heading were fundamental to the second task, navigating, which involved flying the aircraft 
either in a direction specified by instructions, or in such a way as to avoid other traffic aircraft in 
the nearby airspace. Finally, in Experiment 4, a communications task was added, requiring the 
pilot to either listen to or look at strings of communications data. 

 These tasks were performed across various conditions, to be described in more detail 
below (e.g., while flying straight or maneuvering); conditions that were assumed to change 
coefficients of the model. During some trials, eye movements were measured on an Applied Life 
Sciences eye movement recorder, coupled with a head tracker, in order to establish the 
proportion of time that the visual gaze spent within each of four AOIs: the Outside World (OW), 
the Instrument Panel (IP), a Cockpit Display of Traffic Information (CDTI) and a source of data-
linked communications information (DL). Only the OW and the IP were present across all 
experiments and experimental conditions. In all four experiments we also measured different 
aspects of performance, which were used to assess the pilots allocation of resources to tasks 
(e.g., flight path error, traffic detection, communication readbacks). These data are reported 
elsewhere (Helleberg & Wickens, in press; Wickens et al., in press). 
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Figure 3. The simulation environment, showing the CDTI to the left and the instrument panel 
(IP) to the right. 

 

 General Procedures. Each pilot participated for between 5 and 10 hours in one of the 
experiments. Pilots were instructed to assume that they were in visual meteorological conditions, 
in which other traffic was potentially visible, and it was thereby important for them to call out 
“traffic in sight” once they had spotted any traffic aircraft in the outside world. In most 
conditions they were also to assume direct responsibility for maneuvering the aircraft, in any 
manner they chose, in order to avoid creating a conflict or “loss of separation” with any traffic 
aircraft. This conflict event was normally defined to occur when a traffic aircraft flew both 
within 15 miles of the pilots’ aircraft and within 1000 vertical feet of altitude. Except when 
maneuvering, pilots were instructed to come to, or stay on, the flight parameters of heading 
altitude and airspeed that were instructed at the beginning of each leg. Following each maneuver, 
pilots were instructed to return to the original target parameters. Each flight leg lasted between 
four and seven minutes, and a given flight scenario consisted of 10 or 11 consecutive legs. 

 Analyses. In all experiments reported below, we analyze the mean scanning data 
(percentage dwell time) across all pilots in the experiment, as a function of condition and AOI, 
and correlate these data with the model predictions for the AOI/condition in question. We do not 
here report individual pilot data (but see Wickens, Helleberg, Kroft, Talleur, & Xu, 2001). In the 
following, we described the specific characteristics of each experiment, and its model fitting in 
turn. 



 

 

Typical Cross-Country Scenario 
 
Includes:  6 conflict legs 
 4 non-conflict legs (one transponder off leg) 

Typical ATC Command: 
 
“Cessna 1851 Zulu, Fly Heading 070,  
Climb and Maintain 5500, and 140 Knots.” 

Figure 4. 
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 Experiments 1 and 2. Free flight/baseline. In these two experiments, a total of 17 pilots 
had their eye tracking recorded as they engaged in a series of flight simulations designed to 
examine the impact of free flight responsibilities on visual scanning. Seven pilots provided 
scanning data in the free flight/CDTI experiment, in which they were required to maneuver in 
order to avoid a loss of separation with a “conflict aircraft”. The CDTI was a coplanar display 
presenting both a map view and rear-view vertical situation display. Predictor lines were 
presented on both ownship and traffic aircraft (see Wickens, Gempler, & Morphew, 2000 for 
details). Conflict aircraft were present on 60% of the flight legs (defined by a given heading, 
altitude and airspeed requirement). The remaining 40% (non-conflict legs) contained traffic 
aircraft, ultimately visible in the outside world and the CDTI, but these aircraft were not on a 
conflict path. 

 In order to provide a non-free flight baseline, against which to compare the scanning 
behavior of the seven free flight pilots, a second group of 10 pilots (for which good scanning 
measures were available) flew a simulation experiment (2: baseline) after the free flight 
experiment had been completed. In Experiment 2, these pilots flew the same set of conflict 
avoidance profiles (as did the free flight pilots), but these maneuver profiles were now instructed 
by a simulated air traffic controller. As a consequence, the nature of the flight profile (and hence, 
of the information seen in the instrument panel and outside world) was essentially equivalent 
between the two experiments. The primary difference between the experiments was the presence 
of the CDTI, and the acceptance of sole responsibility for traffic avoidance navigation by 
pilots in the free flight experiment. For pilots in the baseline experiment, this responsibility was 
shared with ATC. 

 For the purposes of model fitting then, there were four trial types, defined by crossing 
experiment (baseline vs. free flight) with leg (conflict maneuver vs. nonconflict straight and 
level). When these four trial types are crossed with the three (free flight) or two (baseline) AOIs, 
a total of 10 model predictions can be made, as represented by the two matrices in the top of 
Table 1. Parameter values for the bandwidth matrix in Table 1 were estimated as follows: The 
highest value was assumed for the instrument panel, as it contains six instruments, and one of 
these, the attitude indicator or artificial horizon, is that which represents the highest bandwidth 
(state changing) aspect of aircraft dynamics (Harris & Christhilf, 1980; Bellenkes, Wickens, & 
Kramer, 1997; Wickens, in press). The next lower ordinal value was assumed for the outside 
world, because it too contains the high bandwidth horizon (the true horizon), but does not 
contain the additional four dynamic instruments contained by the instrument panel. The lowest 
value was assumed for the CDTI, because this instrument does not contain the high BW artificial 
horizon, although it does represent lower bandwidth aspects of heading, altitude and vertical 
speed. This ordinal relation of bandwidth across AOI was preserved for both conflict and non-
conflict legs. However on the latter, the coefficients were halved, because the absence of lateral 
or vertical maneuvering on these legs is assumed to reduce the frequency of changes in the 
instruments. Because of the yoking of behavior of pilots in the baseline condition to that of pilots 
in the free flight condition, the identical set of inputs was assumed to be visible for both sets of 
pilots. Hence the bandwidth coefficient values of the IP and OW in the baseline condition match 
those in free flight (when the CDTI was removed). 
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Table 1. Parameter values assumed for Experiment 1 (free flight) and Experiment 2 (baseline). 

  AOI    
Parameter 
 

 IP OW CDTI    

Bandwidth (B) Freeflight (Conf) 3 2 1    
 Freeflight (Nconf) 2 1 0.5    
 Baseline (Conf) 3 2     
 Baseline (Nconf) 2 1     
        
Relevance (R) Aviate (FF) 2 1 0 Priority (V) Aviate (FF) 3 
 Navigate (FF) 1 2 2  Navigate (FF) 2 
 Aviate (Base) 2 1   Aviate (Base) 3 
 Navigate (Base) 1 2   Navigate (Base) 1 
 

 The relevance coefficients in the second matrix of Table 1 were determined initially by 
the logic shown in Figure 1. Thus it was assumed that the relevance of the instrument panel for 
aviating was greater than that of the outside world. This assumption was made since the 
instrument panel contained four channels of aviating information (pitch, bank, airspeed and 
vertical speed), always visible, whereas the OW contained only 2 (pitch and bank of the true 
horizon), which could sometimes be obscured. The CDTI contained no direct representation of 
attitude or airspeed. For the navigation task, we assumed that the instrument panel took on less 
relevance since it had no representation of traffic, the primary issue in navigation. Relevance was 
not however set to 0, since the IP did contain altitude and heading information necessary for 
complying with navigational maneuvering plans. For navigating (traffic avoidance), the 
relevance of both the OW and the CDTI was set to be greater than their value for aviating, as 
well as greater than the relevance value of the IP. 

 Finally, the priority coefficients were assigned on the basis of the “aviate-navigate” task 
hierarchy underlying aviation as described above (Schutte & Trujillo, 1996). However the 
importance or priority of navigating was assigned a higher value in free flight than in the 
baseline, since in the free flight condition the pilot was the only person responsible for this task, 
whereas in the baseline condition navigation (traffic avoidance) was primarily the responsibility 
of ATC. That is, the simulated controller provided instructions of heading altitude and airspeed 
that were guaranteed to avoid the loss of separation. 

 In analyzing the visual scan data, it should be noted that the differences in percentage 
dwell time in the three AOI’s, across the various conditions were statistically significant 
(Wickens et al., in press). Hence we have confidence in the generalizability of our findings. 
Figure 5 shows the data for the scan measures (percentage of dwell time within each AOI) 
regressed against the model predictions for the 10 different conditions. The product moment 
correlation between model predictions and scanning parameters was r = 0.89, indicating that 
79% of the variance of scanning was accounted for by model predictions. Examination of Figure 
5 suggests that the major source of variance accounted for by the model is the difference between 
the three AOI’s, shown by the three clusters of points. However, even within the clusters, there is 
a tendency for the points to align themselves with the regression line, particularly within the IP 
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(the cluster of four points on the upper right). Further examination of the regression plot reveals 
that pilots scanned the OW less, in the free flight condition, then the model predicts. 
Nevertheless, the fit of the model by the data is quite satisfactory. There are of course justifiable 
ways that the model coefficients could be changed which could improve the fit still further. As 
one example, it could be assumed that the CDTI does have some relevance to aviating, given that 
the vertical profile predictor display on the CDTI shows a very salient vertical trend indicator. 
Replacing the 0 in this cell of Table 1 with a 1 actually increases the model fit to r = 0.90. 

Model obtained vs. predicted attention allocation: Freeflight-
Baseline

y = 0.6256x + 0.1498
R2 = 0.7898
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Figure 5. Model prediction versus scan (percentage dwell time) performance for Experiments 1 
and 2. CDTI: squares; OW: triangles; IP: circles; Conflict: small; Nonconflict: large; Free flight: 
dark shading; Baseline: lighter shading. 

 

 Experiment 3: Modality and traffic density. Rather than pursuing parameter adjustment of 
Experiment 1 data to optimize the current model fit, we chose instead to apply the parameters of 
the model used in Experiment 1, to a new set of data, collected in a different experiment, with 
some different manipulations. In Experiment 3, a different set of pilots (N=12) engaged in the 
same general flight simulation (using the same equipment) as in Experiments 1 and 2. However, 
for the purposes of model prediction, the following important changes were made. (1) All trials 
were “free flight” in that pilots were required to judge traffic conflicts on their own, and to 
maneuver if necessary to avoid traffic. (2) Ninety percent of the trials were non-conflict (straight 
and level), and only those non-conflict trial data will be reported (although maneuvers were not 
required on the trials, this discrimination was challenging for the pilots). (3) On 2/3 of the trials, 
pilots received information about traffic, as in Experiment 1, on a CDTI. On the remaining third 
of the trials, pilots received the same essential information, delivered auditorally (e.g., “traffic 
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2:00 low, 4 miles”). The CDTI was not present as an AOI on these trials. (On half of the CDTI 
trials, pilots received traffic information redundantly on the auditory channel, a distinction that 
will not be relevant to the current modeling effort). (4) On half of the flight legs, there was only 
one traffic aircraft, whereas on the other legs, four aircraft were encountered, hence greatly 
elevating the bandwidth of any AOI that represented traffic. 

 Table 2 presents the coefficients used for the model in Experiment 3. In essence, we have 
borrowed the coefficients from the non-conflict free flight trials from Experiment 1 (see Table 
1). These values are represented across the top rows of the three panels within Table 2. In the 
second row of the bandwidth panel, given the increase in traffic, we have increased the 
bandwidth parameters for the two AOIs that present traffic information, the OW and the CDTI. 
We provide a greater increase (x4) for the CDTI than for the OW (x2) because all four traffic 
aircraft are typically visible on the CDTI, whereas the narrower scope of the OW view, presents 
roughly two traffic aircraft at any given time. These values are replicated on the two rows below 
for the two relevant columns, as was done in Experiments 1 and 2 (e.g., without the CDTI). 

 

Table 2. Parameter values for Experiment 3: traffic density and modality. 

  AOI    
Parameter 
 

 IP OW CDTI    

Bandwidth (B) Visual (1) 2 1 0.5    
 Visual (4) 2 2 2    
 Auditory (1) 2 1     
 Auditory (4) 2 2     
        
Relevance (R) Aviate (V) 3 1 0 Priority (V) Aviate  3 
 Navigate (V) 1 2 2  Navigate  2 
 Aviate (A) 3 1     
 Navigate (A) 2 3     
 

 The relevance parameters in Experiment 3 are the same as they were for the 
corresponding condition from Experiment 2 with the following important exception. Unlike 
Experiments 1 and 2, where the relevance values were the same across the two experimental 
conditions (baseline and free flight), here we increase the relevance of the OW for navigation in 
the auditory, relative to the visual condition (increase from 2 to 3). The rationale for this increase 
is that, in the auditory condition, the OW is the only source of information available for traffic 
detection and maneuvering. Hence, it must be viewed as more relevant than either the CDTI or 
the OW in the visual conditions (both relevance = 2), since in these visual conditions the two 
AOIs share a good bit of redundant information regarding where the traffic is located.  

 Priority parameters in this free flight condition were set to their respective values for 
aviating and navigating as they were in the free flight conditions (Experiment 1). Using these 
parameter values, the model predictions, plotted against the scanning data, are depicted in Figure 
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6. The model predictions are here extremely well fit by the obtained data, with r = 0.974, or 95% 
of the variance accounted for. Indeed there seems to be few ways in which the model fit could be 
improved. 

Model predicted vs. obtained attention allocation: Modality 
and traffic density

y = 0.7977x + 0.0809
R2 = 0.9482
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Figure 6. Model fit of Experiment 3. Squares=CDTI. Triangles=OW. Circles=IP. Small=1 
traffic. Large=4 traffic. Dark=Visual CDTI. Light=Auditory. 

 

 Experiment 4: Communications. In this experiment, whose details are reported in 
Helleberg and Wickens (in press), the same general procedures were followed. Again, pilots (N 
= 17) participated in the same general scenario, although under baseline (ATC responsibility) 
rather than free flight conditions. As in Experiment 3, most trials did not involve maneuvering to 
avoid traffic, so our modeling is of the straight and level flights. In this experiment, as in 
Experiments 1 and 2, there was only one traffic aircraft. The primary difference between this 
experiment and the other three was the comparison between a visual data link display to present 
communications information regarding flight parameters, radio settings, etc., and a configuration 
in which the same communications information was presented auditorally. This change imposed 
two additional changes to the modeling effort. First, we now added a third task, communications, 
which logically falls at the bottom of the priority hierarchy. Thus now there are three tasks with 
priorities assigned to aviate (=3), navigate (=2) and communicate (=1) (Schutte & Trujillo, 
1996). Second, the data link task adds two AOIs. When communication information was 
presented visually, the AOI is a data link display, located in the same position as the CDTI 
display in Experiments 2 and 3 (see Figure 2). When the datalink communications information 
was presented auditorally, pilots were forced to write down the communications messages, so as 
not to forget them (some of these messages were quite lengthy). This requirement defined an 



 

 15 

AOI of the clipboard, located on the pilot’s lap just below the yoke. Between legs, we varied the 
length of the ATC communications from two to six “chunks” of relevant information (i.e., 
heading, altitude, airspeed, communications frequency/tower name, transponder code, altimeter 
setting); hence this varied the effective bandwidth of information “delivered along” (or inherent 
in) the communications AOI (datalink display or clipboard). 

 The matrix for Experiment 4 is shown in Table 3. The format corresponds relatively well 
with that in Tables 1 and 2, with the following exceptions. First, the bandwidth of the added 
communications AOI is set to ordinal values, based upon message length. These are somewhat 
arbitrarily set to increment in values of 0.5. Second, the highest value of the communications 
channel (2.5) is set below the bandwidth value of the OW (=3). This ordering is justified because 
even at the highest communications load, the total number of “chunks” of communications 
information (6) is considerably less than the number of events – state changes in pitch and roll of 
the far horizon – that characterize the OW. (Note that this forces us to increase the OW 
bandwidth value from 1.0, its value in corresponding conditions of Experiments 1 and 2, to 3.0.) 
As a consequence we must increase the IP bandwidth to 4, in order to preserve the ordinal 
relationship across AOIs). Third, we define different AOIs for the visual (data link) condition 
than for the auditory (clipboard) condition, since these are located in spatially different regions. 
However the parameter sets for these two AOI locations do not differ. Fourth, given the added 
task (communications) we now add this task to the priority matrix. Fifth, we assign these 
communications channels some (but minimal) relevance to both aviating and navigating, given 
that they deliver target values that influence the flight controls of pitch and bank (aviating) as 
well as the navigational parameters (navigating). 

Table 3. Parameter values for Experiment 4: communications experiment. 

  AOI    
Parameter 
 

  
IP 

 
OW 

COM 
DL 

COM 
Clip 

   

Bandwidth (B) Com Load 2 4 2 0.5 0    
Visual/Red Com Load 3 4 2 1 0    
 Com Load 4 4 2 1.5 0    
 Com Load 5 4 2 2 0    
 Com Load 6 4 2 2.5 0    
         
Bandwidth (B) Com Load 2 4 2 0 0.5    
Auditory Com Load 3 4 2 0 1    
 Com Load 4 4 2 0 1.5    
 Com Load 5 4 2 0 2    
 Com Load 6 4 2 0 2.5    
         
Relevance (R) Aviate 3 1 1 1 Priority (V) Aviate  3 
 Navigate 1 2 1 1  Navigate  2 
 Communicate 0 0 2 2  Communicate 1 
 



 

 16 

 Figure 7 presents the results of the model fitting exercise. As with Experiments 1 and 2, 
statistical analyses reveal that the conditions differ from each other (Helleberg & Wickens, in 
press), so that the variance in data points that are modeled is “meaningful”. The regression 
analysis of obtained on predicted scanning percentages revealed a very high degree of fit, with r 
= 0.97, or 95% of the variance accounted for. While the figure reveals that a large proportion of 
the shared variance can be accounted for by the scanning differences between the three AOIs 
(and particular, between the IP in the upper right, and the other two AOIs to the lower left), it is 
also noteworthy that in each of the three AOI clusters, the variance in data points lies along, or 
relatively parallel to the regression line, indicating that variance in task characteristics, captured 
by the model, is also reflected in the data. 

Model obtained vs. predicted attention allocation: 
Communications

y = 1.0243x - 0.0384
R2 = 0.9491
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Figure 7. Model fit of Experiment 4. Dark=auditory. Light=visual. The six communicative load 
points are not separately labeled, but fall in monotonic order. 

 

DISCUSSION 

 We have tested an expected value model of information acquisition (assessed 
operationally by visual scanning), against the data generated by well trained pilots, in three 
operationally meaningful simulations carried out on a high fidelity flight simulator. The model is 
relatively simple, involving only two parameters, of expectancy and value, and a fairly simple 
heuristic for assigning those parameter values to particular conditions, according to the lowest set 
of values that preserve ordinal relations across tasks, conditions, and AOIs.  
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 In spite of this simplicity, which we believe reflects the valued attribute of model 
parsimony, the model has done a reasonably good job in predicting between-condition variance 
in visual scanning. In the initial model development experiment, nearly 80% of the variance was 
accounted for. More impressively, in the two cross validation experiments, the model fits 
increased, accounting for 95% of the variance in both cases. It is noteworthy that this increase in 
variance accounted for with cross validation, is in contrast to the decrease that is typically found 
as regression models are cross validated. The difference here of course is that we did not use the 
least-squared-deviation regression line itself to define the weights of parameters of our model 
(thereby increasing the risk of capitalizing on chance), as is typically done in regression model 
fitting. Instead, our model weights were defined a-priori, on the basis of what we believe are 
cognitively plausible (and therefore defendable) hypotheses regarding pilot goals (priority and 
relevance) and environmental characteristics (bandwidth). 

 It is appropriate to ask how the architecture of the current model would fare with simpler 
assumptions. There are several ways of testing this. One way is to replace the coefficients in the 
three matrices with the same values that are now reassigned randomly to the cells. We tried such 
an approach, and in all three experiments, the correlation between prediction and data was near 
0. A second way would be to systematically “freeze” the parameters of each term in turn to a 
constant value, in order to find out how much (or little) the predictions suffer, without the 
contributions of that particular component.  

 The results of our modeling effort suggests that well trained pilots are indeed quite 
optimal in allocating attention, a conclusion agreeing with that offered by Moray (1986) in his 
comparison of model fitting results applied to novice subjects (substantial departures from 
optimality) and more trained experts (fewer departures). As a consequence, we feel confident 
that the model can serve as somewhat of a “gold standard” for training attention allocation skills 
in different complex environments; or for remedial training of particular pilots, who show severe 
departures from the optimal prescriptions. We believe that our data also have at least three other 
implications or ramifications. 

 First, both the optimal prescriptions and our observed performance revealed that pilots 
scanned the instrument panel much more than the outside world, at a ratio that approximated 2:1 
across experiments. This ratio stands in marked contrast to a ratio of 1:3 which is typically 
argued to be the appropriate scanning ratio for pilots in visual conditions, according to the 
Airman’s Information Manual (AOPA Air Safety Foundation, 1993). The empirical basis for 
developing this 1:3 standard is not entirely clear, but it is noteworthy that it would appear to 
contradict, to some degree, the aviate-navigate-communicate hierarchy that underlies the current 
model. 

 The second important aspect of our data relates to the first, and can be stated in terms of a 
question: does this lower than recommended scan of the outside world (both predicted and 
obtained) place the pilot “at risk” for detecting traffic? In all four experiments we did record the 
latency and accuracy to call out “traffic in sight”, and an analysis of individual differences 
between pilots indeed revealed that those who scanned the OW relatively more, did detect the 
traffic relatively sooner (Wickens, 2001). However this conclusion does not necessarily mean 
that those conditions that induced more OW scanning necessarily supported better detection, and 
indeed consideration of our experimental results (Wickens et al., in press) revealed only a weak 
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between-condition relationship between OW scanning and detection performance. In particular, 
during a small number of trials in Experiment 1 (free flight), we would present an aircraft in the 
OW which was not present on the CDTI, to assess whether the reduced OW scanning resulting 
as attention was allocated to the CDTI, would harm this traffic detection. Such harm was 
observed slightly, but only on the first encounter with such an unannounced traffic aircraft (there 
were four to five additional encounters during the experiment), and then only when the aircraft 
was itself of poor visibility/conspicuity. Thus, it does not appear that this lower value of OW 
scanning places the pilot much at risk. 

 The third issue is in turn related to the second, and this concerns the potential role of 
conspicuity or salience, as well as effort in directing scanning; that is, the two components of the 
descriptive SEEV model that were not a part of the optimal EV model. With regard to Salience – 
the attention-capturing properties of an event – is would appear that the statistical averaging 
technique we used here (average PDT across a trial) would not be the best way of capturing a 
salience effect. The role of salience, defined as a property of an event, rather than as a channel or 
AOI, would be to shorten the latency of attention allocation following an event, rather than to 
alter the overall distribution of attention to that AOI relative to others. Stated in more intuitive 
terms, you do not necessarily look more frequently at channels where salient events occur; and 
indeed, it might be optimal to look at these channels less frequently, since you know that your 
attention is more likely to be captured by those more salient events in your peripheral vision. 

 In contrast to salience, it is likely that effort did play some role in influencing scanning, 
although this role was not extensive (given the high variance accounted for, by the prescriptive 
model that excluded a salience influence). The inhibitory role of effort (inhibiting longer distance 
scans) was suggested indirectly by the analysis of dwell duration in Experiments 1 and 2. In both 
experiments we observed relatively long dwells on the instrument panel; periods averaging as 
long as 6 seconds (baseline) or 3.5 seconds (free flight), during which the eye stayed on the 
instrument panel, scanning different instruments, but not venturing to examine the outside world 
or (in Experiment 1), the CDTI. We label this the “in the neighborhood” heuristic of scanning, 
whereby the operator chooses to make several short saccades to coupled AOIs (in the 
neighborhood), rather than making repeated long distance excursions out (to the OW) and back 
(to the IP). Such a choice thereby reduces the effort of information access. An important 
observation is that these long ‘in the neighborhood” dwells were reduced considerably in their 
duration in free flight, compared to the baseline condition, suggesting that the added 
responsibilities of traffic monitoring availed in freeflight, by increasing the importance of the 
outside world, thereby suppressed the inhibitory role of effort. Stated in terms of the coefficients 
of equation (1), the weighting of v is considerably greater than the weighting of ef. This then is 
another statement of support for the optimality of pilot scan. 

 It is also likely that effort played some role in modulating the scan patterns of Experiment 
4, given that the communications AOI on the clipboard was located farther from the OW and the 
IP, than was the communications AOI on the datalink display. Accordingly, following the same 
application of the “in the neighborhood” heuristic described in the context of Experiments 1 and 
2, we would predict longer dwells on the clipboard AOI than on the Datalink display, a 
prediction consistent with the data which revealed a mean dwell duration of 2 and 1 seconds 
respectively (Helleberg & Wickens, in press). (These data are consistent with the role of effort, 
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but certainly do not confirm its role, since other features of the two AOIs differed besides their 
distance from the IP and OW.) 

 As the two foregoing examples suggest, while it is possible to identify the role of effort in 
inhibiting attention allocation, it is probably more challenging to ascertain a physical metric of 
effort that would predict differences in scanning. A simple metric would be to assume that effort 
is a linear function of the visual angle of separation, but such an assumption does not account for 
differences between eye movements and head movements. The role of effort, and its reflection in 
dwell durations as well as percent dwell time on AOIs will require considerable added 
complexity of the model. However the ability to incorporate an effort component will provide a 
valuable means of predicting more or less optimal display layouts, when “optimal” is defined in 
terms of the location of instruments (Wickens, Vincow, Schopper, & Lincoln, 1997) 

Conclusions 

 In conclusion, we have shown how a relatively simple model of the top down, 
knowledge-based forces that should drive attention accounts for a high degree of variance in 
pilot scanning, across a range of conditions and cockpit configurations. Naturally there is more to 
visual attention than foveal vision (inferred by scanning), and more to attention than visual 
attention, so that the model has limitations as a general attention model. Nevertheless, we believe 
that it can serve as a useful component of more general models of human performance, and 
serves to supply an important link between the two research domains of supervisory sampling 
and task management as well as providing or valuable reminder of the extent to which well 
trained operators are optional. 
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