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Modeling Drivers’ Visual Attention Allocation While Interacting
With In-Vehicle Technologies

William J. Horrey, Christopher D. Wickens, and Kyle P. Consalus
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In 2 experiments, the authors examined how characteristics of a simulated traffic environment and
in-vehicle tasks impact driver performance and visual scanning and the extent to which a computational
model of visual attention (SEEV model) could predict scanning behavior. In Experiment 1, the authors
manipulated task-relevant information bandwidth and task priority. In Experiment 2, the authors exam-
ined task bandwidth and complexity, while introducing infrequent traffic hazards. Overall, task priority
had a significant impact on scanning; however, the impact of increasing bandwidth was varied,
depending on whether the relevant task was supported by focal (e.g., in-vehicle tasks; increased scanning)
or ambient vision (e.g., lane keeping; no increase in scanning). The computational model accounted for
approximately 95% of the variance in scanning across both experiments.
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In recent years, driver distraction and cell phone use have
received considerable attention in the research literature and in the
popular media, as well as in several legislative efforts across the
U.S. (e.g., Strayer, Drews, & Johnston, 2003). However, there also
are growing concerns over new in-vehicle technologies (IVTs),
telematics, and “infotainment” devices that offer drivers a wide
variety of visual information (McGehee, 2001). These IVTs may
provide drivers with navigation, traffic and road information, and
vehicle status information, as well as many other wireless web or
cellular applications. As more IVTs are inserted into the automo-
bile, drivers may use these devices while driving—an obvious
safety concern to the extent that these devices compete with
driving tasks over limited visual resources (Wickens, 2002). These
concerns are well founded, as it is estimated that 25-37% of
crashes involve some form of driver distraction or inattention,
although these estimates include non-IVT distractions as well
(Sussman, Bishop, Madnick, & Walter, 1985; Wang, Knipling, &
Goodman, 1996).
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In determining the potential dangers of visual distraction from
IVTs, the design community and legislative decision-makers may
seek input from accident statistics and controlled experiments,
though each has its own shortcomings. Accident statistics are often
subject to unreliable or incomplete data and can, therefore, lead to
unreliable or incomplete interpretations. Furthermore, accidents
are frequently the result of several factors and it is therefore
difficult to parse out the relative contribution of driver distraction
or inattention. Whereas controlled experimentation may address
some of these issues (from low- to high-fidelity driving simulators
to field studies), this research is often difficult, time-consuming,
and expensive. Ideally, designers and lawmakers could examine
the extent of visual distraction from IVTs through validated com-
putational models of visual attention, which can be both flexible
and cost-effective. Visual scanning models can provide estimates
of driver visual behavior while interacting with IVTs as well as
estimate the vulnerability of drivers for missing important, safety-
critical highway information. Such models, along with data from
empirical work, provide the framework for the current research.

Models of Visual Attention

Because vision is the premier resource for highway safety (Hills,
1980), computational models should focus on visual scanning
(particularly in-vehicle, head-down scanning) to predict hazard
exposure (Horrey & Wickens, 2004b). Visual scan models for
supervisory control and visual sampling provide the foundation for
our efforts here, although we acknowledge other approaches to
modeling driver behavior (e.g., cognitive architectures, Salvucci,
Boer, & Liu, 2001). In general, supervisory control models char-
acterize the eye as a single-server queue and visual scanning as a
means of serving this queue (e.g., Carbonell, 1966; Moray, 1986;
Senders, 1964, 1983).

Previous research has examined the role of expectancy and
information bandwidth on visual scanning (e.g., Senders, 1964,
1983; Sheridan, 1970). When relevant information from a given
information channel or area of interest occurs more frequently (i.e.,
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a higher information bandwidth), observers will tend to sample this
channel more often. That is, they will look at particular areas when
they expect to find relevant information there. For example, with
respect to lane keeping in driving, drivers will compare their
current lane position with their desired lane position to determine
whether they need to make a corrective input with the steering
wheel. The error in position is the information sought by the
driver. On a smooth road with no curves or wind turbulence,
uncertainty about lane position will grow less rapidly (a condition
we would refer to as low bandwidth). In contrast, as the amount of
wind turbulence or curvature increases (high bandwidth), so too
will the uncertainty about lane position, thus requiring more fre-
quent sampling of information regarding lane position. This cou-
pling of visual scanning has been observed both with information
bandwidth in generic visual scanning tasks (Moray, 1986; Senders,
1964), as well as with lane curvature (Tsimhoni & Green, 2001),
a variable directly related to bandwidth. For example, Senders
(1964) showed that, to effectively monitor a display, it was nec-
essary to sample the display at a rate twice its bandwidth. Moray
(1986) later argued that the optimal sampling rate could be equal
to the bandwidth. Calibration of drivers’ expectations to actual
information bandwidth develops with experience. Underwood,
Chapman, Bowden, and Crundall (2002) showed that, on more
demanding sections of roadway, experienced drivers had more
extensive visual scanning than novice drivers (e.g., had more
fixations on vehicles in an adjacent lane), suggesting that experi-
enced drivers had a greater understanding of where to expect and
seek out relevant driving information (see also Mourant & Rock-
well, 1972).

Subsequent scan models have extended Senders’ (1964) original
model to include the relative value of perceiving different infor-
mation from different sources. For example, Carbonell and col-
leagues (Carbonell, 1966; Carbonell, Ward, & Senders, 1968)
suggested that optimal scanning strategies should attempt to max-
imize the benefits of perceiving certain information or minimize
the costs of missing it. In the context of driving, the potential costs
associated with a lane departure impose a high value on attending
to information regarding position error. In contrast, missed bill-
board information has few costs for driving, and hence has a low
value for that particular task.

Wickens and colleagues (Wickens, Goh, Helleburg, Horrey, &
Talleur, 2003; Wickens, McCarley, Alexander, Thomas, & Zheng,
in press) further elaborated on these early models of visual scan-
ning in describing a conceptual model in which the allocation of
visual attention to different parts of the visual field is driven by
four factors: Salience, Effort, Expectancy, and Value (the SEEV
model). Whereas the two latter parameters, Expectancy and Value,
are consistent with the Senders (1964) and Carbonell (1966) mod-
els, the first two parameters are derived from other models of
visual search and visual scanning. The Salience parameter char-
acterizes the conspicuity of information or events that occur within
a given information channel and has been a fundamental aspect of
models of visual search (e.g., Itti & Koch, 2000). Thus, it can
capture differences between a brightly clad and a dark-clad pedes-
trian against a dark background. And finally, Effort, as manifested
by differences in visual angle between information (display)
sources, may inhibit visual scanning (Kvalseth, 1977; Sheridan,
1970).

Wickens et al. (2003) validated a computational model based on
some of the parameters of the SEEV model in the aviation context.
For this model, the expected probability of attending a given area
of interest (AOI) is a function of the value of all tasks supported by
that AOI, the relevance of the AOI for those tasks, and the
bandwidth of task-relevant information in that AOI. Thus, Expect-
ancy is expressed as bandwidth and Value is expressed as the
product of relevance and rank priority of the particular task.
Wickens et al. (in press) expanded this model to accommodate an
Effort component, which reduces the probability of scanning when
the necessary effort increases.

Although Salience is an important determinant of the momen-
tary allocation of visual attention, it was not included in the
computational model used by Wickens et al. (2003, in press). In
contrast to the other parameters, Salience more adequately de-
scribes an object or event occurring within a given information
channel as opposed to properties of the channel itself. As such, it
does not lend itself to the current computational model, which
predicts overall probabilities and proportions of scans to different
areas of interest. An important feature of the model is that it allows
parameter values to be specified a priori, given display constraints
and assumed task priorities.

Despite the promise of the SEEV model in predicting visual
scanning in driving—in particular, head-down (in-vehicle) view-
ing time—there are reasons to expect some limitations. In partic-
ular, the model characterizes the momentary allocation of focal
(foveal) vision and, indeed, most of the tasks used by Wickens et
al. (2003, in press) required foveal vision to be completed. How-
ever, there are tasks that are well-supported by ambient vision
(Leibowitz & Post, 1982; Previc, 1998), so the relevant informa-
tion does not necessarily need to be fixated in order to be pro-
cessed. Models (such as the SEEV model) that predict focal visual
scanning may not be adequate for those tasks that utilize ambient
vision.

Focal and Ambient Vision

Leibowitz and Post (1982) and, later, Previc (1998) distin-
guished between the focal and ambient visual channels. These
systems vary in function, extent, and underlying neurophysiology.
The primary functions of the focal visual system are visual search,
object recognition, and other tasks requiring high visual acuity,
including reading text. Although focal vision can extend beyond
the fovea, its strengths are greatest in the fovea. Thus, use of focal
vision is tightly linked to eye movements.

In contrast, the ambient visual system is involved in orienting in
earth-fixed space, spatial orientation, and postural control in loco-
motion. While the capabilities of ambient vision are strong in the
fovea, they degrade far less with peripheral eccentricity than do
those capabilities of focal vision (McKee & Nakayama, 1984).
Ambient and peripheral vision are correlated, but not identical,
particularly because peripheral vision can engage in object recog-
nition (although often degraded; Sekuler & Blake, 1994), while the
fovea is actually quite adept at the sort of ego-motion processing
characteristic of ambient vision; only this ability does not rapidly
degrade with peripheral eccentricity.

Studies have shown that ambient vision can support certain
driving tasks, but not others. For example, Summala, Nieminen,
and Punto (1996) used a technique known as the forced-peripheral
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driving technique, whereby drivers performed the lane-keeping
task relying exclusively on ambient vision. Drivers were instructed
to remain fixated on different in-vehicle locations and to avoid
scanning upward to the outside world. The results showed that
experienced drivers could use ambient visual resources to maintain
vehicle control (lane keeping), even without fixating directly on
the outside world. However, in subsequent work, Summala,
Lamble, and Laakso (1998) showed that ambient vision did not
effectively support the important driving task of hazard detection.
Drivers engaged in the same forced-peripheral technique were
asked to detect and brake in response to the slowing of a lead
vehicle. Response times rose significantly with increased viewing
eccentricity (by up to 2.9 seconds), suggesting that timely hazard
detection requires some degree of focal visual resources. Collec-
tively, these studies highlight the dissociation between the driving
tasks of hazard response and lane keeping.

Figure 1 presents a conceptual model of the linkages between
focal and ambient vision, the SEEV model, and the various driving
and IVT tasks to be performed. As shown, focal vision is driven
through eye movements by the SEEV parameters to different areas
of interest (AOIs), which in turn support different tasks: hazard
response, IVT, and navigation/reading road signs. In contrast,
ambient vision can directly support the lane-keeping task without
necessarily requiring an eye movement. Note also that focal vision
can support the lane-keeping task as well.

Summary and Present Research

In the current experiments, we explore various parameters from
a model of visual attention, the SEEV model (Wickens et al.,
2003), and the extent to which ambient vision use may mitigate the
utility of scan measures to predict driver safety. In Experiment 1,
we examined the influence of task bandwidth and priority (value)
on visual scanning for a given display location. Thus, we were able
to assess trade-offs between the expected frequencies of relevant
events with their relative importance. In Experiment 2, we ex-
plored IVT bandwidth in conjunction with critical road hazard
events.

Bandwidth was chosen as a driving variable for several reasons.
First, it lies at the core of engineering models of optimal visual
sampling theory (e.g., Carbonell, 1966; Moray, 1986; Senders,
1964; Sheridan, 1970), and has some generic task-invariant prop-

Visual Channel Aol Task
Displ IVT Task
Focal SEEV; spiay as
Hazard
SEEV; Response
Outside
SEEV3 World Navigation /
(Road) Signs
Ambient SEEV, L»
Lane
»  Keeping
Figure 1. Conceptual model of the links between focal and ambient

vision, the parameters of the SEEV model (Salience, Effort, Expectancy,
Value), the different areas of interest (AOIs), and the various tasks (1 —4).
IVT = in-vehicle technology.

erties (e.g., expressed in Hz). Second, it underlies two salient
influences on the performance of both tracking (Isreal, Chesney,
Wickens, & Donchin, 1980; Vidulich & Wickens, 1986) and
highway driving (Tsimhoni & Green, 2001): wind gust disturbance
inputs and roadway curvature command inputs. Third, previous
research has shown that bandwidth influences subjective ratings of
task difficulty (Vidulich & Wickens, 1986). Finally, its manipula-
tion will prove to be important in distinguishing processing of
ambient from focal vision.

The objective of the current studies was to examine and try to
model focal vision in a high-fidelity driving simulation when both
visual systems (focal and ambient) are challenged by changing
traffic and IVT information. In doing so, we highlight several key
elements: (a) observing driver scanning behavior while interacting
with IVTs; (b) observing task interference from a concurrent IVT
task; (c) using a high-fidelity driving simulator; (d) probing both
lane-keeping performance and hazard response; (e) considering the
role and limitations of ambient vision for some tasks; and (f)
assessing the computational modeling and validation of focal
visual scanning behavior. While others have examined several of
the underlying elements in isolation or in partial combinations
(e.g., Antin, Dingus, Hulse, & Wierwille, 1990; Jamson, Wester-
man, Hockey, & Carsten, 2004; Salvucci et al., 2001; Summala et
al., 1996, 1998; Tsimhoni & Green, 2001; Wickens et al., 2003, in
press), no one has combined them in a single experimental para-
digm as we do here. Both experiments adopted variations of the
fundamental paradigm used by Horrey and Wickens (2004a) in
which drivers performed an in-vehicle task on a visual display
while driving in a simulator through different traffic environments.

Experiment 1

In this experiment, we examined the impact of the relative value
of tasks, supported by a given information source, on visual
sampling behavior. We also explored the impact of driver expec-
tations as governed by the bandwidth of IVT and driving infor-
mation. Drivers in this study performed a task on a visual in-
vehicle display while driving in a simulator down a rural highway.
To manipulate value in a way that might capture differences in
engagement in an in-vehicle task, drivers were offered incentives
for prioritizing the driving task, the IVT task, or both tasks. Given
the role of task value in previous scanning models (e.g., Carbonell,
1966), we expected that prioritizing a given task would increase
the percentage of scans (percent dwell time, PDT) directed toward
the area that supports the task (Hypothesis 1).

We also varied the bandwidths of both tasks: the rate of IVT
presentation and the frequency of wind turbulence in the driving
environment, extrapolating the work of Senders (1964, 1983) to
this more realistic environment. Following Senders (1964), we
expected that increasing the bandwidth of the IVT task—a focal
task—would increase the amount of scanning (PDT) to the IVT
display (Hypothesis 2). As noted previously, the frequency of wind
maps onto the growth of uncertainty in lane position (Senders,
1983); however, ambient vision can support lane-keeping perfor-
mance (as shown by Summala et al., 1996). Thus we expected that
increasing wind turbulence would have a less powerful effect on
scanning than increasing focal-based IVT bandwidth (Hypothesis
3). The single-server model of visual attention would predict a
fairly large effect size for our manipulation of bandwidth (e.g.,
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Senders, 1964). Therefore, we consider moderate to large effect
sizes (d > 0.5) to be of practical significance here. For Hypothesis
3, we expected that wind bandwidth will have a smaller effect size
(d < 0.3) than IVT bandwidth (d > 0.5), with respect to scanning
behavior.

Method

Drivers. Eight young drivers from the University of Illinois volun-
teered for this study (aged 19 to 26 years, M = 22.1). This group was
composed of 4 men and 4 women. Each participant had a valid driver’s
license. Mean number of years driving experience was 5.9, and mean
annual driving distance was 9860 km (range = 4800 to 14,400 km). All
drivers had normal or corrected-to-normal visual acuity. Drivers were paid
$8 for each hour of participation and were given a $16 bonus as incentive
for good performance for prioritized tasks.

Materials. This study was conducted in the Beckman Institute Driving
Simulator at the University of Illinois. The fixed-based simulator consisted
of a 1998 Saturn SL sedan positioned in a wraparound environment. Six
Epson Powerlite 703C projectors (1024 X 768 pixels of resolution) pro-
jected the driving scenes onto separate screens. Both the forward and rear
horizontal fields subtended 135° of visual angle. The head-down IVT
display was an AEI 6.4” LCD monitor with 640 X 480 pixels of resolution.
Eye and head movements were measured using a Smart Eye Pro eye
tracker system (Version 3.0.1), which consisted of three Sony XC HR50
monochrome cameras, equipped with two IR-illuminators.

The simulator control dynamics were modeled after a typical four-door
sedan and were coordinated through Drive Safety’s Vection Simulation
Software™ Version 1.6.1. The various driving environments and traffic
scenarios were generated using HyperDrive Authoring Suite™ Version
1.6.1. The wind turbulence, IVT task, and other environmental features
were coordinated through TCL programming scripts. In-house software
was developed to reduce and analyze eye data for the various areas of
interest.

Driving environment overview. As shown in Figure 2a, the road was a
single-lane rural road with a single opposing lane. We elected to use only
straight, level roads, so the bandwidth of the driving task would be
determined only by the wind turbulence and not by other factors, such as
curvature. Wind turbulence involved a simulated lateral force of 700 to
1200 N (randomly determined) exerted on the vehicle—well within a range
of peak forces that has been observed in field studies (Klasson, 2002). The
wind turbulence was reflected by changes in visual, but not vestibular,
information.

Procedure. At the start of the 2-hr session, drivers completed an
informed consent form, simulator sickness questionnaire, and a brief de-
mographic questionnaire. Visual acuity was assessed using a Snellen chart.
After being seated in the simulator, adjustments to the seat and mirrors
were made to suit the size and preference of the driver. They were
introduced to the various components of the simulator. Drivers were then
given a short training scenario in order to familiarize themselves with the
control dynamics (e.g., steering) of the simulator vehicle.

Following the practice block, investigators built a profile (head model)
of the driver for the eye tracker. This process involved taking 40-50 digital
photos with the three tracker cameras of the driver looking in different
directions. While the driver completed some questionnaires, the investiga-
tor manually inserted digital markers in each photo for several visible facial
features (e.g., eye and mouth corners, nostrils, ear lobes). The eye tracker
software used the cumulative positional information from these markers to
build a 3-D head model, allowing the eye tracker to accommodate driver
head movements. Following this procedure, drivers were then provided
with a brief description of the experimental tasks.

Drivers were asked to perform two concurrent tasks: driving and an IVT
phone number task. For the driving task, drivers were asked to keep their
vehicle as close to the center of their lane as possible and to maintain a
velocity at or near the speed limit (50 mph). Wind turbulence was pre-
sented at two different bandwidths: low wind occurred every 5.5 s, on
average, while high wind occurred an average of every 2.5 s (with approx-
imately * 1 s variability around each of these means in order to generate
some unpredictability).

The IVT task involved reading and voice-dialing 7-digit phone numbers
presented on the head-down LCD screen. The LCD was located near the
vehicle’s midcenter console (approximately 38° offset from the center of
the horizon line; 22° below and 31° to the right) (Figure 2b). The band-
width of the IVT task was also manipulated. In the low IVT condition, the
IVT task was presented approximately every 8.5 s. In the high IVT
condition, IVT task information was presented approximately every 4.5 s.
As with the wind turbulence, there was some random variability around
these two values (approx. £ 1 s). When the digits appeared, drivers were
instructed to press a steering wheel-mounted button at the start of their
verbal response. New IVT information could replace old, even if they had
not yet finished the task. Rapid responses were required in order to perform
this task. Finally, we purposely reduced the discriminability (salience) of
the digits such that they would be less easily detected with peripheral
vision yet would be easily read with focal (foveal) vision. Drivers, there-
fore, were required to scan often to the display to determine whether new
IVT information was available.

Figure 2.

(a) Rural environment used in Experiment 2. (b) in-vehicle technology (IVT) display location.
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When the driving task was priority, drivers were told to do their best to
keep their vehicle in the center of the lane and to complete the phone
number task whenever they felt they could divert attention away from the
roadway. When the IVT task was priority, drivers were instructed to
respond to the digits as quickly as possible and to return to the driving task
only when they had completed the voice dialing task. In equal priority
conditions, drivers were told to perform both tasks as best they could.
Drivers were instructed that if they were able to prioritize the appropriate
task and perform well on that task, they would be eligible to receive a
monetary bonus ($16) at the end of the session, in addition to their hourly
wage. (All drivers received the bonus following the experiment, regardless
of performance.)

Drivers completed a 2-min block for each task combination (12 total) as
well as a 3-min baseline block that included single-task driving (low and
high wind) and single-task IVT performance (low and high IVT). To
facilitate the recall of task priority instructions, drivers performed all the
blocks for a given priority together (i.e., in 4-block sets). The order of
priority blocks and the individual blocks within each level of priority were
counterbalanced across driver. Drivers were offered a 1-min break in
between each block (or longer, if needed).

Experimental design. This experiment employed a 3 X 2 X 2 within-
subjects design with the variables of priority (driving; IVT; equal), wind
bandwidth (low; high), and IVT bandwidth (low; high). Additionally, there
were single-task baseline blocks for both driving and IVT tasks that were
administered before or after the experimental blocks (counterbalanced
across participant). An alpha level of .05 was used for all statistical tests.
We note that, across individuals, our dependent measures were not highly
correlated with one another (mean absolute » = .11, range = .02 to .25).

Results

Driving performance. Measures of lane position were sampled
at a rate of 2 Hz, and the cumulative samples for each trial were
used to calculate the variability (standard deviation) in lane keep-
ing. These data are shown in Table 1. Prior to analysis, the
variability data was transformed using a log-transformation (Kirk,
1982). The results from a repeated-measures ANOVA, shown in
Table 2, revealed significant main effects for priority and wind
bandwidth for variability in lane keeping. Tracking performance
was greater (i.e., variability was lowest) when drivers were prior-
itizing the driving task (M = 0.36 m) compared to the equal
priority (M = 0.43 m; d = 0.5) and IVT priority conditions (M =
0.48 m; d = 1.1). Also, lane-keeping performance was better in the
low wind condition (M = 0.37 m) relative to the high wind
condition (M = 0.45 m; d = 0.6). There was no significant effect
of IVT bandwidth on lane-keeping performance, or any significant
interactions.

IVT performance. IVT response time (IVT RT) was the time
from the onset of a digit string until the driver pressed the input
button (at the start of their verbal response). These data and
ANOVA results are shown in Tables 1 and 2. There was a
significant main effect for priority; however, there was no signif-
icant effect for wind bandwidth or IVT bandwidth. Responses
were fastest in the IVT priority condition (M = 0.76 s) compared
to the equal (M = 1.03 s; d = 1.0) and driving priority conditions
(M =1.70s;d = 1.8).

Eye movement data. For each area of interest, we calculated
the percent dwell time (PDT), which represents the proportion of
time that the driver spent looking there. In general, scanning to the
in-vehicle display was fully complementary to outside world scan-
ning (given that these areas of interest were the only ones that
offered task-relevant information; scans to the instrument panel

Table 1
Performance and Scanning Measures From Experiment 1

Wind bandwidth

Variable and priority condition Low High

Variability in Lane Keeping, in m

Driving 0.34 (0.03) 0.38 (0.04)
Equal 0.40 (0.05) 0.46 (0.05)
IVT 0.43 (0.04) 0.52 (0.04)
Driving alone (baseline) 0.32 (0.04) 0.42 (0.04)

IVT bandwidth

Low High

IVT Response Time, in sec

Driving 1.85(0.37) 1.54 (0.18)

Equal 1.09 (0.17) 0.97 (0.10)

VT 0.83 (0.09) 0.69 (0.06)

IVT alone (baseline) 0.76 (0.11) 0.59 (0.05)
Percent Dwell Time to Outside World

Driving 76.2 (4.4) 70.3 (5.8)

Equal 70.3 (4.0) 60.4 (5.1)

VT 55.7 (4.3) 42.2 (5.6)

Note. To ease comprehension, these variability in lane keeping values
reflect the raw variability data (versus the log-transformed data). Standard
errors appear in parentheses. m = meters; IVT = in-vehicle technology;
sec = seconds.

occurred infrequently). Thus, we primarily discuss the proportion
of scans to the outside world, shown in Table 1.

The results from a repeated measures ANOVA for scans to the
outside world, shown in Table 2, revealed significant main effects
for priority and IVT bandwidth. There was a greater proportion of
scans to the outside world when driving was prioritized (M =
73%) compared to the equal (M = 65%; d = 0.6) and the IVT
priority conditions (M = 49%; d = 1.8). Also, the proportion of
scans to the outside world decreased as IVT bandwidth increased
(by 10%, on average; d = 0.7). There was also a significant
Priority X IVT Bandwidth interaction such that the magnitude of
the decrease in outside world scanning from low to high IVT
bandwidth was smaller in the driving priority condition (6% re-
duction; d = 0.3) compared to the other two priority conditions
(10-14% reduction; d = 0.7 — 0.8). However, the main effect of
wind bandwidth on the proportion of scans to the outside world
was not significant (Low, M = 62%; High, M = 63%; d = 0.1).
Although we have limited statistical power to observe a meaning-
fully sized effect for our sample size (~65%), we highlight that
this lack of a significant effect is replicated in Experiment 2 (with
~80% power) and in previous work (Experiment 1 from Horrey,
Wickens, & Consalus, 2005).

Scan data and performance. In Figure 3a, we plot the mean
variability in lane keeping by the mean percent dwell time (PDT)
to the outside world for each priority and bandwidth condition.
This plot represents a performance-resource function, described
by Norman and Bobrow (1975), in showing how lane-keeping
performance depends upon the availability of focal visual re-
sources. PDT accounted for approximately 41% of the variance in
lane keeping, with increased scanning to the outside world result-
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Table 2

ANOVA Results for Variables From Experiment 1

Variability in lane

keeping IVT response time Percent dwell time (OW)

Source MSE F d MSE F d MSE F d
Priority (P) 0.010 12.5%%* 0.7 741 14.3%** 13 49184  30.1%** 1.2
Wind Bandwidth (W) 0.008  101.7#* 0.6  0.05 1.6 0.1 67.7 4.7 0.1
IVT Bandwidth (IVT)  0.001 0.5 0.1 0.84 32 04  2283.0 33.6%* 0.7
P X W 0.001 2.2° 0.6  0.05 0.8* 0.9 355 0.8* 0.8
P X IVT 0.001 0.8* 05  0.08 0.3* 1.0 113.5 5.1%% 1.0
W X IVT 0.001 39 03 024 3.0 0.3 26.2 L5 0.4
P X W X IVT 0.001 0.01* 0.6 007 0.8* 0.9 39.9 2.0° 1.0
Note. Variability in lane keeping data was transformed using a log transformation, Y' = log,,(Y + 1), based

on Kirk (1982). Tests of the skewness and kurtosis of the resulting distributions did not reveal any significant
departures from normality (see Tabachnick & Fidell, 1996). dfs are all (1, 7). ANOVA = analysis of variance;

IVT = in-vehicle technology; OW = outside world.
ddf = 2, 14.

*p <.05. **p < .0l

ing in improved lane-keeping performance. We do note that the
covariance in PDT and lane keeping is largely due to task priority
(and bandwidth). That is, approximately 68% of the variance in
lane keeping (up from 41%) is accounted for when plotting only
the means of the different priority conditions. This influence of
task value or priority is also evident in our modeling efforts,
described later.

Figure 3b plots the performance on the IVT task as a function of
PDT on the in-vehicle display. As shown, a logarithmic function
accounted for 69% of the variance in IVT RT. We used a loga-
rithmic model fit because the RT data asymptotes at a given point
(i.e., performance will not improve beyond a certain level, simply
because of human performance limitations).
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Discussion

The results from Experiment 1 suggest that drivers are able to
effectively prioritize the appropriate task, with enhanced perfor-
mance on either the driving or IVT task. Improvements in perfor-
mance were associated with increases in focal visual resource
allocation (Hypothesis 1), as indicated by percent dwell time
(PDT)—a result that follows from our performance-resource func-
tion (Norman & Bobrow, 1975; Figure 3). As the value of the task
increases and more resources are invested (as indicated by PDT),
performance will benefit. Furthermore, evidence from the scan-
ning data would suggest that the priority schemes for each task are
not equal. That is, the outside world (here a proxy for the driving
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task) almost always receives proportionally more PDT than does
the in-vehicle display (IVT task; see Table 1). This fact is reas-
suring, as a failure to give priority to the driving task can have
important safety repercussions, whereas a failure to attend to an
in-vehicle task does not likely have such serious repercussions, and
speaks to the role of task value in controlling resource allocation.

There was degraded lane tracking as wind turbulence increased;
however, there was little evidence to suggest that increasing wind
bandwidth increased the amount of scanning to the outside world,
contrary to what would be predicted by most optimal scan models
(Senders, 1983; Moray, 1986), given the twofold increase in input
bandwidths between the low and high wind conditions (Hypothesis
3). We infer that this muting of the effect was due to the role of
ambient vision in lane-keeping performance. As shown by others,
drivers can still perform a lane-tracking task, even when scanning
is prohibited (Horrey et al., 2005 [Exp. 1]; Summala et al., 1996).
Thus an increase in wind turbulence may not necessarily require a
one-to-one increase in scanning. However, the data indicated that
the amount of visual scanning to the IVT display increased with
IVT bandwidth, suggesting that this focal task was more consistent
with single-server queue models of visual attention (Hypothesis 2).

Thus, in Experiment 1, we showed that task value (as indicated
by priority) does impact visual scanning behavior as well as task
performance. However, expectancy (as indicated by information
bandwidth) may influence visual scanning differentially, depend-
ing on the type of task and the extent to which ambient vision may
be used to support the task.

Experiment 2

The purpose of Experiment 2 was threefold. First, we introduced
critical hazard events, similar to those used by Horrey and Wickens
(2004a), as these events are an important consideration when assess-
ing driving performance and safety and predicted to be dependent
upon focal vision. We hypothesized that drivers’ response times to
hazards would be degraded while completing an IVT task and that this
loss in performance would be amplified for the more complex IVT
tasks (Hypothesis 1). Second, we wished to increase the difficulty of
the IVT task by changing the nature of the IVT number task but
preserving the visual appearance of the task from Experiment 1. We
continued to use digit strings; however, the new task involved pro-
cessing information from the sets of digits, rather than simply reading
them back. We varied the complexity of this task by manipulating the
amount of information to be processed (an alternate manipulation of
information bandwidth). We anticipated that increasing the complex-
ity of the IVT task would yield a greater proportion of scanning to the
in-vehicle display (d > 0.5; Hypothesis 2). We also manipulated wind
bandwidth, as in Experiment 1. Using the same criterion described
earlier, we expected a diluted effect (d < 0.3) on scanning (Hypoth-
esis 3). Finally, we used a more realistic traffic setting, with traffic in
the opposing lane, vehicles parked by the roadway, as well as build-
ings and other objects. Thus the cost of a lane departure was in-
creased, relative to Experiment 1.

Method

Drivers. Eleven drivers from the University of Illinois volunteered for
this study (aged 19 to 37 years, M = 25.6). This group was composed of
6 men and 5 women. Each participant had a valid driver’s license. Mean

number of years driving experience was 8.9, and mean annual driving
distance was 9200 km (range = 2400 to 20,800 km). All drivers had
normal or corrected-to-normal visual acuity. Drivers were paid $8 for each
hour of participation.

Materials. This study was conducted in the Beckman Institute Driving
Simulator at the University of Illinois. The hardware and software were the
same as in Experiment 1.

Driving environment overview. The road used in this experiment was
a single-lane, light industrial city road with a single opposing lane. The
road environment included some buildings and a limited number of parked
vehicles on the side of the roadway (approximately 9-10 per km of
roadway). Additionally, there was some traffic in the oncoming lane of
travel at an approximate rate of 5 per km of roadway. There was no traffic
in the drivers’ lane. As in Experiment 1, we elected to use only straight
roads with the same levels of wind (low; high).

Critical hazard events. We included several hazard events that repli-
cated some of those employed by Horrey and Wickens (2004a). At various
points along the roadway, a pedestrian, animal (dog), bicyclist, or vehicle
encroached upon the simulator vehicle’s path from behind a parked car, at
a constant speed of 2.7 m/s. In each instance, drivers had approximately 2.5
seconds to respond and avoid a collision. This time afforded drivers
sufficient time to maneuver safely, yet was still urgent enough to require a
timely detection and response. The synchrony of these events was con-
trolled by time-based triggers, which factored in the speed of the vehicle to
keep the timing constant across individuals and occurrences. The frequency
of these incursions was limited in order to reduce the driver’s expectancies
(i.e., 6 discrete hazards across 8 blocks).

Procedure. The preexperimental questionnaires, test of acuity, practice
blocks, IVT display location and appearance, and levels of wind turbulence
for this 70-min experiment were the same as for Experiment 1. We wished
to preserve the visual appearance of the IVT task, so we continued to use
numerical stimuli. However, we changed the task by asking drivers to
determine whether there were more odd numbers or more even numbers
presented in a string of digits presented on the IVT display. Thus, drivers
had to extract their responses from the presented digits, rather than simply
read them out. The digit strings were either 5-digits (simple condition) or
11-digits long (complex condition). The IVT task was presented on the
head-down display approximately every 8.5 (% 1) s. Drivers were in-
structed to press a steering wheel-mounted button to indicate their response
(one button for “Odd” and one for “Even”). For example,‘58632" has more
even digits and ‘39482937652 has more odd digits. Strings were generated
randomly, with the constraint that the difference in total odd and even
digits needed to be * 1, thereby forcing perceptual processing of nearly all
the digits in the string on every trial. New IVT information could replace
old, even if they had not yet finished the task. Rapid responses were
required in order to perform this task.

The experiment comprised eight experimental blocks, each lasting ap-
proximately 3 min. Drivers were offered a 1-min break in between each
block (or longer, if needed). Drivers completed each task combination
twice (at both levels of wind bandwidth and IVT task complexity). These
blocks were counterbalanced across participant. For each of the first two
blocks, there was no critical hazard event. However, in each of the final 6
blocks there was a critical hazard event at a random location in the drive
and often in conjunction with an IVT task (simple or complex). For all
blocks, drivers were instructed to do both tasks as best as they could (the
same as the equal priority condition in Experiment 1).

Experimental design. This experiment employed a 2 X 2 within-
participants design with the variables of wind bandwidth (low; high), and
IVT complexity (simple; complex). An alpha level of .05 was used for all
statistical tests.

Results

Driving performance. As in Experiment 1, the variability data
for lane keeping was log-transformed prior to analysis (Kirk,
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Table 3
Performance and Scanning Measures From Experiment 2

Wind bandwidth

Variable and IVT complexity Low High

Variability in Lane Keeping, in m

Simple 0.35 (0.01) 0.40 (0.02)

Complex 0.43 (0.02) 0.47 (0.03)
Hazard Response Time, in sec

Simple 1.61 (0.17) 1.51 (0.56)

Complex 1.73 (0.70) 1.87 (0.46)
IVT Response Time, in sec

Simple 3.26 (0.28) 3.29 (0.25)

Complex 5.62 (0.29) 5.53(0.31)
Percent Dwell Time to Outside World

Simple 67.0 (3.5) 66.7 (3.4)

Complex 49.0 (3.2) 49.6 (3.5)
Note. To ease comprehension, these variability-in-lane-keeping values

reflect the raw variability data (versus the log-transformed data). Standard
errors appear in parentheses. IVT = in-vehicle technology; m = meters;
sec = seconds.

1982). However, the pretransformed data are shown in Table 3. A
repeated-measures ANOVA for variability in lane keeping, shown
in Table 4, revealed that: (1) tracking performance was better when
drivers were completing the simple IVT task (M = 0.38 m)
compared to the complex task (M = 0.45 m; d = 1.2); and (2) high
wind bandwidth (M = 0.44 m) disrupted lane keeping more than
low wind bandwidth (M = 0.39 m), with an effect magnitude (d =
0.7) that was similar to the analogous condition in Exp. One (d =
0.6). There was no significant interaction between IVT complexity
and wind bandwidth.

For the critical hazard events, we measured response time (haz-
ard RT) from the onset of the hazard event until the initial ma-
neuver response, whether braking or steering. Response times are
shown in Table 3. Hazard responses did not differ across the
different types of hazards. Contrary to our expectations, a repeated-
measures ANOVA for log-transformed hazard RT values, shown
in Table 4, did not reveal any significant effects. This may have
been due to the relative few hazard events and low N involved in
these comparisons. We estimate that, for our sample size, we had
only 32% statistical power to observe an RT difference of 150 ms.

Although we attempted to have some hazard events coincide
with IVT tasks and some to occur in between tasks, we cannot

Table 4
ANOVA Results for Variables From Experiment 2

automatically assume that the driver was or was not engaged in the
IVT for any given hazard (e.g., some drivers were looking upward
during IVT intervals while others were looking down when no IVT
information was available). Therefore, we decided to examine
the eye data to determine (a) where the eyes were fixated at the
onset of the hazard events and (b) if the eyes were initially
directed toward the in-vehicle display, how long before they
returned to the outside world. In Figure 4, we plot hazard RT
performance as a function of the time until the eyes returned to the
road. A time of zero indicates that the eyes were on the road when the
event occurred. Each data point represents a unique hazard event for
one subject.

First, we note that the time until the outside world is fixated
accounted for 66% of the variance in hazard RT. This offers more
evidence that ambient vision is not sufficient for the effective
detection of hazard events (e.g., Horrey & Wickens, 2004a; Sum-
mala et al., 1998). Otherwise, we might expect no relationship
between the two variables. However, the slope of the overall
function (0.48) is significantly less than 1 (95% CI: 0.39, 0.58),
suggesting that some processing of the hazard must occur with
ambient vision. Otherwise, we might expect that every x-second
delay in upward scan would produce a corresponding x-second
delay in hazard response (echoing single channel theory, Pashler,
Johnston, & Ruthruff, 2001). (Applying a correction for attenua-
tion due to measurement error yields an adjusted slope of 0.64
(95% CI: 0.51, 0.76) (e.g., Trochim, 2000).)

IVT performance. IVT response time (RT) was the time from
the onset of a digit string until the driver pressed the input button.
These data are shown in Table 3. A repeated measures ANOVA
for IVT complexity and wind bandwidth, shown in Table 4,
revealed a significant main effect for complexity (d = 2.5), how-
ever not for wind bandwidth.

Eye movement data. The percent dwell times (PDT) to the
outside world are shown in Table 3. A repeated measures ANOVA
revealed that increasing IVT complexity reduced outside world
scanning (by 18%, on average; d = 1.6; see Table 4), with more
scans being directed toward the display and away from the road-
way. As in Experiment 1, there was no significant effect of wind
bandwidth (low and high, M = 58%; d = 0.01), nor a significant
interaction between the two variables. As noted previously, we esti-
mated an approximate 80% statistical power to observe a meaningful
effect size for these comparisons, given our sample size.

Variability in lane

Hazard response

keeping time IVT response time Percent dwell time (OW)
Source MSE F d MSE F d MSE F d MSE F d
IVT Complexity (IVT) 0.005 26.0%* 1.2 0.25 3.1 0.5 58.00 143.40%* 2.50 3368.0 188.90%* 1.60
Wind Bandwidth (W) 0.002 19.0%* 0.7 0.02 0.2 0.1 0.01 0.04 0.03 0.3 0.03 0.01
IVT X W 0.001 0.2 0.9 0.29 3.7 0.3 0.04 0.45 1.20 2.3 0.49 0.80

Note.

Variability-in-lane-keeping data was transformed using a log transformation, Y' = log,,(Y +1), based on Kirk (1982). Tests of the skewness and

kurtosis of the resulting distributions did not reveal any significant departures from normality (see Tabachnick & Fidell, 1996). dfs are all (1, 10);
ANOVA = analysis of variance; IVT = in-vehicle technology; OW = outside world.

#p < 0l
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Figure 4. Scatter plot of hazard response times (RTs) by the time, from
the event onset, until the eyes fixated the outside world (OW) for both the
simple (diamonds) and complex (squares) in-vehicle technology condi-
tions. Zero-time indicates that the eyes were already on the outside world
when the event occurred. The regression equation includes these zero-time
points.

Discussion

As in the previous experiments, increasing road turbulence
degraded lane-keeping performance. Also, increasing the com-
plexity (bandwidth) of the IVT task increased tracking error—in
contrast to Experiment 1. This new effect of IVT bandwidth is
associated with a transfer of visual attention from the road to the
IVT display with increasing IVT complexity (Hypothesis 2). Per-
formance of the IVT task worsened as its complexity increased;
however, when the RTs are corrected for the number of informa-
tion bits processed, we note that responses to the complex IVT are
more efficient than in the simple condition (simple = 0.66 s/digit
vs. complex = 0.51 s/digit).

In Figure 4, we explored the relationship between hazard re-
sponse and visual scanning. When drivers were looking at the
roadway, they responded to the hazard in 1.25 seconds, on aver-
age—a value that is consistent for unexpected, surprise events
(Green, 2000). When the eyes are initially diverted from the
roadway, hazard response time is degraded (Hypothesis 1) and
there is a positive relationship between the time until the eyes
move upward and the response time, suggesting the role of focal
vision. However, the slope of this relationship is less than 1, the
value that would be predicted by a strong single channel bottleneck
theory, suggesting that there is some processing of the hazard
event with ambient vision before the eyes reach the road. We
speculate that this involves the processing of the lateral motion of
the hazard in the periphery (Tynan & Sekuler, 1982). Thus, am-
bient vision is involved in some aspect of hazard detection (see
Figure 4), though focal vision may be required to correctly identify
and respond to the hazard object (e.g., Summala et al., 1998).

As in Experiment 1, there was little evidence of an effect of
increasing wind bandwidth on the amount of driver scanning
behavior (Hypothesis 3; power ~80%), suggesting that ambient
vision is contributing to lane keeping, even with the addition of
other traffic elements and potential obstacles. However, as IVT
complexity increased (bandwidth as measured in bits/sec rather
than events/sec), drivers spent more time looking at the display
(Hypothesis 2).

In the following section, we discuss the application of the SEEV
model to the current experiments, examine how well it predicts
scanning, and discuss its limitations with respect to the current data
as well as for the general application to the driving context.

Modeling Visual Attention

Our objective in this section was to determine the extent to
which percent dwell time (PDT) from the various conditions
across all experiments could be predicted by a variant of the SEEV
model.

We used the following formula to predict the likelihood of
scanning to a particular area of interest (AOI; adapted from Wick-
ens et al., 2003, in press):

P(AOL) = 2 [(B)(R)(P,) — Ef] ey

=1

where ¢t = task, B = information bandwidth, R = relevance, P =
priority, and Ef = effort associated with accessing the AOL. In this
formula, Expectancy is expressed as information bandwidth and
Value is expressed as the product of Relevance and Priority. This
equation allows a given AOI to contribute to multiple tasks.
However, in our application, each AOI supports only one task (i.e.,
outside world—driving; in-vehicle display—IVT task). As noted
in the Introduction, Salience is a property of specific events that
occur in a given AOI and not of the AOI itself; therefore, we do not
include it in the current computational model. Because there were
only two areas of interest in these experiments, and the location of
the display was never manipulated across condition, it was impos-
sible to examine the influence of the Effort parameter in the model.
The coefficient value for this parameter remains null in the model.
(see Horrey et al., (2005) for application of the effort parameter to
driving, where only 5% of the variance in scanning was accounted
for by effort.)

In general, we derived the values for the model coefficients a
priori using well-specified rules. That is, we adopted a lowest
ordinal algorithm to assign values, rather than attempting to esti-
mate absolute values (Wickens et al., 2003). This procedure in-
volves the rank ordering of the different task conditions and AOIs
along the model parameters. For example, we considered vehicle
control to be more valuable (in terms of safety) compared to any
IVT task. Therefore, the value of these tasks may be represented
by 2 and 1 along the priority parameter, respectively. Similarly,
increasing bandwidth conditions may be ordered 1, 2, . .., n. The
advantage of this approach is that the relationships are relatively
simple, can often be easily agreed upon, and can be established
prior to any formal experimentation.

Table 5 shows the parameter values for the various conditions in
Experiments 1 and 2. Using these values, each AOI within each
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Table 5
Coefficient Matrix Used for Computational Model for Experiments 1 and 2
Expectancy (bandwidth) Value (priority) Relevance
AOI Mech. Low High Effort Driving Equal IVT Driving IVT

Experiment 1

ow Wind 2 3 0 3 2 1 0

Display IVT 1 2 0 1 2 3 1
Experiment 2

ow Wind 1 2 0 — — 1

Display IVT 1 2 0 — 1 — 0 1

Note. AOI = area of interest. OW = outside world. Mech. = mechanism for changing bandwidth. IVT =
in-vehicle technology. Values for the effort parameter are zero because we were modeling only two AOIs and
we did not manipulate in-vehicle display location in these experiments. For Experiment 1, both wind and IVT
bandwidth could be expressed in Hz and these values were the same for the high IVT and the low wind.
Therefore, these conditions were given the same coefficient (thus, the overall 1-2-2-3 ordering of bandwidths
across both tasks). In contrast, for Experiment 2, wind and IVT bandwidth could not be directly matched by
frequency (Hz; since IVT bandwidth was manipulated by complexity), so we rank ordered each task
separately (1-2). For the priority coefficients in Experiment 1, we started with a 2-1 (OW-Display) rating for the
equal condition (same as shown for Experiment 2). We then added or subtracted 1 with increasing or decreasing
priority levels (e.g., Driving priority and OW = +1). This process left us with one cell with a zero-value in
it (driving priority and Display AOI), so we added +1 to each of the six priority coefficients to avoid this null

value, but still preserving the order of coefficients.

condition received a total score derived from Equation 1. This
score was then weighted against the sum total for all tasks and
conditions and expressed as a proportion of the total dwell time.
This was the predicted proportion of dwell time.

Table 6 shows the model fits (in terms of %) for various
iterations of the model. The data from Experiment 1 provided us
with the greatest number of conditions and data (i.e., the greatest
statistical power in a correlational model validation assessment).
For this experiment, there was a high correlation between pre-
dicted and actual PDT (r = .98), accounting for 97% of the
variance. Following procedures used by Wickens et al. (2003), we
examined two iterations of this model to determine the extent to
which a simpler model, with fewer parameters, could account for
the data. A one-parameter model with only information bandwidth
(Expectancy), with all other values set equal, accounted for 63% of
the variance in PDT. A model, based only on Value (product of
Priority and Relevance), accounted for 74% of the variance. Fi-
nally, we randomized the coefficients in the model to ensure that
our ordered assignments would outperform other haphazard mod-
els. The average 2, based on 20 random models, was only .05,

Table 6
Model Fits (r* Values) for Experiments 1 and 2
Full Expectancy  Value
model® alone alone® Random® Individuals®
Experiment 1 97 .63 74 .05 71-97¢
Experiment 2 92 20 73 .06 .52-94

?Includes Expectancy and Value parameters (recall that Effort is null
here). ° Value is the product of the coefficients for Relevance and Pri-
ority. ©The average 7 value for 20 iterations of the model using ran-
domized coefficients. ¢ The range of model fits for individual ob-
servers. € We exclude one individual (of 8) from this range, for whom the
model fit was > = .03 (see text for more details).

suggesting that our ordered assignment of coefficient values was
contributing to the observed models.

For Experiment 2, there was a strong correlation between pre-
dicted and actual PDT (r = .96), accounting for 92% of the
variance. As shown in Table 6, a model based on Value alone
accounted for 73% of the variance in PDT, while a model based on
Expectancy alone accounted for only 20% of the variance. The
average > for 20 randomized models was .06.

Also shown in Table 6 is the range of model fits for each
individual’s data, as opposed to the aggregated data described
above. For Experiment 1, the 7 values for the full model ranged
from .65 to .93, with one exception. For a single driver, the model
did poorly in predicting scanning (+* = .03). This particular driver
showed the biggest disparities in scanning compared to the other
drivers, coupled with the best overall performance on the IVT task
and the second-to-worst performance in the lane-keeping task.
This pattern of results suggests that this driver may have been
overprioritizing the IVT task relative to the driving task, perhaps a
function of the simulated environment—a fact that would account
for the poor performance of the model, based as it is on the optimal
allocation prescription of expected value theory. For Experiment 2,
the range of individual’s model fits (%) was .52 to .94.

In the following, we describe how our findings relate to the
SEEV model of (focal) visual attention. In particular, we ask
which aspects of the computational model function effectively in
the driving context, and which ones break-down—especially in
light of the contribution of ambient vision to certain tasks (see
Figure 1).

Summary and Limitations of SEEV

For both experiments, task value, here a proxy for area of
interest (AOI; since AOI was uniquely mapped to a single task)
was the strongest predictor of scanning behavior. For tasks that had
a high associated value, drivers tended to scan to the appropriate
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area more frequently, at the expense of other areas. This positive
relationship between the value of a particular AOI and the amount
of scanning to that area is consistent with previous research (Car-
bonell, 1966; Moray, 1986; Wickens et al., 2003). The contribution
of value was seen both in the explicit priority manipulations, as
well as in the implicitly greater value of the outside world scanning
(for the driving task) than IVT scanning, as reflected by the higher
proportion of glances to the former.

In the current experiments, increasing IVT bandwidth, through
frequency (Experiment 1) or complexity (Experiment 2), had a
more significant effect on scanning behavior than increasing wind
bandwidth, drawing a greater proportion of scans to the IVT
display—a difference attributable to the greater linkage to focal
visual attention. Because of the role of ambient vision in lane-
keeping performance, changes in wind turbulence (at least across
the levels used here) did not necessarily require a differential
allocation of focal visual resources—to the extent that would be
predicted by the single-server queue model (Senders, 1964), given
the twofold increase in input bandwidths between the different
wind conditions. The challenge for modeling is that focal vision is
tied strongly to scanning behavior, whereas ambient vision is not.
Muting the roadway bandwidth parameter (in the current applica-
tion) may be a means of tweaking the model to account for tasks
that are supported by ambient vision.

We do note several limitations in the current modeling efforts.
First, there were limited data points available for Experiment 2,
which may have artificially inflated the model fit. We do note,
however, that Experiment 1 produced a similar fit, while contrib-
uting three times as many data points and covering a wider range
of values for percent dwell time (PDT). Second, we did not
manipulate the location of the in-vehicle display (i.e., Effort) in the
current experiments. Thus, we were unable to assess the influence
of the Effort parameter in the model. However, we do highlight the
strong model fits without this variable and point to previous work
in which the contribution of Effort was found to be minimal
(Horrey et al., 2005; Wickens et al., in press). It is possible that the
inhibitory effects of Effort on scanning do not manifest themselves
until some distance threshold is met or until concurrent task load
becomes excessive (Recarte & Nunes, 2000). Finally, the current
application of the computational model does not account for the
Salience parameter. As noted previously, the model captures the
characteristics of areas of interest (AOI), as opposed to objects or
events within the AOI, which tend to be characterized by the
Salience parameter.

General Discussion

The purpose of the current experiments was to examine how
characteristics of a simulated traffic environment and in-vehicle
tasks impact driver performance and visual scanning. Furthermore,
we wished to determine the extent to which a computational model
of visual attention, based on objective characteristics of the to-be-
performed tasks, could predict scanning behavior, and the extent to
which scanning modulates two qualitatively different aspects of
driving performance: hazard monitoring and lane keeping. While
several studies have explored these issues, the totality of this link
between scanning, computational modeling, and the two aspects of
driving have not been combined before and examined in a realistic

driving simulation. In the following, we describe the implications
from the current work as well as the general limitations.

Implications

The most important practical implication of the current results is
that a simple expected value version of the SEEV model provides
a plausible and effective predictive model of scanning in driving.
When coupled with further validation, designers may be able to
use this model to predict the allocation of visual attention in
different highway conditions and thereby predict vulnerability to
missing roadway hazards. This is especially important as IVTs
become more and more prevalent in automobiles (Ashley, 2001).

A key element of the current results, of both theoretical and
practical significance, is the dissociation underlying the two visual
systems represented in Figure 1. Performance on tasks dependent
on focal vision (e.g., IVT and hazard response) was linked to
visual scanning, and this, in turn was well modeled by existing
optimal scanning models. In contrast, for those tasks that are less
dependent upon focal vision and that can be supported by ambient
vision (e.g., lane keeping), visual scanning (focal visual resources)
was less of a mediating factor in performance (Figure 3a) and the
information bandwidth of that task had little effect on scanning,
even as it did affect tracking performance. This strong pattern of
dissociation has implications for the sole use of either scanning or
lane keeping as indices of driver safety. Both should be examined
in conjunction. While SEEV is an incomplete model of visual
input for safe driving, it may nevertheless be argued that the aspect
of driving to which it is most closely linked, hazard response, may
be considered the most relevant for driving safety.

General Limitations

From the current set of studies, we highlight some factors that
may limit our ability to generalize these results to real world
driving. First, our IVT task was simplistic, capturing some aspects
of information acquisition and voice-entry (Experiment 1) as well
as some aspects of information processing (Experiment 2). How-
ever, with real world IVTs, drivers will likely interact with text
(e.g., email) and graphical or pictorial material (e.g., maps; Tsim-
honi & Green, 2001). We believe that this material can also be
characterized quantitatively along the parameters of the SEEV
model, as we have done in the current studies. Second, although
our manipulation of wind frequency maps onto Senders’ (1983)
notion of information bandwidth, there are other factors that may
impact bandwidth as well, such as road curvature or traffic density.
Furthermore, we note that the real traffic environment will be
subject to all of these different types of information contributing to
bandwidth. It is unclear whether multiple information bandwidths
within a single channel would increase, camulatively, the amount
of time that the eyes are directed outside or whether the eye
behavior will be impacted by the dominant bandwidth alone. Other
manipulations of bandwidth and combinations of task-relevant
information should be the focus of future research endeavors.
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