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Development and validation of a behavioural video coding scheme for
detecting mental workload in manual assembly

Bram B. Van Ackera,b,c , Davy D. Parmentiera, Peter D. Conradiea,c , Stephanie Van Hovec,d,
Alessandro Biondia, Klaas Bombekec,d, Peter Vlerickb and Jelle Saldiena,c

aDepartment of Industrial Systems and Product Design, Faculty of Engineering and Architecture, Ghent University, Zwijnaarde,
Belgium; bDepartment of Work, Organisation and Society, Faculty of Psychology and Educational Sciences, Ghent University, Ghent,
Belgium; cResearch group IMEC-MICT-Ghent University, De Krook, Miriam Makebaplein, Ghent, Belgium; dDepartment of
Communication Sciences, Faculty of Political and Social Sciences, Universiteitstraat, Ghent, Belgium

ABSTRACT
Manual assembly in the future Industry 4.0 workplace will put high demands on operators’ cog-
nitive processing. The development of mental workload (MWL) measures therefore looms large.
Physiological gauges such as electroencephalography (EEG) show promising possibilities, but still
lack sufficient reliability when applied in the field. This study presents an alternative measure
with a substantial ecological validity. First, we developed a behavioural video coding scheme
identifying 11 assembly behaviours potentially revealing MWL being too high. Subsequently, we
explored its validity by analysing videos of 24 participants performing a high and a low com-
plexity assembly. Results showed that five of the behaviours identified, such as freezing and the
amount of part rotations, significantly differed in occurrence and/or duration between the two
conditions. The study hereby proposes a novel and naturalistic method that could help practi-
tioners to map and redesign critical assembly phases, and researchers to enrich validation of
MWL-measures through measurement triangulation.

Practitioner summary: Current physiological mental workload (MWL) measures still lack suffi-
cient reliability when applied in the field. Therefore, we identified several observable assembly
behaviours that could reveal MWL being too high. The results propose a method to map MWL
by observing specific assembly behaviours such as freezing and rotating parts.

Abbreviations: MWL: mental workload; EEG: electroencephalography; fNIRS: functional near
infrared spectroscopy; AOI: area of interest; SMI: SensoMotoric Instruments, ETG: Eye-Tracking
Glasses; FPS: frames per second; BORIS: Behavioral Observation Research Interactive Software;
IRR: inter-rater reliability; SWAT: Subjective Workload Assessment Technique; NASA-TLX: National
Aeronautics and Space Administration Task Load Index; EL: emotional load; DSSQ: Dundee
Stress State Questionnaire; PHL: physical load; SBO: Strategisch Basis Onderzoek
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1. Introduction

The current growing demand for mass-customization
yields a greater product variety (Um et al. 2017; Wan
and Sanders 2017) and thereby a higher manufactur-
ing complexity (ElMaraghy et al. 2012; Hu et al. 2008).
Despite the extensive automation of production proc-
esses, manual assembly still remains highly valuable
for the extreme flexibility it provides (Booker, Swift,
and Brown 2005). Cognitive demands on operators in
this context and for sure in the future Industry 4.0
setup however increase accordingly, reinforcing the
long-standing need for mental workload (MWL) meas-
urement in order to optimise cognitive ergonomics

(Van Acker et al. 2018; Young et al. 2015). With a thor-
ough and objective understanding of non-optimal
MWL (i.e. overload or underload) the presentation of
information and materials can be redesigned (Brolin,
Thorvald, and Case 2017), assemblies can be made
more intuitive (Parmentier et al. 2020) or smart tech-
nologies can be introduced to assist the operator (Erol
et al. 2016; Longo, Nicoletti, and Padovano 2017).

Subjective measures have long been the preferred
method to indirectly infer MWL (cf., Young et al.
2015), but are intrusive when applied in the field and
only provide a subjective estimation (for a discussion,
see de Waard and Lewis-Evans 2014; de Winter 2014;
Matthews, De Winter, and Hancock 2020) of
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accumulated load instead of more sensitive fluctua-
tions in MWL-levels (Antonenko et al. 2010). More
recent methods offer a more direct and continuous
way of measuring MWL through physiological reac-
tions within the operator and this with a very limited
latency (Charles and Nixon 2019). EEG, for instance, or
functional Near Infra-red Spectroscopy (fNIRS) measur-
ing frontal cerebral blood flow velocity have demon-
strated exciting potential for future unobtrusive MWL
measurement (cf., Foy and Chapman 2018; Guru et al.
2015; Hairston et al. 2014; McKendrick et al. 2016) and
even mental overload measurement (Morton et al.
2019). Such measures are nevertheless still in full
development and do not yet achieve adequate effect
sizes (Vanneste et al. 2020) nor adequate reliability or
external validity in applied mobile settings, this due to
numerous confounds such as movement and breath-
ing artefacts (see Arico et al. 2018; Brouwer et al.
2015). Additionally, differences in MWL are often esti-
mated by comparing discrete conditions, instead of
measurement being instantaneous. To arrive at the
stage of measuring MWL fluctuations within a short
time span - say, seconds - and in a real-world context,
great strides need to be made yet.

Where the field of subjective and physiological
MWL measurement validation assesses MWL changes
to eventually detect or predict decrements in perform-
ance (see, e.g. Young et al. 2015), here, we reversed
the logic, in line with primary task performance meas-
ures (cf., Cain 2007). We designed a coding scheme by
narrowly defining observable types of inefficient and
ineffective assembly behaviours that potentially reveal
MWL being too high. The current study is hence, to
our knowledge, the first to explore behavioural obser-
vation as a measure of MWL in an ecologically valid
assembly context. Specifically, it builds on current
knowledge on human cognition in assembly perform-
ance (but not providing a validated measure yet) and
translates this knowledge and similar work on behav-
iour analysis in human-computer interaction and driv-
ing into a novel and validated mental workload
measure for manual assembly. It hereby aims to help
design a method already meeting some of the widely
envisioned criteria for in-the-field MWL-measurement
on the short term, i.e. non-obtrusiveness, sensitivity to
rapidly changing MWL fluctuations and ease-of-use
(see Matthews et al. 2015).

2. Background

Scrutiny on the concept of MWL upholds a long trad-
ition and even thrives during recent years, driven by

the expectations for the upcoming Industry 4.0
(Young et al. 2015). Altogether, MWL exists as a func-
tion of task demands and moderating variables, and
can be understood as a subjective experience and a
physiological reaction, resulting in task-related behav-
iour (Van Acker et al. 2018). Research on the measure-
ment of MWL in industrial contexts has mainly
focussed on subjective estimations and physiological
reactions (Charles and Nixon 2019). Gauging the third,
behavioural component in these settings has however
rarely made the step beyond measuring, e.g. execu-
tion times, reaction times or errors. The same theorisa-
tion explaining fluctuations in the subjective and
physiological components of MWL can however also
help explain fluctuations in observable behaviour.

2.1. MWL revealing limited resources

MWL can be defined as a subjectively experienced
physiological processing state resulting from the inter-
play between the human cognitive architecture and
the work demands being attended to (Van Acker et al.
2018). Seminal work learns that the cognitive physio-
logical resources propelling this interplay are limited
(e.g. because of competition between visual and audi-
tory sensory modalities; Wickens 2002, 2008) and draw
from a common and also limited underlying pool of
physiological resources from which also competing
emotional load (for a distinction between cognitive
and emotional load, see Van Acker et al. 2018) and
physical load draw (Egeth and Kahneman 1975;
Mandler 1979; Norman and Bobrow 1975; for an over-
view, see Staal 2004).

2.2. Performance revealing MWL

In assembly specifically, cognitive resources are allo-
cated for perception, response selection and action,
propelled by, i.a., attention and memory (Stork and
Schub€o 2010). For commissioning, the perception stage
include, i.a., identifying relevant parts. For joining, the
operator’s perception entails, for instance, processing
the required part position and orientation. An appropri-
ate response is then selected (e.g. ‘take this part and
join it on that position in that orientation’) to finally go
through the process of motor execution of the joining
operation (including planning and adjusting). Since
resources are limited, this concrete assembly perform-
ance can become less efficient and less effective when
MWL increases. Commissioning, for example, can take
longer, while response selection can entail taking two
wrong parts first.
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Previous research shows that the relationship
between (assembly) performance and MWL exhibits an
inverted U-shaped trend (de Waard 1996; Montani
et al. 2020; Young et al. 2015). In Figure 2 (inspired on
de Waard 1996; Hart and Wickens 2008; Young et al.
2015), it can be observed that, in this way, perform-
ance is optimal when MWL resides around moderate
levels (cf., flow theory; Bruya 2010), while it is non-
optimal (i.e. too low) in case of MWL being too low or
too high. The MWL ‘redlines’ represent the perform-
ance break points here, so that at the right side of the
right redline, overload, and at the left side of the left
redline, underload, leads to strong reductions in per-
formance. In the current study, we focus on the levels
of MWL around the right redline, i.e. the part of the
curve where performance goes down. We coin this
area the MWL upper red zone since these redlines
rather represent a fuzzy zone when applied over con-
texts and people (cf., Young et al. 2015). We do not
focus on performance decrements due to underload,
i.e. lower red zone MWL (for an elaboration on under-
load and its relation to MWL levels, see Brookhuis &
de Waard, 2001).

Within upper red zone MWL, a differentiation can
be made between impending mental overload and
mental overload per se. The MWL-redline approxi-
mates the break point (or a ceiling effect in terms of a
limited resource system; Young et al. 2015) between
both (see also, Grier et al. 2008; Paras et al. 2015). We
define impending mental overload as high MWL asso-
ciated with minor decrements in performance and
visualise this concept as our first Area Of Interest (‘AOI
1’) on the curve in Figure 2. Mental overload is defined
as high MWL associated with major decrements in
performance and is represented by the second Area
Of Interest (‘AOI 2’) on the curve. As the curve shows
an exponential trend, overload should thus be associ-
ated with the largest and most severe drops in
performance.

In all, we thus focus on red zone MWL associated
with minor and major performance decrements – i.e.
stretching over AOI 1 and AOI 2 in Figure 2. Our
assumption subsequently states that performance dec-
rements here will be observable in concrete assembly
behaviour and can hence indicate changes in MWL, in
turn revealing changes in the cognitive resources
spent. We illustrate this assumption in Figure 1. To
facilitate theory building and comparability of the pre-
sented work (Van Acker et al. 2018), our operational
definition of MWL states that the MWL measured here
will be reflected in the observed participants’ assembly
behaviour indirectly revealing the interplay between

participants’ limited working memory modalities and the
visual–spatial demands and working memory span
demands being exposed to.

3. Study overview

After delineating our focus area, we formulated our
central research question stating: ‘Which could be pos-
sible observable behavioural indications of upper red
zone MWL?’. Based on Heyman and colleagues’ (2018)
recommendations, we tackled this question in twofold.

Cognitive

Performance

Physical Emotional

Perception Response selection Action

common pool 
of resources

limited

limited

Resources
spent

MWL
measured

Behavior
observed

re
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Figure 2. Schematic overview of rationale how observable
behaviours indicate MWL levels and thereby reveal the latent,
non-observable competition for, and expenditure of, physio-
logical resources.
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Figure 1. Graph of performance and MWL as a function of
task demands, presenting the MWL-redlines and the areas of
interest (AOI 1 ¼ Area of Interest 1, AOI 2 ¼ Area of Interest
2). Adapted from Young and colleagues (2014) and de
Waard (1996).
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We first developed a coding scheme identifying such
behavioural indications based on literature (deduct-
ively) and by observing assembly behaviour in a sub-
sample of videos from an assembly experiment
validated to induce high and low MWL (inductively).
After finalising the coding scheme, we, secondly, vali-
dated the scheme with a larger set of videos of the
same experiment (excluding the subsample used in
the first stage). Specifically, we analysed whether all
behavioural codes would significantly differ per experi-
mental condition (i.e. high and low complexity induc-
ing high and low MWL) in their occurrence and,
following Richardson and colleagues (2006),
their duration.

3.1. Experimental procedures

For the experiment providing the video data for devel-
oping and validating the coding scheme, the same
procedures as an earlier experiment exploring mobile
pupillometry was followed (see Van Acker et al. 2020,
for an extensive overview). In a within-subjects design
experiment, participants performed both a high and
low complexity assembly in a random and counterbal-
anced order and with a resting phase in-between.
They assembled while being seated in a quiet room
and wearing the SMI Eye-Tracking Glasses (ETG 2w)
(SMI; Teltow, Germany), a lightweight glasses-type
eye-tracking system (47 g; size: 173� 58� 56mm)
using small cameras implemented in the frame of the
glasses (and compatible with contact lenses). Data
were stored on a customised smartphone connected
to the ETG with a cable. The smartphone was kept in
the participants trouser pocket or waist bag.
Participants were told that they would participate in a
study ‘exploring how people assemble and that their
eye-movements would be tracked. They were explicitly
instructed that they had all the time they needed to
complete the assembly. In total the experiment would
last for approximately one hour.

Both ecologically valid assemblies consisted of seven
steps each, to be executed in a fixed order. Participants

saw instructions per step on a screen at the opposite
side of the worktable. Our focus was not on this
instruction phase. After seeing the instructions, partici-
pants turned around to select, position and mount two
components per step (three for the first step) that they
had to select out of a display of parts presented on the
worktable. After completion of each assembly, partici-
pants filled out a questionnaire. Figure 3 shows a dia-
grammatic overview of the assembly process.

The assemblies were designed to induce low and
high MWL based on 10 task variables defining assem-
bly complexity as proposed and validated by
Richardson, Jones, and Torrance (2004, Richardson
et al. 2006), Pillay’s (1997) use of non-familiar assembly
objects (see also Norman’s, 1983, Shalin et al.’s, 1996,
insights on mental models in objects) and one mater-
ial-related task variable introduced by the authors.
Specifically, the following 10 task variables defined
the, respectively, low and high complexity level of the
assemblies: assembly model (cubicle box design vs.
abstract unfamiliar design, respectively), amount of
symmetrical planes (high vs. low, respectively), amount
of components (low vs. high, respectively), component
groups (low vs. high, respectively), selections of com-
ponents (no redundant components and displayed in
correct order vs. redundant components and displayed
in randomised order, respectively), amount of fasten-
ings (minimally required vs. high, respectively),
amount of fastening points (low vs. high, respectively),
amount of novel (sub-)assemblies (low vs. high,
respectively), presenting orientation on work table
(correct angle vs. randomly angled 90� to the left or
right along the horizontal plane, respectively), material
of sides (low transparency vs. high transparency,
respectively). The original experiment (see Van Acker
et al. 2020) showed that subjective MWL differed sig-
nificantly between the low and high complexity condi-
tion, in that the high complexity condition induced
higher MWL levels as compared to the low complexity
assembly (see Van Acker et al. 2020). The same assem-
blies used in the current experiment were thus vali-
dated to induce low and high MWL.

Assembly time (s)Step onset End of step
Next step

Understanding instructions assembly completed
Decision
making

Physical
execution

Figure 3. Diagrammatic overview of the assembly process. The low complexity assembly is used as an example. The high com-
plexity assembly followed the exact same procedure.
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3.2. Video capturing procedures

The frontal Scene Camera of the eye-tracking glasses
(with a resolution of 1280� 960p; 24 FPS; H.264 video
format, 60� horizontal and 46� vertical field of view;
High Dynamic Range mode with high sensitivity for
low light) was used to capture participants’ assembly
behaviour, i.e. their hands and upper arms manipulat-
ing the assembly. Videos (in .avi format) were then
imported into the SMI BeGaze software (SMI; Teltow,
Germany) in order to calculate the eye-gaze position
(3-point calibration; binocular eye tracking at 60Hz
with automatic parallax compensation and dark pupil
tracking; 80� horizontal and 60� vertical gaze tracking
range; gaze position accuracy of 0.5� over all distan-
ces) to be used for the definitions of certain behav-
ioural codes.

4. Development of the coding scheme

4.1. Method

Behavioural observation is a method in which a
researcher sees and/or hears, and then systematically
records specific behaviours of an individual or group
within a certain context of interest (Heyman et al.
2018). These behaviours are then organised into cate-
gories by using clearly defined codes to be assigned
based on certain rules. Together, these categorised
codes form a coding scheme. After analysing these
behaviours from, for example, video data, their occur-
rence or time duration can be analysed. No behav-
ioural coding scheme for MWL measurement in
assembly execution existed already. We - three of the
current authors and a team of three trained graduate
students - therefore developed a scheme through
deduction and induction, inspired by the practical
guide for developing behavioural coding schemes of
Chorney and colleagues (2015).

4.1.1. Deductive path
From theory, we started with a profound understand-
ing of MWL and how assembly behaviour is propelled
by mental processing (cf., the Background section).
Most central here is that cognitive processing com-
petes with physical processing for the limited physio-
logical resources. The MWL measurement literature
learns that assembly-specific cognitive processing can
subsequently be inferred from execution time
(Richardson et al. 2006; Stork and Schub€o 2010), reac-
tion time and errors (Stork and Schub€o 2010; Young
et al. 2015), dwell time on assembly and amount of
sub-steps needed (Stork and Schub€o 2010), and even

hand movement parameters such as total movement
time, speed-accuracy trade-off, peak velocity and
latency of movement onset (Stork and Schub€o 2010).

Other work outside assembly environments infers
MWL levels based on behavioural parameters such as
writing velocity and pen gesture (Badarna et al. 2018;
see also Meulenbroek et al. 2005; for an overview, see
Chen et al. 2016). Both strongly resonating with our
work here, Qiu and Helbig (2012) used video-analysis
to show how computer operators’ task-unrelated body
posture (coming closer or moving less) can indicate
MWL, whereas Boer (2000) proposed a behavioural
entropy index characterising MWL in driving (i.e. a
quantification of corrective actions such as error cor-
rections or startled responses reflecting the level of
smoothness in driving control behaviour such as lane
keeping and car following). Next, features of computer
mouse behaviour such as contemplation-style pauses
occur more and longer under high MWL (Arshad,
Wang, and Chen 2013; see also target highlight time
in Vitense, Jacko, and Emery 2003) – resembling the
use of more and longer pauses when speaking under
high MWL (Ruiz, Taib, and Chen 2006) or, oppositely
but revealing the interplay of resources, resembling
poorer performance on a difficult secondary cognitive
task while walking (Srygley et al. 2009).

Based on these notions and in relation to the
assembly stages for commissioning, joining and action
execution, we first derived codes defined by execution
time (e.g. the time to find the right position) and erro-
neous behaviour (e.g. the amount of wrong position-
ing attempts). Based on, i.a., behavioural entropy,
body posture and pauses, we distilled generic behav-
ioural codes, such as muscular freezing (reflecting
thinking or startle responses) and changes in the rela-
tive position of the head. A first preliminary coding
scheme was thereby crafted, importantly, before see-
ing any videos.

4.1.2. Inductive path
In a next phase, we used the first coding scheme to
code three training samples, being three videos
selected from the collected videos of the same experi-
ment, but not used for the validation. By using the
behavioural video analysis software BORIS (Friard and
Gamba 2016), we now inductively refined, selected
and pragmatised our first set of codes, and aimed at
discovering new codes. For the latter, team members
were instructed to identify additional exemplary
behavioural indicators of MWL being too high, i.e. not
yet captured in the first coding scheme. Specifically,
they were instructed to gauge how decrements in
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performance (quantified by duration and number of
occurrences) manifested in observable behaviours
other than those already identified in the deduct-
ive phase.

For this inductive method, team members alter-
nated between working individually and discussing all
adaptations in group. We discussed (also with team
members not having been involved in the early stage
iterations), tested and updated several coding
schemes during multiple iteration rounds on com-
pleteness (i.e. do we agree that all possible behav-
ioural indicators are included), accuracy and face
validity (i.e. are the definitions adequate to grasp and
delineate the behaviours aimed for), and feasibility (i.e.
is the scheme usable for the raters, e.g. in terms of
comprehensibility and vigilance).

4.1.3. Inter-rater reliability
The final coding scheme was fine-tuned during the
last stages of the iteration process. Procedures for this
were largely based on Lombard, Snyder-Duch, and
Bracken (2002, 2010) and McAlister and colleagues
(2017), and went as follows. First, three team members
used BORIS to independently code parts of the three
training videos (not used for the validation) and
repeatedly assessed the inter-rater reliability (IRR)
informally by reflecting on their coding disagreements
in group. Specifically, they discussed where and why
in the videos they seemed to disagree. Subsequently,
they redefined the respective codes until adequate
agreement on the coding scheme was reached.

In a next stage, as is common practice in behav-
ioural coding research (see also Hallgren 2012;
Neuendorf 2002), two raters (i.e. different team mem-
bers) consolidated the coding scheme and now for-
mally assessed IRR based on a subset of four videos of
the full sample to be used for the validation (for a
similar approach, see, e.g. Baranek et al. 2005).
Specifically, they first coded the videos of the first par-
ticipant of the subset independently from each other
and afterwards calculated the Cohen’s Kappa IRR coef-
ficient in BORIS (a robust standardised statistic for
agreement between raters ranging from �1 to þ1,
with 0 being agreement expected by from random
chance, and correcting for random agreement due to
guessing, Cohen 1960) with an interval time of 1.00 s
(meaning that the behaviours coded by the two raters
were checked for agreement/disagreement per
second). Then, they discussed the minor unclarities
remaining in the coding scheme as revealed by the
IRR-calculation - for instance due to an atypical assem-
bly strategy exhibited by the participant. When a

consensus was reached on refining these subtle ambi-
guities accordingly and when the codes were thor-
oughly understood by the raters, the same videos
were coded again from the beginning, independently
and without guidance. IRR was then calculated again.
This process of training and consolidation continued
for the first and, if necessary, for the following partici-
pant videos until an acceptable Cohen’s Kappa IRR
coefficient was reached of K >.70 for the complete
subset (falling within the range for ‘moderate agree-
ment’ of 0.60 – 0.79, McHugh 2012; we opted for this
threshold being appropriate for a first exploratory
study on the topic, see Lombard, Snyder-Duch, and
Bracken 2002, 2010).

4.1.4. Coding procedures
The following coding approach was used throughout the
process of informal (i.e. the three training video’s) and for-
mal IRR assessment (i.e. the subset of four), and through-
out the validation process (see below). Out of the, in total,
seven steps both assemblies consisted of, only the first,
third and fifth step of both assemblies were coded in
order to make the labour-intensive video coding process
feasible for the raters while selecting a representative
sample of assembly behaviour (for a similar approach, see,
e.g. Baranek et al. 2005). This provided in total approxi-
mately 10min of data per participant1 to be analysed
with BORIS. Specifically, a combination of a topographical
coding system measuring the occurrence of behaviours
(i.e. the amount of times a code occurred) and a dimen-
sional coding scheme gauging the time duration of
behaviours was deployed (Heyman et al. 2018). For the
detection of occurrence and duration, a timed-event
sequential continuous coding approach was used
(Chorney et al. 2015). That is, the raters continuously ana-
lysed behaviour during the complete assembly step by
backwarding and forwarding throughout the videos.

Although preferred when possible, raters could not
be blind for the manipulation, since the design of the
assemblies were also visibly different in complexity for
the raters. Since the codes are clearly delineated in
time and define concrete physical behaviour (instead
of, e.g. socially constructed behaviours, see Chorney
et al. 2015), we do not foresee the coding having
been prone to judgement subjectivity. Table 1 pro-
vides an overview of the steps and amount of partici-
pants coded per rater.

The final coding scheme differentiated codes
between state events (for which both duration and
occurrence was important) and point events (for
which duration was not meaningful and only occur-
rence was hence coded). For the state events, onset

ERGONOMICS 83



and stop times were coded. Point events were coded
at the onset of the behaviour. For the onsets and stop
times, both raters aimed to apply an accuracy of
approximately 0.5 s. Not every behaviour was coded.
Specifically, we did not account for ergonomic behav-
iour (i.e. repositioning one’s hand, retaking a part for
comfort or picking up a part the participant dropped),
orderliness behaviours such as putting parts aside in a
personally preferred way, screwing or picking screws.
We did so, since we did not have deductive nor
inductive grounds for linking such behaviours to
upper red zone MWL. Figure 3 shows a screenshot of
the behavioural video coding software deployed to
apply (iterations of) the coding scheme.

4.2. Results

The final coding scheme, consisting of 4 categories and
11 codes, is displayed in Table 1 and was synthesised in
a logic sequence of categories for assembly execution,
being; I., Parts selection behaviour (3 codes), II.,
Positioning behaviour (4 codes), III., Transition behav-
iour (i.e. in-between completing an assembly step and
starting the next) (1 code) and, IV., Generic behaviour
(occurring throughout all assembly phases) (3 codes).

Only the code ‘Freeze’ involved modifiers to differ-
entiate between three types of freezes. Importantly,
we used the participant’s eye-gaze point to distinguish
between certain codes and to help define others.
Table 1 also includes the available empirical referents
that helped in the coding scheme development. Note
that some codes were mainly driven by the inductive
path, others deductively. In Appendices we included a
table with rater instructions (Appendix A) and one
with rater attention points (Appendix B), both espe-
cially to be used during rater training.

Finally, not all codes were mutually exclusive,
meaning that some codes could be nested in another
code, such as ‘Gaze redirection’ in ‘Freeze’, or ‘Freeze’
in ‘Verification of fixed position’. Other codes were
always nested in the main categorical code, such as
‘Part touched’ in ‘Parts collection’ (Table 2).

5. Validation of the coding scheme

To validate our central research question on possible
observable behavioural indications of upper red zone
MWL, we deployed our coding scheme on a set of 24 vid-
eos from the assembly experiment and hypothesised that:

H: The behaviours detected will last longer and/or occur
more frequently in the high complexity condition as
compared to the low complexity condition.

We directly derived this hypothesis from previous
work empirically addressing the limited resource theo-
ries (discussed in section 2. Background) by showing
that, e.g. higher behavioural entropy in driving and
more and longer contemplation-style pauses in com-
puter mouse behaviour indicate high MWL (see section
4.1.1). The experiment leveraging a high and a low com-
plexity assembly now served to validate, with a separate
large-scaled sample of videos, whether the behavioural
codes of the coding scheme are indicative of high MWL,
as compared to low MWL. This way, we experimentally
tested the coding scheme’s discriminative validity, i.e.
can the behavioural codes distinguish between groups
that are hypothesised to differ (Heyman et al. 2018)?

5.1. Participants

Because no previous studies exist deploying behav-
ioural video coding to gauge MWL, we looked for pre-
vious work using the most similar research
methodology to help us determine the sample size.
The work of Qiu and Helbig (2012) and Baranek and
colleagues (2005) adhered most closely to our experi-
mental setup. The former inferred MWL levels through
automated video analysis of body posture based on
22 participants and a pair-wise comparison between
cognitive tasks in a within-subjects experimental
design. The latter study by Baranek and colleagues
(2005) gauged autism in infants by deploying a retro-
spective video analysis method very similar to our
method. In this study, 32 participants were distributed
over three conditions in a between-subjects experi-
mental design. In line with these most similar studies,
and to keep the labour intensive video coding feas-
ible, we aimed to also arrive at a minimum of 20 par-
ticipants per condition in our within-subjects design
experiment. A total of 25 university student volunteers
of an engineering university faculty (20% female, Mage

¼ 21.48, SDage ¼ 1.19), naïve to the manipulation par-
ticipated after giving a written consent (no participant
afterwards reported to have an idea about the experi-
mental goal). Participants’ inclusion criteria were the
same as in Van Acker and colleagues (2020).

Table 1. Overview of assembly steps coded for both assem-
blies and the amount of subjects coded per rater.

Assembly steps

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Rater 1 x x x N¼ 24
Rater 2 x x x n¼ 4

‘X’ indicates that a step was coded by a rater.
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5.2. Measures

As the experiment now serves for validation of the
codes, we first checked whether the manipulation of
the experiment was successful in inducing MWL and

excluding confounders by including subjective meas-
ures and a test. The same measures and their theoret-
ical background were used as in earlier work (see Van
Acker et al. 2020, for more information). All items
deployed a 7-point Likert-scale.

Table 2. Final behavioural video coding scheme.
Category, Code (Unit) Definition Empirical referents Example

I. Selecting Behaviour
1. Parts collection (state event) Time needed to select all perceived

correct parts.
Execution time (Richardson et al.

2006; Stork and Schub€o 2010)
and reaction time (Young
et al. 2015)

The operator wants to select the
required two parts, but under
higher MWL levels touches five
parts and rotates them several
times before a decision is made on
which the correct parts are. In total,
the selection of both parts hence
lasted longer.

2. Part touched (point event) Number of new parts touched. Making errors (Richardson et al.
2006; Stork and Schub€o 2010),
amount of sub-steps needed
(Stork and Schub€o 2010)

3. Part rotation (point event) Number of times operator is
manipulating a part (here rotating,
from velocity is 0 to velocity is 0).

Making errors (Richardson et al.
2006; Stork and Schub€o 2010),
amount of sub-steps needed
(Stork and Schub€o 2010)

II. Positioning Behaviour
4. Positioning (state event) Time to select perceived right position.

Includes rotation and alignment.
Execution time (Richardson et al.

2006; Stork and Schub€o 2010)
and reaction time (Young
et al. 2015)

When then positioning the two
parts, the operator, still under
higher MWL levels, makes a few
redundant positioning attempts,
needs more time to verify whether
a fixed position is then indeed
correct and takes a while to correct
a wrong perceived fixed position.
Altogether, positioning the two
parts lasted longer as would
be expected.

5. Positioning attempt (point event) Number of positions tried (defined by
velocity ¼ 0, part touches
assembly-in-progress or is being
held above, below or aside from it)
on assembly-in-progress.

Making errors (Richardson et al.
2006; Stork and Schub€o 2010),
amount of sub-steps needed
(Stork and Schub€o 2010)

6. Verification of fixed position
(state event)

Time needed for operator to verify if a
position (i.e. orientation, alignment,
position) is correct after a
component has been fastened, for
at least 2 seconds.

Dwell time on assembly (Stork and
Schub€o 2010)

7. Correction of perceived wrong
position (state event)

Time operator needs to correct a (set
of) perceived wrong fastening(s)
and perform a perceived correction,
for at least 2 seconds.

Error corrections in behavioural
entropy (Boer 2000)

III. Transition Behaviour
8. Inspection of assembly-in-

progress (state event)
Time operator needs to familiarise

with or verify the assembly-in-
progress including touching and
rotating assembly-in-progress, for at
least 2 seconds, in between visual
intake of instructions and onset
‘Parts collection’ or ‘Correction of
perceived wrong position’.

Dwell time on assembly (Stork and
Schub€o 2010)

When proceeding to the next step,
the operator first inspects the
assembly-in-progress. Under
higher MWL levels, this
lasts longer.

IV. Generic Behaviour
9. Freeze (state event) Number of times both operator’s

hands and arms stop moving or
only move very minimally (the
latter not as a function of selection
or positioning), at a fixed place in
the workspace for at
least 2 seconds.

Hand movement parameters (Stork
and Schub€o 2010), writing velocity
(Chen et al. 2016), startled response
in behavioural entropy (Boer 2000),
contemplation-style pauses in
computer mouse behaviour
(Arshad, Wang, and Chen 2013)
and dwell time on assembly (Stork
and Schub€o 2010)

During the entire assembly process,
apart from the assembly stages, the
operator also freezes more often,
has several occasions of needing to
redirect the eye gaze and more
often inspects the assembly (parts)
from closer by – all when under
higher MWL levels.Modifier 1 Head freezes too, eyes move

Modifier 2 Not accompanied by freeze of head
and eyes

Modifier 3 Both eyes and head freeze too
10. Gaze redirection (point event) Number of times operator gazes away

from worktable for at least 2s.
Behavioural entropy (Boer 2000)

11. Relative head position change
(point event)

Number of times operator’s head is
repositioned closer to or further
away from parts or assembly-in-
progress, because of the operator
moving the upper body or
oppositely, the parts or assembly-
in-progress.

Task-unrelated body posture
(coming closer, moving less) (Qiu
and Helbig 2012)
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5.2.1. Manipulation check
As a manipulation check, perceived task Complexity
was measured with a single item (‘I perceived this
assembly to be difficult.’) and subjective Mental
Workload (MWL) was gauged by the average of the
scores on three items derived from cognitive load the-
ory (Paas 1992; Paas, van Merri€enboer, and Adam
1994), the Subjective Workload Assessment Technique
(SWAT; Reid and Nygren 1988) and the NASA-TLX
(Hart and Staveland 1988) (e.g. ‘I experienced this
assembly as cognitively demanding’; alow complexity ¼
.90, ahigh complexity ¼ .91).

Since we aimed to induce (impending) mental over-
load, we also measured emotional load (EL), as it can
provide an indirect measure (Van Acker et al. 2018).
Emotional Load consisted of five items selected from
the Dundee Stress State Questionnaire (DSSQ;
Matthews et al. 2013; Matthews 2016) (e.g. ‘I felt frus-
trated while performing this assembly.’; alow complexity

¼ .77, ahigh complexity ¼ .83) measuring the negative
emotions frustration and irritation, whether partici-
pants felt tense during the assembly, and appraisals
covering whether they felt they could cope with the
situation and to what extent they felt uncertain.

5.2.2. Measures of confounding variables
As we only aimed to measure (impending) overload,
we wanted to minimise effects of other possible con-
founding variables. Therefore, we first measured per-
ceived Physical Load (PHL) with one item (‘I perceived
this assembly to be physically demanding’) as it can
interact with mental and emotional load, hence con-
founding the duration of our behavioural codes (i.e.
higher PHL inducing longer code durations because of
physical fatigue). Additionally, two variables Mind
Wandering and Fed Up consisting of one item each
(also derived from the DSSQ, Matthews et al. 2013;
Matthews 2016) checked for task engagement by ask-
ing whether the participant’s mind started wandering
and to what extent the participant was fed up with
the assembly. We included these questions to check
whether the coded behaviour could be caused by a
lack of engagement into the assembly task (e.g. freez-
ing longer because of mind wandering or more parts
touched because of being fed up with the task).

Finally, two idiosyncratic control variables were
included for which we reasoned they could correlate
with our codes. First, we measured the self-reported
Dexterity with one item (‘In general, how dextrous do
you estimate yourself to be - apart from how you
experienced these assembly tasks’), again on a 7-point
Likert answer scale (from 1, very clumsy, to 7, very

dextrous). Second, participant’s visual-spatial intelli-
gence was gauged with a subset of the Revised
Minnesota Paper Form Board test (Stinissen 1977) sub-
sequent to both experimental conditions and a resting
phase of five minutes. We did so, since this intelli-
gence factor can largely affect interpersonal differen-
ces in assembly performance.

5.2.3. Video coding procedures
As proposed by Hallgren (2012; see also Neuendorf
2002), after calculation of the inter-rater reliability (see
above), the primary rater continued to analyse the
remainder of the dataset in BORIS using the final cod-
ing scheme and following the same coding proce-
dures (for a similar approach, see Baranek et al. 2005).
The secondary rater thus only served for reliability. In
total, 24 videos were coded by this rater2, i.e. the four
videos already coded for the IRR assessment and 20
remaining videos. These 24 coded videos were used
for the analysis. Note that the first, third and fifth step
were selected to code. Below, we refer to these steps
as Step 1, Step 2 and Step 3, respectively.

From BORIS, we subsequently extracted the occur-
rence and duration of the codes per step. As duration
and occurrence was sometimes important per code,
while for other codes only occurrence was relevant,
we hence did not have 22 dependent variables in
total, but 19. All codes measured through duration
were quantified in seconds. All codes measured
through occurrence were quantified as the number of
times the coder had coded the behaviour (e.g. ‘Parts
collection’ sometimes occurred multiple times within a
step, because the participant returned to a ‘Parts col-
lection’ phase after starting ‘Positioning’).

5.3. Results

All subjective measures lacked normality of data. We
therefore ran non-parametric tests. The results are
reported in Figure 4.

5.3.1. Manipulation check
A Wilcoxon Signed Rank Test on perceived assembly
difficulty showed that the high complexity condition
was indeed perceived as more difficult (Mhigh complexity

¼ 4.84, SD¼ 1.56, range: 1-7; Mlow complexity ¼ 1.56, SD
¼ .92, range: 1–5; N¼ 25), z ¼ �3.99., p< .001 (two-
tailed), with a large effect size of r ¼ .56 (i.e. r¼ z/
�(NxþNy), Rosenthal 1994). A Wilcoxon Signed Rank
Test showed that MWL was perceived as higher in the
high complexity condition with a rather neutral score
(Mhigh complexity ¼ 4.39, SD¼ 1.58, range: 1-7; Mlow
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complexity ¼ 2.10, SD¼ 1.12, range: 1.00–5.33; N¼ 25), z
¼ �3.79, p< .001 (two-tailed) and with a large effect
size of r ¼ .54. The complexity manipulation was
hence effective.

For EL, a Wilcoxon Signed Rank Test revealed that
EL was significantly higher in the high complexity con-
dition (Mhigh complexity ¼ 3.72, SD¼ 1.21, range:
1.60–6.00; Mlow complexity ¼ 2.16, SD¼ 1.04, range:
1.00–4.80; N¼ 25), z ¼ �3.71, p< .001 (two-tailed),
with a large effect size of r ¼ .53.

5.3.2. Confounding variables
Physical Load (PHL) showed to be higher in the high
complexity condition (Mhigh complexity ¼ 1.72, SD¼ 1.06,
range: 1–5; Mlow complexity ¼ 1.16, SD ¼ .55, range: 1–3;
N¼ 25), z ¼ �2.38, p ¼ .018 (two-tailed), with a
medium effect size of r ¼ .34, but was still low.

Being Fed Up with the assembly was higher for the
low complexity condition, expressed in a neutral score
as compared to a low score for the high complexity
condition (Mhigh complexity ¼ 2.40, SD¼ 1.32, range: 1-5;
Mlow complexity ¼ 4.00, SD¼ 1.89, range: 1–6; N¼ 25), z
¼ �2.73, p ¼ .006 (two-tailed), with a medium effect
size of r ¼ .39. Mind Wandering was rated higher for
the low complexity condition as well, expressed in a
neutral score, as compared to a low score for the high
complexity condition (Mhigh complexity ¼ 2.44, SD¼ 1.53,
range: 1–6, N¼ 25; Mlow complexity ¼ 4.08, SD¼ 1.91,

range: 1–7, N¼ 24), z ¼ �2.61, p ¼ .009 (two-tailed),
with a medium effect size of r ¼ .37 (Figure 5).

Summarised, our manipulation succeeded in induc-
ing two different levels of MWL, though during the
high MWL condition levels still remained rather neu-
tral. EL also differed, but the high complexity condi-
tion neither yielded high EL, hence not potentially
indicating mental overload. We hoped being fed up
and mind wandering to be low, but they panned out
closer to average. These negative indications of task
engagement differed per condition too, potentially
confounding our behavioural coding data towards not
finding differences between conditions (i.e. possible

Figure 4. Screenshot of the coding scheme (left side of the screen, see ‘Ethogram’) deployed in BORIS, on a participant video
(centre) (orange circle displays the eye gaze), resulting in a sequence of behaviours coded throughout the video (right side of the
screen, see ‘Events for …’).
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Figure 5. Overview of the means (with 95% CI) of all subject-
ive ratings used for the manipulation check and possible con-
founding variables, �p < .05, ��p < .01, ���p < .001. Note.
MWL: mental workload; EL: emotional load; PHL: physical load;
‘Complexity’ refers to the experimental conditions.

ERGONOMICS 87



negative confounding because of slower and ineffect-
ive assembly behaviour in the low complexity condi-
tion). Finally, physical load unexpectedly differed per
condition, although it remained low to non-existent
for both conditions (i.e. very close to the lower
extreme of the scale). For the latter reason, we do not
expect physical load to confound the occurrence and
duration of our codes.

5.3.3. Behavioural coding
Contrary to our subjective measures where the unit of
analysis was our participants, in our behavioural cod-
ing analysis, we used a flattened, nested dataset con-
sisting of n¼ 144 coded observations across 24
participants3, that is, a dataset of all occurrences and
durations per code (i.e. the 19 columns for the
dependent variables) for; the coded steps (i.e. 3), per
condition (i.e. 2), per participant (i.e. 24)—making 144
rows of observations (i.e. 3� 2 � 24¼ 144).

As discussed by Snijders and Bosker (1999)
approaches such as analysis of variance or general lin-
ear modelling assumes that no relationship exists
between the individual observations in the sample. In
our study, this is clearly not the case because multiple
observations come from the same participant. As a
result of this, there can be an assumption that the
individual will impact our various outcome variables.
We therefore used multilevel modelling (also called
mixed effects or random-effects models) to test for
the effects of the different codes, with the individual
participant being the grouping variable. As discussed
by Maas and Hox (2005), our sample size is sufficiently
large to perform a multilevel model. We used the
Ime4 (1.0–5) R Package (Bates et al. 2019).

We first report a null model (I) including no varia-
bles, to show differences with the subsequent models,
being a model (II) with only the control variables (i.e.
spatial intelligence and dexterity), a model (III) with

only the independent variables, a model (IV) with the
independent variables and their interactions and a
final full model (V) including all these variables. Per
model, we report the total explained variance with an
R2 estimate. Because of the large amount of depend-
ent variables, we included all respective tables in
Appendices. Note that Step 1, Step 2 and Step 3
referred to below are steps selected from the seven
assembly steps and therefore represent, respectively,
steps 1, 3 and 5 of both assemblies (see Table 1).

5.3.3.1. Selecting behaviour. For the full model (V),
the code ‘Parts collection’ was found to indeed occur
more (p< .001) and longer (p< .001) during the high
complexity Condition, as compared to the low complex-
ity Condition. This full model explained a total variance
of 31% (of which 24% by the independent variables).

This behaviour also occurred more (p< .01) and
longer (p< .001) during the first step, as compared to
the second step. Step 2 (as compared to Step 1) inter-
acted with Condition for the number of occurrences
(p< .01) and duration (p< .05), so that during Step 1
this code was even more prevalent and took even
longer during the high complexity Condition.
Additionally, there was an interaction between Step 3
(as compared to Step 1) and Condition (p< .01) for
the duration of this code in the same direction (see
Figure 6). This full model explained a total variance of
48% (of which 43% by the independent variables).

‘Part touched’ did not differ per Condition. Again,
the behaviour occurred more during the Step 1, as
compared to Step 2 (p< .001), and Step 3 (p <.001)
(see Figure 7). Dexterity interestingly, was positively
related to this code too (p< .05), although its
explained variance was low (R2model II ¼ .03, R2model III

¼ .24, R2model V ¼ .25).
‘Part rotation’ occurred more under high complexity

levels, p< .05, and again more during Step 1, as

Figure 6. Occurrence and duration of ‘Parts collection’, expressed in z-scores.
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compared to Step 2, p< .001, and Step 3, p< .001
(R2model III ¼ .31, R2model V ¼ .31) (see Figure 8).

5.3.3.2. Positioning behaviour. ‘Positioning’ too, was
more prevalent during the high complexity Condition,
p< .001. An interaction effect between Condition and
Step 2, p< .05, showed that the code occurred signifi-
cantly more during Step 2 during the low complexity
Condition as compared to Step 1 (R2model III ¼ .23,
R2model V ¼ .27).

The duration of ‘Positioning’ also took longer during
the high complexity Condition (p< .001) and, remarkably,
during Step 3, as compared to Step 1 (p< .001). An inter-
action effect showed the behaviour took longer during
Step 3 (compared to Step 1) under high complexity levels,
p< .01 (R2model III ¼ .48, R2model V ¼ .54) (see Figure 9).

‘Positioning Attempt’ was observed more under high
complexity levels, p< .001, and for Step 1 as compared
to Step 2, p< .05 (R2model III ¼ .30, R2model V ¼ .32)
(see Figure 10).

‘Verification of fixed position’ did not depend on
Condition, but did occur more during the first step as com-
pared to Step 3, p< .01 (R2model III¼ .22, R2model V ¼ .24).

The duration of this code did not depend on
Condition. Again, the code lasted longer during Step 1
when compared to Step 3, p< .05 (R2model III ¼ .27,
R2model V ¼ .30) (see Figure 11).

The amount of occurrences of ‘Correction of per-
ceived wrong position’ was not observed differently per
Condition, but it did occur more during Step 2 as com-
pared to Step 1, p< .001, and showed an interaction
effect, p< .001, showing that the code occurred more
often during Step 2 under high complexity levels when
compared to Step 1 (R2model III ¼ .18, R2model V ¼ .27).

Nor did the duration of this behaviour show to depend
on Condition. The duration was however longer during
Step 2 (p< .01) and Step 3 (p< .01), both as compared to
Step 1. An interaction effect additionally showed that the
code lasted longer during Step 2 (p< .05) when compared
to Step 1, during the high complexity Condition (see
Figure 12). Finally, also Dexterity positively affected this
code, p< .05 (R2model III¼ .21, R2model V ¼ .24).

5.3.3.3. Transition behaviour. For ‘Inspection of
assembly-in-progress’ we only compared Step 2 with
Step 3, because during Step 1 no assembly-in-progress
was yet present. This behaviour occurred more during

Figure 7. Occurrence of ‘Part touched’, expressed in z-scores. Figure 8. Occurrence of ‘Part rotation’, expressed in z-scores.

Figure 9. Occurrence and duration of ‘Positioning’, expressed in z-scores.
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the onset of Step 3 as compared to Step 2, p< .01,
but was independent of Condition. An interaction
effect however revealed that this behaviour occurred
more during Step 3 under high complexity levels as
compared to Step 2 (see Figure 13). Dexterity was also
positively related to this behaviour, p< .05, but only
added little variance (R2model III ¼ .07, R2model IV ¼ .17,

R2model V ¼ .20). For the duration of this code, no
effects were found (R2model III ¼ .6, R2model IV ¼ .11,
R2model V ¼ .20).

5.3.3.4. Generic behaviour. ‘Freeze - Modifier 10 did
not depend on Condition (R2model III ¼ .16, R2model V ¼
.19) after adding the interactions in model III. Its dur-
ation was independent of Condition, as well after add-
ing the additional variables in model III. During Step 3
(p< .05) in general, this behaviour however lasted lon-
ger, as compared to Step 1 (R2model III ¼ .16, R2model V

¼ .20). Additionally, an interaction effect, p< .05,
revealed that this behaviour lasted longer during Step
3 under high complexity levels, when compared to
Step 1 (see Figure 14).

‘Freeze - Modifier 20 occurred more during the high
complexity Condition (p< .05) (R2model III ¼ .17, R2model

V ¼ .17). The effect of Condition on its duration disap-
peared after adding the interactions in Model III
(R2model III ¼ .10, R2model V ¼ .10) (see Figure 15).
‘Freeze - Modifier 30 was only observed once, so that
no analyses could be run.

Figure 10. Occurrence of ‘Positioning attempt’, expressed in
z-scores.

Figure 11. Occurrence and duration of ‘Verification of a position’, expressed in z-scores.

Figure 12. Occurrence and duration of ‘Correction of a wrong position’, expressed in z-scores.
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‘Gaze redirection’ did not depend on Condition, nor
the Steps (see Figure 16). Only Dexterity showed a
positive correlation (p < .05). The total explained vari-
ance of the full model (V) was nevertheless low
(R2model V ¼ .06).

Finally, also ‘Relative head position change’ did not
differ per Condition (see Figure 17). The total
explained variance of the full model (V) for this code

was also low, only explaining 5% the total variance (of

which 4% by the IV’s).

6. Discussion

The current work focussed on the ‘Employee Work
Behaviour’-level as presented in the conceptual MWL-
framework of Van Acker and colleagues (2018),

Figure 13. Occurrence and duration of ‘Inspection of the assembly-in-progress’, expressed in z-scores.

Figure 14. Occurrence and duration of ‘Freeze (Modifier 1)’, expressed in z-scores.

Figure 15. Occurrence and duration of ‘Freeze (Modifier 2)’, expressed in z-scores.
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thereby focussing on the underrepresented behav-
ioural component of MWL. Iterative processes of
deductive and inductive development were finalised
into a behavioural video coding scheme defining 11
observable indicators of behaviours potentially reveal-
ing upper red zone MWL in assembly. An experiment
was deployed to validate these codes, i.e. to answer
the question whether these codes indeed measure
what they should measure.

Multilevel analyses showed that only the occur-
rence and duration of the codes ‘Parts collection’ and
‘Positioning’, and the occurrence of ‘Part rotation’,
‘Positioning attempt’ and ‘Freeze (Modifier 2)’ statistic-
ally significantly differed between conditions - thereby
partly confirming our hypothesis. The behaviours not
differing significantly, were; ‘Part touched’, ‘Verification
of a fixed position’, ‘Correction of a wrong position’,
‘Inspection of the assembly-in-progress’, ‘Freeze
(Modifier 1)’, ‘Gaze redirection’ and ‘Relative head pos-
ition change’. Based on this first presented work, five
behavioural codes (out of eleven) can thus be with-
held as indicative of upper red zone MWL in assembly.

In other words, these results suggest that upper
red zone MWL can be observed as expressed during a
complex assembly task in specific behavioural manifes-
tations such as slower and/or more (1) collecting, (2)
positioning, (3) rotating and (4) positioning attempts
of/with assembly parts, and (5) freezing of the hands
and arms.

The six non-significant codes that could not be
indicative of MWL, in this context, could use more
scrutiny or might reflect that behavioural expression
of upper red zone MWL is partly idiosyncratic and
might differ substantially between human beings.
Indeed, some people might express different behav-
iours indicating fluctuations in MWL than others, so
that for some certain behaviours might be very indica-
tive, while other behaviours would not, or very rarely,
occur at all. Also, it might be that upper red zone
MWL elicits in some people rather covert human reac-
tions (e.g. emotional, cognitive rumination) than the
overt behaviours we aimed to observe. Below, we
refer to some exploratory suggestions on personality
traits in this respect. Next, the participant sample size
might not have been sufficient to find all effects
expected in this more real-life experiment. In line with
this, it might also have been the case that the desired
effects were not present as strongly as expected. As
we show and elaborate upon below, most participants
only experienced moderate levels of MWL. Under
higher levels of MWL also some of the now non-
significant behaviours might therefore become indica-
tive of MWL as well. Inadequate task manipulation
and raters’ lack of familiarity with behavioural coding
or judgmental bias as potential explanations for our
non-significant findings can be excluded as we
checked our experimental task manipulation and the
raters involved were experienced senior researchers,
well instructed and trained.

Interestingly, we did see that some main effects of
Step might allude to some codes rather revealing
accumulated cognitive fatigue towards the third step
(Step 2 in the analyses) and the fifth step (Step 3 in
the analyses) out of the seven in total (for a possible
example of such fatigue effects in pupillometry, see
Van Acker et al. 2020; also see Hockey 1997), whereas
for other codes main effects could point to a more
stressful, startled response-like effect at the onset of
the assembly. The interaction effects of certain steps
could nevertheless point in the same direction of our
hypothesis, in that some codes occurred more and
longer during the high complexity condition, but only
for certain steps. Overall, main effects of Steps, the
interaction effects found in the full models and the

Figure 16. Occurrence of ‘Gaze redirection’, expressed in
z-scores.

Figure 17. Occurrence of ‘Relative head position change’,
expressed in z-scores.
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main effects of Condition disappearing after the inter-
action effects were included (in model III, cf., Freeze –
Modifier 1) suggest that the complexity manipulation
was not equally strong per step. The steps thus also
varied in the MWL they induced. This is intelligible,
since manipulating complexity in a real-world assem-
bly with consecutive steps entails this challenge (also
see Van Acker et al. 2020). Altogether, all codes might
also have been underestimated because of negative
confounding due to the low complexity condition
yielding moderate levels of task engagement (as com-
pared to significantly higher task engagement levels
during the high complexity condition).

Of our control variables we found that spatial intelli-
gence did not show any effect and dexterity only very
weakly (see the modest amounts of explained variance).
Exploratively, we were able to also measure three per-
sonality traits for which we thought they could relate to
our codes, this for a subsample of n¼ 17. We subject-
ively gauged ‘Impulsivity’, i.e. the tendency of acting
before thinking in work situations (based on two items
measuring ‘individual action propensity’ in Vera et al.
2014), and we gauged the Big Five personality traits
Neuroticism and Conscientiousness (each measured with
4 items out of a short form of a Big Five scale;
Donnellan et al. 2006). We found that only Impulsivity
was negatively correlated (p< .05) with the duration of
the code ‘Verification of a position’. Future work could
address these factors more profoundly.

In relation to previous work on mental overload as
outlined by, i.a., Young and colleagues (2014), the sub-
jective results showed that the observed behaviours
on average did not indicate overload as envisioned in
Figure 2, because both MWL and EL remained neutral
(note that, however, different measures do not always
correlate; Hancock and Matthews 2019; Gerald
Matthews et al., 2015). Here, we can at most speak of
potentially impending overload (i.e. AOI 1 in Figure 2).
Future work could explore whether overload could be
defined by specific behaviour, or by a long sequence
and/or duration of behavioural codes. For impending
overload, the code ‘Freeze’ could for example be differ-
entiated into ‘decelerating movement’ (i.e. automatised
motor execution behaviour, such as fetching, slowing
down) and ‘contemplation-style freeze’ (i.e. the freeze
reflects thinking, without negative affect; cf., potentially
our Freeze – Modifier 2). While overload per se could
be defined by a ‘startle-like freeze’ (i.e. a freeze associ-
ated with negative affect; cf., potentially our Freeze –
Modifier 1 or 3) (cf., freezing as a defensive musculo-
skeletal response to an abrupt stimulus, related to
negative affect in, Lang, Davis, and €Ohman 2000).

Differently, nine positioning attempts or a sequence of
long-lasting contemplation-style freezes could as well
indicate overload. This way, MWL-levels within the
upper red zone could be objectively defined as a func-
tion of performance - as called for in earlier work - and
could even help define, e.g. a ‘maximum permissible
cognitive load’ constraint for assembly work (Grier
et al. 2008; Hart and Wickens 2008).

In all, the proposed MWL measure thus showed to
be valid within this specific context to measure impend-
ing overload (and potentially mental fatigue and startle-
like responses) with five behavioural codes. Future work
could also explore effects of overload per se to cover
the full spectrum of upper red zone MWL and will
hereto need to address possible crucial moderating vari-
ables such as interpersonal differences in behavioural
expressions, personality, intelligence and experience.

6.1. Limitations

The operationalisation of some codes depended on
the participant’s eye-gaze for the annotation of their
onset and end, or to define them (e.g. redirecting eye
gaze). It should nevertheless be possible to redesign
eye gaze out of the coding scheme, as we tested this
with a sample dataset. Also using regular stationary
camera’s instead of the frontal camera of eye-tracking
glasses should be well feasible and could even provide
richer datasets since more behaviours are captured.

We decided not to focus on (impending) underload,
as the behaviour observed in our piloting iterations did
not show an adequate amount of code occurrences
such as sighing or gazing away, while such behaviours
can also indicate (impending) overload. Future work
could additionally explore this construct, underrepre-
sented in the literature (Young et al. 2015). We also
found that ‘Freeze’ showed low interrater-reliability for
two participants. Next, the fact that raters were not
blind to the conditions might have allowed for some
subjectivity. Future work could address this better.

Finally, the proposed coding scheme only applies for
our specific assembly context. We believe the designed
codes can however be customised. Future work can
hence explore the generalizability and external validity of
these codes when applied in other contexts and with
operators (instead of a with a student sample), finding
out that, e.g. for some contexts some codes will not be
indicative, will not occur, will have to be redefined or that
new codes arise. In the early iterations of the current cod-
ing scheme we for instance also included sighing as pre-
vious work linked such utterances to high MWL (see
Vlemincx, Van Diest, and Van Den Bergh 2012; Vlemincx
et al. 2011). Here, we found that our respective code was
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too unreliable to code manually. Other behaviours that
might apply more in other contexts could be; changing
the task execution sequence, re-consulting instructions,
verbal expressions such as cursing, ironic laughter, think-
ing out loud, asking for help, or non-verbal utterances as
shaking one’s head or fidgeting, and more elementary
motor execution such as hovering of the hands over
parts or a lower velocity of motor execution in general
(cf., Stork and Schub€o 2010). The authors therefore look
forward to iterations on our method in a diversified set of
contexts with a diverse sample of operator profiles, in
which the current codes will be customised and new
behavioural codes could arise. This future work will even-
tually show to what extent the presented codes are gen-
eric already and easily customisable.

6.2. Implications for research and practice

Our results are well in line with earlier work assessing,
for example, computer mouse activity and behavioural
entropy. By designing a behavioural coding scheme
for MWL detection in manual assembly, we hope to
inspire research further developing the method into a
measurement system applicable in (real-life industrial)
contexts requiring unobtrusiveness, ease-of-use and a
straightforward way to map MWL fluctuations directly
onto redundant or even dangerous behaviour. A
method with such ecological, external and face valid-
ity could hence be of added value to practitioners
analysing and (re)designing assemblies, instructions,
assistive technology and training methods (cf., Error
Management Training; Keith and Frese 2008). This
might also be relevant for situations in which the con-
sequences of hesitative behaviour can be detrimental
(cf., the petrochemical industry, surgery).

Concurrent and incremental validity of the proposed
behavioural coding method of and beyond other in lit-
erature proposed MWL measures (i.e. physiological meas-
ures) is recommended as well. Research further
scrutinising physiological measures could also benefit
when triangulating by narrowing down to coded events,
so that the sensitivity of measures (cf., Matthews et al.
2015) could raise significantly. Also, the aim should be to
explore and extend the method’s ‘group-to-individual
generalizability’ (Fisher, Medaglia, and Jeronimus 2018).
That is, to investigate to what extent the method can be
used at the individual level (instead of at the group level
as validated here) and how to promote this further. An
experimental approach with many repeated measures
within the same subjects but over time (instead of cross-
sectional) will be needed for this (Fisher, Medaglia, and
Jeronimus 2018).

The practice of coding requires intensive training, is
very labour-intensive and is even prone to attentional
blindness (i.e. by focussing on certain behaviours, not
perceiving other behaviours). Future research could aim
to simplify codes, to make codes generic (cf., freezing) or
to develop behavioural recognition algorithms applied
on video images to automatically detect, e.g. freezes or
positioning attempts. Only then our method could reach
the level of widespread industrial applicability. Finally, as
Virtual Training Systems (implementing virtual environ-
ment, virtual reality or augmented reality) becomes
increasingly valuable (cf., Al-Ahmari et al. 2016; Langley
et al. 2016), a MWL-measure for such environments
could be developed by deriving, e.g. freezes or position-
ing attempts from the gyroscope data of the controllers.

7. Conclusion

The presented work endeavoured to develop a non-
obtrusive MWL-measure with high ecological and face
validity, as current research on physiological measure-
ment faces reliability challenges in applied settings. A
behavioural video coding scheme was developed and
revealed to be able to detect multiple assembly
behaviours indicative of upper red zone MWL. That is,
the occurrence and duration of the behavioural codes
‘Parts collection’ and ‘Positioning’, and the occurrence
of ‘Part rotation’, ‘Positioning attempt’ and ‘Freeze -
Modifier 20 was significantly higher during the execu-
tion of a high complexity assembly, as compared to a
low complexity assembly. The authors aspire to hereby
initiate a novel line of measurement validation to
decisively help practitioners and operators optimise
MWL-levels on the shop floor.
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3. Because we did not have the spatial intelligence data
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participants to assure complete comparability.
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Appendices

Appendix A. Overview of coding instructions
Category, Code (Unit) Definition Coding instructions

I. Selecting Behaviour
1. Parts collection (state event) Time needed to select all the perceived

correct parts.
From first glance on parts, for at least 2 s, until onset

positioning (starting at first glance for at least 2 s on
the assembly-in-progress).

2. Part touched (point event) Number of new parts that are touched. Code until onset positioning. Nested in
‘Parts collection’.

3. Part rotation (point event) Number of times the operator is manipulating a
part (here rotating, from velocity is 0 to
velocity is 0).

Also rotating part back to original position counts as
rotation. Code until onset positioning. Nested in
‘Parts collection’.

II. Positioning Behaviour
4. Positioning (state event) Time to select perceived right position. Includes

rotation and alignment.
From eye gaze switch from selected part (defined as part

that will be positioned) to assembly-in-progress
fixating on assembly-in-progress for at least 2s, until
onset first screw being inserted or eye-gaze at not-yet
selected parts in case a new ‘Parts collection’ occurs.

5. Positioning attempt (point event) Number of positions tried (defined by velocity ¼
0, part touches assembly-in-progress or is
being held above, below or aside from it) on
assembly-in-progress.

Positions already tried count as a new attempt if part has
been moved from position. Parts selected in previous
steps count as well. Code until the perceived right
position (defined by the final position that precedes
completely screwing a part) is achieved of the part on
the assembly-in-progress. Nested in ‘Positioning’.

6. Verification of fixed position
(state event)

Time needed for the operator to verify if a
position (i.e. orientation, alignment, position)
is correct after a component has been
fastened, for at least 2 s.

From finishing screwing (one of the screws of a part)
until the next assembly behaviour, such as inserting
the next screw, or until eye-gaze for at least 2 s on
next part to be collected or positioned, until onset
next step (here from onset turning around towards
laptop with instructions), until checking steadiness of
fastening, etc. Not nested in ‘Positioning’.

7. Correction of perceived wrong
position (state event)

Time the operator needs to correct a (set of)
perceived wrong fastening(s) and perform a
perceived correction, for at least 2 s.

From onset completely unfastening the perceived
wrong fixation(s) until onset of screwing the last
component of a perceived correction, for at least 2s.
Not nested in ‘Positioning.’

III. Transition Behaviour
8. Inspection of assembly-in-progress

(state event)
Time the operator needs to familiarise with or

verify the assembly-in-progress including
touching and rotating assembly-in-progress,
for at least 2 s, in between visual intake of
instructions and onset ‘Parts collection’ or
‘Correction of perceived wrong position’.

Can only occur after a first step has been performed,
since from then on an assembly-in-progress is
present. Code from start gaze position on assembly-
in-progress for at least 2 s, until start
‘Parts collection’.

IV. Generic Behaviour
9. Freeze (state event) Number of times both operator’s hands and

arms stop moving or only move very
minimally (the latter not as a function of
selection or positioning), at a fixed place in
the work space for at least 2 s.

From start movement stops (minimally) until
onset movement.

Modifier 1 Head freezes, eyes move
Modifier 2 No freeze of eyes and head
Modifier 3 Both eyes and head freeze too

10. Gaze redirection (point event) Number of times operator gazes away from
work table for at least 2s.

Code until switching back to eye-gaze on work table
for at least 2 s.

11. Relative head position change
(point event)

Number of times operator’s head is repositioned
closer to or further away from parts or
assembly-in-progress, because of the operator
moving the upper body or oppositely, the
parts or assembly-in-progress.

Moving back from coded position does not count as
new code (e.g. moving closer to the parts or
assembly-in-progress while moving back to original
position 10s later on, counts as one point event).
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Appendix B. Overview of attention points
Category, Code (Unit) Attention points

I. Selecting Behaviour
1. Parts collection (state event) 1. Can also alternate with ‘Positioning’, in case of ‘Positioning’ already started but participant

gazes back at parts not yet touched (i.e., parts still on display at outer side of work table).
In this case code from first glance on parts until first next glance on assembly-in-progress
for at least 2s. ‘Parts collection’ can hence also only include visual scanning.

2. Part touched (point event) 1. The assembly-in-progress does not count as a part, except during the first step in which
there is no assembly-in-progress yet.

2. Parts already touched hence do not count.
3. Can also occur during ‘Positioning’ or ‘Fastening’.

3. Part rotation (point event) 1. Exceptions: rotating assembly-in-progress (this is included in Positioning).
II. Positioning Behaviour

4. Positioning (state event) 1. Can alternate with ‘Parts collection’ (reminder: if eye-gaze fixates on assembly-in-progress
or at not-yet selected parts for at least 2 s).

2. In case operator positions two parts at once: code stops at inserting first screw of first part
and next ‘Positioning’ code starts from switch of gaze on second part to at least 2 s on
assembly-in-progress and stops at inserting first screw of the second part.

3. For the first step of the assembly, the assembly-in-progress is defined as the part on
which the other two parts are being positioned on.

4. Can also occur with parts selected in previous steps.

5. Positioning attempt (point event) /

6. Verification of fixed position (state event) 1. Includes twisting the component just screwed for alignment and orientation.
2. Checking screws and components for tightness does not count, even if component is

being twisted in function of this check-up.
3. Includes visually checking the component in relation to the other components (already

fastened).
4. Visually checking other components on the assembly-in-progress for at least 2s without

gazing back at original component counts as ‘Positioning’ instead.
5. Manipulating other components after the respective component has been screwed does

not count, but instead counts as a new ‘Positioning’ code.

7. Correction of perceived wrong position (state event) 1. Can also occur at the onset of a step, with parts assembled in previous steps.
2. Can alternate with ‘Parts collection’ and ‘Positioning’ (of newly selected parts). In case

component is put aside to complete later on, code should be stopped at point of putting
aside and starts again when picking up this component.

III. Transition Behaviour
8. Inspection of assembly-in-progress (state event) /
IV. Generic Behaviour
9. Freeze (state event) /
Modifier 1 /
Modifier 2 /
Modifier 3 /

10. Gaze redirection (point event) /
11. Relative head position change (point event) /

Appendix C. Overview of results per behavioural code
1. Parts collection – occurrence

I II III IV V

Spatial intelligence �0.018 �0.018
Dexterity 0.12 0.12
Condition �0.786��� �1.347��� �1.347���
Step 2 �0.206 �0.786�� �0.786��
Step 3 �0.187 �0.449 �0.449
Condition� Step 2 1.160�� 1.160��
Condition� Step 3 0.524 0.524
Constant 0 0 0.524�� 0.804��� 0.804���
Observations 144 144 144 144 144
R2 0.02 0.02 0.24 0.31 0.31

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

1. Parts collection – duration

I II III IV V

Spatial intelligence 0.014 0.014
Dexterity 0.101 0.101
Condition �0.908��� �1.465��� �1.465���
Step 2 �0.863��� �1.235��� �1.235���
Step 3 �1.099��� �1.562��� �1.562���
Condition� Step 2 0.745� 0.745�
Condition� Step 3 0.926�� 0.926��
Constant 0 0 1.108��� 1.386��� 1.386���
Observations 144 144 144 144 144
R2 0.00 0.01 0.43 0.47 0.48

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.
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3. Part rotation – occurrence

I II III IV V

Spatial intelligence 0.02 0.02
Dexterity 0.033 0.033
Condition �0.498��� �0.614� �0.614�
Step 2 �0.988��� �1.054��� �1.054���
Step 3 �1.094��� �1.201��� �1.201���
Condition� Step 2 0.133 0.133
Condition� Step 3 0.214 0.214
Constant 0 0 0.943��� 1.001��� 1.001���
Observations 144 144 144 144 144
R2 0.00 0.00 0.31 0.31 0.31

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

4. Positioning – occurrence

I II III IV V

Spatial intelligence 0.056 0.056
Dexterity 0.018 0.018
Condition �0.911��� �1.236��� �1.236���
Step 2 0.325 �0.13 �0.13
Step 3 0.228 0.195 0.195
Condition� Step 2 0.911� 0.911�
Condition� Step 3 0.065 0.065
Constant 0 0 0.271 0.434� 0.434�
Observations 144 144 144 144 144
R2 0.00 0.00 0.23 0.27 0.27

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

4. Positioning – duration

I II III IV V

Spatial intelligence �0.025 �0.025
Dexterity 0.038 0.038
Condition �1.348��� �1.114��� �1.114���
Step2 �0.009 �0.094 �0.094
Step3 0.286� 0.721��� 0.721���
Condition� Step 2 0.17 0.17
Condition� Step 3 �0.872�� �0.872��
Constant 0 0 0.582��� 0.465�� 0.465��
Observations 144 144 144 144 144
R2 0.00 0.00 0.48 0.55 0.54

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

5. Positioning attempt – occurrence

I II III IV V

Spatial intelligence 0.006 0.006
Dexterity 0.009 0.009
Condition �1.068��� �1.222��� �1.222���
Step 2 �0.267 �0.524� �0.524�
Step 3 �0.121 �0.096 �0.096
Condition� Step 2 0.512 0.512
Condition� Step 3 �0.051 �0.051
Constant 0 0 0.663��� 0.740��� 0.740���
Observations 144 144 144 144 144
R2 0.00 0.00 0.30 0.32 0.32

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

6. Verification of position – occurrence

I II III IV V

Spatial Intelligence �0.003 �0.003
Dexterity 0.003 0.003
Condition �0.149 �0.448� �0.448�
Step 2 0.168 �0.056 �0.056
Step 3 �0.560�� �0.784�� �0.784��
Condition� Step 2 0.448 0.448
Condition� Step 3 0.448 0.448
Constant 0 0 0.205 0.355 0.355
Observations 144 144 144 144 144
R2 0.09 0.09 0.22 0.24 0.24

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

2. Part touched – occurrence

I II III IV V

Spatial intelligence 0.123 0.123
Dexterity 0.160� 0.160�
Condition �0.308� �0.482 �0.482
Step 2 �0.793��� �0.944��� �0.944���
Step 3 �1.014��� �1.124��� �1.124���
Condition� Step 2 0.301 0.301
Condition� Step 3 0.221 0.221
Constant 0 0 0.756��� 0.843��� 0.843���
Observations 144 144 144 144 144
R2 0.00 0.03 0.24 0.25 0.25

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

6. Verification of position – duration

I II III IV V

Spatial Intelligence �0.045 �0.045
Dexterity 0.092 0.092
Condition �0.481�� �0.323 �0.323
Step 2 0.101 0.409 0.409
Step 3 �0.467� �0.538� �0.538�
Condition� Step 2 �0.616 �0.616
Condition� Step 3 0.141 0.141
Constant 0 0 0.363� 0.284 0.284
Observations 144 144 144 144 144
R2 0.12 0.11 0.27 0.30 0.30

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.
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7. Correction of wrong position – occurrence

I II III IV V

Spatial intelligence 0.057 0.057
Dexterity 0.053 0.053
Condition �0.678��� �0.062 �0.062
Step 2 0.586�� 1.233��� 1.233���
Step 3 0.216 0.493 0.493
Condition� Step 2 �1.295��� �1.295���
Condition� Step 3 �0.555 �0.555
Constant 0 0 0.072 �0.236 �0.236
Observations 144 144 144 144 144
R2 0.00 0.00 0.18 0.28 0.27

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

7. Correction of wrong position – duration

I II III IV V

Spatial intelligence 0.054 0.054
Dexterity 0.190� 0.190�
Condition �0.470�� 0.026 0.026
Step 2 0.359 0.763�� 0.763��
Step 3 0.398� 0.738�� 0.738��
Condition� Step 2 �0.808� �0.808�
Condition� Step 3 �0.680� �0.680�
Constant 0 0 �0.017 �0.265 �0.265
Observations 144 144 144 144 144
R2 0.10 0.08 0.21 0.25 0.24

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

8. Inspection of assembly-in-progress – occurrence

I II III IV V

Spatial intelligence �0.009 �0.009
Dexterity 0.113� 0.113�
Condition �0.188� 0.042 0.042
Step 3 0.104 0.333�� 0.333��
Condition� Step 3 �0.458�� �0.458��
Constant 0.281�� �0.068 0.323��� 0.208� �0.141
Observations 96 96 96 96 96
R2 0.00 0.08 0.07 0.17 0.20

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 2 were
used as reference categories.

8. Inspection of assembly-in-progress – duration

I II III IV V

Spatial intelligence �0.077 �0.077
Dexterity 0.878 0.878
Condition �1.851� �0.704 �0.704
Step 3 0.706 1.853 1.853
Condition� Step 3 �2.295 �2.295
Constant 1.917��� �0.665 2.489��� 1.916� �0.666
Observations 96 96 96 96 96
R2 0.00 0.06 0.06 0.08 0.14

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 2 were
used as reference categories.

9. Freeze (Modifier 1) – occurrence

I II III IV V

Spatial intelligence �0.099 �0.099
Dexterity 0.011 0.011
Condition �0.802��� �0.463 �0.463
Step 2 0.116 0.324 0.324
Step 3 0.069 0.37 0.37
Condition� Step 2 �0.417 �0.417
Condition� Step 3 �0.602 �0.602
Constant 0 0 0.339� 0.17 0.17
Observations 144 144 144 144 144
R2 0.00 0.01 0.16 0.18 0.19

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

9. Freeze (Modifier 1) – duration

I II III IV V

Spatial intelligence �0.034 �0.034
Dexterity 0.071 0.071
Condition �0.764��� �0.278 �0.278
Step 2 0.205 0.491 0.491�
Step 3 0.243 0.688� 0.688�
Condition� Step 2 �0.571 �0.571
Condition� Step 3 �0.889� �0.889�
Constant 0 0 0.233 �0.01 �0.01
Observations 144 144 144 144 144
R2 0.00 0.01 0.16 0.19 0.20

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

9.Freeze (Modifier 2) – occurrence

I II III IV V

Spatial intelligence 0.033 0.033
Dexterity �0.004 �0.004
Condition �0.673��� �0.561� �0.561�
Step 2 0.056 0.112 0.112
Step 3 0.112 0.224 0.224
Condition� Step 2 �0.112 �0.112
Condition� Step 3 �0.224 �0.224
Constant 0 0 0.280 0.224 0.224
Observations 144 144 144 144 144
R2 0.01 0.01 0.17 0.17 0.17

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.
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9. Freeze (Modifier 2) – duration

I II III IV V
Spatial intelligence �0.053 �0.053
Dexterity �0.012 �0.012
Condition �0.574��� �0.451 �0.451
Step 2 0.037 0.074 0.074
Step 3 0.147 0.294 0.294
Condition� Step 2 �0.074 �0.074
Condition� Step 3 �0.294 �0.294
Constant 0 0 0.226 0.164 0.164
Observations 144 144 144 144 144
R2 0.00 0.00 0.10 0.11 0.10

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

10. Gaze redirection – occurrence

I II III IV V
Spatial intelligence �0.024 �0.024
Dexterity 0.184� 0.184�
Condition �0.107 �0.322 �0.322
Step 2 0.081 �0.161 �0.161
Step 3 0.081 0 0
Condition� Step 2 0.484 0.484
Condition� Step 3 0.161 0.161
Constant 0 0 0 0.107 0.107
Observations 144 144 144 144 144
R2 0.07 0.04 0.07 0.09 0.06

The values in the table are standardized weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.

11. Relative head position change – occurrence

I II III IV V
Spatial intelligence �0.026 �0.026
Dexterity 0.018 0.018
Condition �0.316 �0.526 �0.526
Step 2 �0.053 �0.105 �0.105
Step 3 �0.263 �0.526 �0.526
Condition� Step 2 0.105 0.105
Condition� Step 3 0.526 0.526
Constant 0 0 0.263 0.368 0.368
Observations 144 144 144 144 144
R2 0.00 0.00 0.04 0.05 0.05

The values in the table are standardised weights (Beta’s).�p< .05; ��p< .01; ���p< .001.
N¼ 24.
Low spatial intelligence, low dexterity, high complexity and Step 1 were
used as reference categories.
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