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SUMMARY
Behavioral activities that require control over automatic routines typically feel effortful and result in cogni-
tive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cogni-
tive control, objectified by more impulsive decisions. However, the origins of such control cost inflation
with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would
relate to the necessity of recycling potentially toxic substances accumulated during cognitive control
exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain me-
tabolites throughout an approximate workday, during which two groups of participants performed either
high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-
related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation
during decision-making and a preference shift toward short-delay and little-effort options (a low-cost
bias captured using computational modeling). At the end of the day, high-demand cognitive work re-
sulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain
region (lateral prefrontal cortex [lPFC]), relative to low-demand cognitive work and to a reference brain
region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a
neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes
lPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous
workday.
INTRODUCTION

Even professional chess players start making mistakes, typi-

cally after 4–5 h in the game, which they would not make

when well rested. A consensual explanation of why chess play-

ing induces cognitive fatigue is that planning moves cannot rely

on learned effortless routines (except at the beginning of the

game) because the space of possibilities is way too large. Win-

ning the game, therefore, requires the capacity to monitor new

context-action mappings, a capacity that is known as cognitive

or executive control.1,2 In neuroscience, behavioral tasks have

been developed to vary the demand in cognitive control, by

imposing frequent remapping of stimulus-response associa-

tions based on contextual information, as in working memory

and task-switching paradigms. Using these paradigms, func-

tional neuroimaging studies have identified a lateral prefron-

tal-parietal system recruited when more cognitive control

must be engaged.3,4
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However, the reason why exerting cognitive control is ex-

hausting remains unclear.5 Explanations have been proposed

in the behavioral economics and social psychology literatures,

which have investigated a related notion of self-control or self-

regulation. This self-control capacity is notably involvedwhen re-

sisting an impulse (e.g., to eat tasty junk food or to scream with

pain) for the sake of long-term goals (e.g., to stay in good health

or to remain socially acceptable). Resource depletion theories6,7

have suggested that exerting such control may tap on global en-

ergetic supply (such as blood glucose). However, evidence in

favor of these theories has been reconsidered, such that empir-

ical ground is still lacking.8,9 In any case, these theories fail to

explain what is special with self-control and why other cognitive

processes such as vision would not induce (and suffer from)

global resource depletion. Moreover, a global resource depletion

account would contradict the well-shared idea that energy con-

sumption by the brain is constant and globally unaffected by

cognitive processing.10,11
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Noting the absence of biological grounds for fatigue related to

cognitive control, other authors have suggested functional ex-

planations. The general idea is that cognitive fatigue would be

a sensation generated by the brain, whose purpose is to stop

performing the current demanding task for the benefit of a

more rewarding activity.12–14 In that framework, fatigue would

stem from a cost-benefit calculation that adjusts the behavior

to enjoy available pleasures or avoid opportunity costs. An argu-

ment in favor of cognitive fatigue as a functional adaptation is

that increasing the payoff of the ongoing task tends to improve

performance, even in a state of exhaustion,15 suggesting that

there is no true loss of capacity. However, a difficulty with a

purely functional account is that fatigue appears unnecessary:

if there is a good reason to stop working on a task and turn to

a more gratifying activity, the brain could figure it out without

generating an illusion of fatigue. Also, it becomes implausible

to maintain that cognitive fatigue is just a functional adaptation

when considering the numerous pathological conditions, such

as burnout and depression, in which fatigue precisely prevents

the patient from enjoying life opportunities.16,17

To articulate the functional and biological accounts of cogni-

tive fatigue, we propose (1) that such fatigue stems from an in-

crease in the cost of exerting cognitive control, (2) which in

turn stems from metabolic alterations in the brain system under-

pinning cognitive control. Rather than performance decrement

with time-on-task, which can be confounded with boredom,

counteracted by training, or compensated by motivation,18 we

reasoned that cognitive fatigue might be better captured by eco-

nomic choices where monetary benefits are discounted by effort

or delay costs. A choice bias for low-cost (LC) options would

thus represent an objective marker of cognitive fatigue, even in

the absence of a conscious fatigue sensation that could be re-

ported on a psychometric scale. Indeed, subjective fatigue re-

ports are notoriously unreliable, due to limitation of insight, social

desirability bias, and variability in the mapping from sensations

to rating scales.19–23

In a previous study,24 we developed a daylong protocol mixing

cognitive control tasks meant to induce cognitive fatigue and in-

tertemporal choices to reveal cognitive fatigue. To avoid con-

founding cognitive control exertion with boredom or simply

time, we compared groups of participants performing easy and

hard versions of the same tasks for the same duration. Only

with hard versions did we observe an increase in the preference

for immediate rewards over larger later rewards. This increased

choice impulsivity after a day of hard work was associated with

decreased activity in a specific component of the cognitive con-

trol system: the left lateral prefrontal cortex (lPFC). The same

behavioral and neural signatures of cognitive fatigue were also

observed in endurance athletes suffering from a mild form of

burnout due to training overload.25 Previous results, therefore,

support our hypothesis that cognitive fatigue arises from an in-

crease in the cost of recruiting the cognitive control brain system.

However, these previous studies using functional MRI (fMRI)

could not address the question of why the cost of cognitive con-

trol increases when used for a prolonged duration. This study

aimed to fill this gap, using in-vivo 1H magnetic resonance spec-

troscopy (MRS) to quantify metabolites in neural tissues, while

participants followed a similar daylong protocol. It has been sug-

gested before that the cost could arise from the need to clear
waste products that would accumulate during cognitive control

exertion and would potentially be toxic for neural functions.26

Another possibility would be that the cost arises from the need

to restore some energetic resource or metabolic precursor

which, unlike blood glucose, would be specifically consumed

in cognitive control brain regions. The case of glutamate is

particularly interesting, as when released in high quantity, it

may be both missing inside the cell (for the neuron to maintain

its activity) and disturbing synaptic transmission (to other neu-

rons) outside the cell. Thus, glutamate may be considered a sub-

stance that could be either depleted or accumulated with neural

activity. To monitor metabolites of the glutamate family, we used

an optimized 1HMRS sequence.27,28 We then looked for a three-

way interaction between groups (easy versus hard cognitive

work), brain regions (lPFC versus visual cortex), and time on

task (session number).

In addition, we used diffusion-weighted 1H MRS29 to

monitor the diffusion of glutamate-related substances,30

because we anticipated that their concentration might remain

constant, even if the metabolic account for cognitive fatigue is

correct. The reason is that spectroscopic measures of meta-

bolic concentrations cannot distinguish between cell types

nor between cell compartments. A depletion inside the cell

could therefore be compensated by an accumulation outside

the cell. Diffusion measures are useful to detect this sort of

phenomenon because they are differentially sensitive to com-

partments, as diffusion is more limited inside cells or vesicles

than outside cells.31,32 The same three-way interaction be-

tween group, region, and session was therefore tested on

diffusion MRS data.

Finally, compared with our previous protocol, we added

behavioral tests and measures to better specify the link between

cognitive fatigue and the cost of cognitive control. In particular,

we included other domains of economic choice with options

that trade monetary rewards against costs that were either

related to cognitive control (effort discounting) or not (probability

discounting). Relatedly, we extended our computational model

of economic choice with additional bias parameters favoring

LC options in all domains. In addition, wemeasured pupil dilation

during decision-making as an index of cognitive effort invested in

deliberation, as we had no fMRI measurement to document the

reduction in cognitive control exertion. Last, to better dissociate

these choice-related markers of cognitive fatigue from experi-

enced fatigue sensation, we collected subjective self-reports

on a visual rating scale.

RESULTS

Behavioral measures of cognitive fatigue
To induce cognitive fatigue, participants followed a previously

validated experimental protocol24 (see Figure 1). For 6.25 h, par-

ticipants performed cognitive tasks (N-switch and N-back) that

require cognitive control. In both tasks, letters were displayed

on a computer screen every 1.60 s. In the N-switch task, partic-

ipants had to perform either a vowel versus consonant or an up-

per versus lower case discrimination task, depending on the co-

lor of the letter. The difficulty in this task depends on the rate of

switches (i.e., color changes), which was 1 versus 12 in 24 trials

for the easy versus hard versions. In the N-back task,
Current Biology 32, 3564–3575, August 22, 2022 3565



Figure 1. Experimental design

From top to bottom, the protocol is shownwith diminishing time resolution, fromsingle-trial to daylong experiment. In two training sessions (not shown) preceding the

testing day, participants learned to perform the cognitive tasks with a correct response rate higher than 90% and practiced the economic choices to reveal their

indifference points. During the main experiment, participants alternated between cognitive tasks and economic choices. One group of participants (n = 16) was

assigned the easy version and the other group (n = 24) the hard version of cognitive tasks. In every block, cognitive tasks included either 24N-switch trials (1 versus 12

switches in the easy versus hard condition) or 24 N-back trials (1 versus 3-back in the easy versus hard condition). The task to do was announced at the beginning of

the block and was changed once per session. Economic choices included one trial per cost domain (delay, probability, and physical and cognitive effort). In all

choices, the two optionswere a variable reward at a low cost versus 50V at a variable cost. Participants performed5 sessions (S1–S5) of 75blocks, for a total duration

of 6.25 h. Three of these sessions were performed in the scanner to simultaneously collect magnetic resonance spectroscopy (MRS) data.
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participants had to state whether the letter on-screen was iden-

tical or different from the letter presented in N trials before. The

difficulty in this task depends on the distance between trials

(i.e., the load of information to keep in working memory), which

was 1 versus 3 for the easy versus hard versions. Participants

were split into two groups: the test group (n = 24) performed

the hard version (12-switch and 3-back), whereas the control

group (n = 16) performed the easy version of cognitive tasks.

In our search for behavioral signatures of mental fatigue, we

started with traditional measures: performance decrement and

self-report. Both groups were trained on the day before and

maintained a high level of performance throughout the test day

(correct response rate >80%, see Figure 2A). A three-factor

(group 3 session 3 task) linear mixed model fit on performance

showed a significant difference between groups (b = 0.06,

p < 0.01) and a significant decrease with session number (b =

�0.01, p = 0.001), but no significant difference between tasks

(b = �0.009, p = 0.68) and no significant group-by-session
3566 Current Biology 32, 3564–3575, August 22, 2022
interaction (b = �0.002, p = 0.61). In log-transformed response

times (RTs), the same model showed a significant difference be-

tween groups (b = �0.11, p < 0.001), a significant difference be-

tween tasks (b = �0.14, p < 0.001), but no significant effect of

session (b = 0.001, p = 0.63) and no significant group-by-session

interaction (b = �0.004, p = 0.20). Thus, performance measures

confirmed that low-demand tasks were easier (with higher accu-

racy and shorter RT) than high-demand tasks but provided no

evidence for a fatigue effect (across sessions) that would differ

between groups.

In addition to objective performance, participants were also

asked to rate their subjective level of fatigue on a rating scale.

A two-factor (group 3 session) linear mixed model analysis

showed a significant increase with session number (b = 9.30,

p < 0.001) but no significant difference between groups

(b = �8.14, p = 0.19) and no significant interaction (b = �0.32,

p = 0.85). Thus, the subjective report could not capture a fatigue

that would specifically relate to task difficulty, hence to the load
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Figure 2. Behavioral results

(A) Behavioral measures of cognitive fatigue. Top

graphs: average correct response rate (left) in

cognitive tasks (pooling N-switch and N-back trials)

and subjective rating of experienced fatigue (right),

between 0 (‘‘I’m in top form’’) and 100 (‘‘I’m totally

exhausted’’), separately for the groups performing

easy and hard versions. Middle graphs: median

response time (RT) during N-switch and N-back

tasks (left) and median RT during economic choice

tasks except probability discounting (right). Bottom

graphs: average bias parameter in economic

choices (pooling all cost domains but probability)

across experimental sessions (left) and for the

different cost domains in the hard condition (right)

shown across experimental sessions. The bias

parameter is an additive bonus for the low-cost

(LC) option in the choice model. Bias data are

normalized to the grand mean in the first session.

See Figure S1 for model-free behavioral results and

Table S1 for results of the statistical analysis.

(B) Pupillary measures of cognitive fatigue. The left

graph shows estimates (beta weights) from a linear

regression model meant to explain pupil size, at

each time point within an economic choice trial.

The model included intercept, group, and session

as factors of interest and various factors of no inter-

est (including choice and response time, see STAR

Methods). Before linear regression, pupil record-

ings were preprocessed, aligned to choice onset

(i.e., option display), and baseline corrected (by

subtracting themean over the�500–0ms timewin-

dow). The vertical dashed line indicates the median

RT. The intercept shows the time course of pupil

dilation, irrespective of group and session. The

impact of cognitive fatigue corresponds to the dif-

ference in session effects between the easy and

hard conditions (stars indicate time points when

the difference is significant). For visual comparison

with the other behavioral results, the right graph

shows non-Z scored, but baseline corrected, pupil

size during the time window when the group differ-

ence was significant, per group and session

(normalized to the grand mean of the first session).

In all graphs, error bars indicate inter-participant

standard errors of the mean (SEM). The error bars

for subjective ratings of fatigue are plotted but are

too small to be visible in the graph. Stars on

brackets indicate significant group-by-session in-

teractions.
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on cognitive control. To assess other potential psychological

states that may have affected choices, we also asked partici-

pants to rate their level of hunger and stress. Hunger ratings

increased before lunch (sandwich and fruit eaten during the

10-min break) but trivially decreased afterward, whereas stress

ratings were stable throughout the day (Figure S1A). These re-

sults suggest that self-reported fatigue (like hunger and stress)

should be distinguished from the actual fatigue related to the

exertion of cognitive control.

To reveal cognitive fatigue associated with demand on

cognitive control, we turned to economic choices. Participants

made four choices after each 24-trial block of cognitive task tri-

als. Each choice opposed a small-reward/low-cost (LC) option

to a big-reward/high-cost (HC) option. The four choices
corresponded to the four possible cost domains: (1) delay in

reward delivery (bank transfer, as in previous protocol), (2)

cognitive effort (difficulty level of a 30-min block of N-switch

task to be performed after the experiment), (3) physical effort

(power of a 30-min cycling session on a home bike after the

experiment), and (4) probability of reward delivery (in a lottery

played after the experiment). Big rewards were always 50V,

and HCs were randomly varied across five predefined levels.

LCs were either zero or a close-to-zero fixed level (such as

3 days for delay discounting). Small rewards (associated with

LC options) were adjusted to individual indifference points, in

a calibration session before the experiment, such that each

participant started the protocol in the morning with a rate of

LC choices of around 50%.
Current Biology 32, 3564–3575, August 22, 2022 3567
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To analyze economic choices, we used a computational

modeling approach that was previously validated.23,25 Models

included a domain-specific discounting function (with a free dis-

count parameter k) that integrated rewards and costs to

generate option values, and a softmax choice function (with a

free inverse temperature bÞ that generated selection probabili-

ties from the difference between option values. In addition to

these standard parameters (k for the steepness of discounting

and b for the consistency of choices), we included an additive

bias parameter that shifted the softmax function toward the se-

lection of the LC option. All free parameters were estimated

per participant and session.

To determine whether a computational parameter would cap-

ture cognitive fatigue related to task difficulty, we looked for

group-by-session interactions in a two-factor linearmixedmodel

analysis performed across cost domains. The interaction was

neither significant for discounting steepness k (p = 0.24), nor

for choice consistency b (p = 0.63), but was significant for the

LC bias (p = 0.02, see Figure 2A and Table S1). The same anal-

ysis performed separately in each cost domain showed that the

interaction was significant for delay, cognitive, and physical

effort discounting (all p < 0.05) but not for probability discounting

(p = 0.98). Thus, the signature of cognitive fatigue was captured

by the same LC bias parameter as in our previous studies,23,25

now extended to other cost domains that involve cognitive con-

trol (not only to wait for gratification but also to exert effort), but

not to factors that do not require cognitive control (such as the

outcome probability in a lottery).

Note that a model-free analysis would lead to similar conclu-

sions. Indeed, the LC choice rate followed the same pattern as

the LC bias parameter: no significant change in the low-demand

group, but a highly significant increase (p < 0.001) in the high-de-

mand group. Among domains, the LC choice rate significantly

increased for delay, physical effort, and cognitive effort dis-

counting, but not probability discounting (see Figure S1), again

mirroring the LC bias parameter. Thus, the computational

decomposition into parameters capturing different sources of

variance only contributed to clarifying the impact of cognitive fa-

tigue on economic choice, with a significant group-by-session

interaction. Note also that including performance as a covariate

in the linear mixed model analysis did not change the main result

(additional performance regressor: p = 0.85, group-by-session

interaction: p = 0.02), ruling out a potential effect of frustration

related to the error rate (which participants could not monitor

anyway because they were provided no feedback about their

performance in cognitive tasks).

The computational signature of cognitive fatigue suggests a

shift of preference favoring the options involving low control

costs. An alternative would be that fatigue changes the way

choices aremade, favoring heuristics that avoid the pain of delib-

eration. From this perspective, participants might choose the LC

option because it is easier to valuate. However, this would not

explain why we observed a similar shift toward options with

non-zero LC, which are harder to valuate than zero-cost options.

When adding the zero/non-zero-cost factor to the linear model,

we found no evidence for a different effect of session on the

two trial types (interaction trial-type 3 session: b = 0.003, p =

0.87). In addition, a time-saving heuristic would predict that

choices would be made faster and faster along the day, which
3568 Current Biology 32, 3564–3575, August 22, 2022
was not the case (see Figure 2A). Indeed, a three-factor

(group 3 session 3 choice) linear mixed model fitted on choice

RT across cost domains (except probability) showed borderline

effect of task difficulty (hard versus easy: b = 0.11, p = 0.06), no

main effect of session number (from 1 to 5: b = �0.01, p = 0.34),

no effect of choice type (LC versus HC option: b = �0.01, p =

0.58), and, critically, no significant interaction (all p >0.14).

Thus, there was no evidence for cognitive fatigue resulting in

the use of time-saving heuristics.

Pupillary measures of cognitive fatigue
Although fatigue induced a systematic bias favoring options that

require less cognitive control, we could not check whether this

bias was related to reduced lPFC activity during choice, as we

observed in previous studies,24,25 because there was no fMRI

scanning here. However, as an index of cognitive effort exerted

during economic choice, we measured pupil dilation, which has

been associated to the demand in cognitive control and the level

of effort invested.33

Within-trial pupil size time series were submitted to a sample-

wise multiple regression against session number and all relevant

nuisance variables (see STAR Methods). The time course of the

intercept (see Figure 2B, left plot) shows, irrespective of experi-

mental variables, an initial constriction for the first second, fol-

lowed by a dilation ending with the choice. The initial constriction

is commonly seen as a response to low-level features, like a sur-

prise signal evoked by a change in stimulus display, independent

of luminance,34 whereas the late dilation likely reflects the effort

invested in the deliberation.33 When comparing the regression

estimates of session number between groups, we observed a

significant difference (after correcting for multiple comparisons

using random field theory) in a late time cluster (from 1.42 to

3.50 s). The difference was driven by the late dilation plummeting

with session number in the hard group (see Figure 2B, right plot),

suggesting that less effort was invested in choice deliberation

with cognitive fatigue.

Metabolic measures of cognitive fatigue
Behavioral results suggest that the fatigue-induced preference

shift toward LC options is associated with less effort invested

in decision-making. This pattern is consistent with our proposal

that cognitive fatigue can be conceived as an increase in the cost

of recruiting cognitive control. To explain why control cost is

increased by the performance of hard cognitive tasks, we turned

to brain metabolism. Our model (see Figure 3A) assumes that re-

cruiting cognitive control regions either exhaust some metabolic

resource or accumulate some toxic by-product. This metabolic

alteration may somehow be sensed by a meta-controller that

would adjust the intensity of control exertion depending on ex-

pected costs and benefits, as previously suggested.35 Thus,

the diminution of control exertion would be the outcome of a

regulation loop aiming at maintaining the concentration of me-

tabolites within acceptable limits. Increasing the expected ben-

efits could naturally counteract the impact of increased meta-

bolic costs and maintain the intensity of control exertion. This

is why the reduction of control exertion is more salient in eco-

nomic choices, where the expected benefit cannot be precisely

estimated, compared with cognitive tasks, in which correct per-

formance results in a precise payoff.
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Figure 3. Neuro-metabolic predictions

(A) Model. Our conceptual model assumes that the amount of cognitive control to be invested over the behavior is submitted to a cost/benefit trade-off. The

benefit of control is to improve performance (depending on task difficulty) and hence the associated reward (depending on payoff schedule), or to make a sound

economic choice. The cost of control relates to the necessity of either restoring an exhausted resource or clearing out an accumulated by-product of neural

activity. The model, therefore, specifies the relationships between behavioral observables (accuracy in cognitive tasks and bias in economic choice) and brain

measures (lPFC activity with fMRI, and X concentration with MRS).

(B) Predictions. Regarding the metabolite X (be it an exhausted resource or an accumulated by-product), the model predicts a three-way interaction between

region (lPFC versus V1), group (easy versus hard conditions), and session (growing fatigue).
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To keep the predictions simple (see Figure 3B). We assumed

that metabolic alteration (either exhaustion or accumulation) (1)

would only occur when performing hard cognitive tasks (not

easy ones), (2) would only affect the lPFC (the region identified

as related to cognitive fatigue in previous studies) and not the

primary visual cortex (V1) (although it is constantly stimulated

in this experiment), and (3) would progressively develop

with session number, until it reaches a plateau due to meta-

regulation. Thus, the two metabolic hypotheses predicted a

(group 3 region 3 session) three-way interaction.

To test for this three-way interaction,wemeasured in-vivometa-

bolic concentrations with MRS, using an optimized semi-LASER
1H sequence,27,28 in both the left lPFC and V1 voxels of interest

(VOIs), during sessions 1, 3, and 5 of the experiment (Figure 4A).

The only metabolite showing a significant three-way interaction

was glutamate, irrespective of the ratio computed for normaliza-

tion (Figure 4; see Figure S2 for other metabolites): glutamate/

myo-Inositol (Glu/Ins, b = 0.06, p = 0.02), glutamate/total creatine

(Glu/tCr, b = 0.04, p < 0.01, see Table S2), and glutamate/total

N-acetyl aspartate (Glu/tNAA,b=�0.02, p=0.03). A log-likelihood

ratio test confirmed a significant improvement of the linear mixed

model fit when adding interaction terms (Glu/Ins: p < 0.001, Glu/

tCr: p < 0.001, Glu/tNAA: p < 0.001).

The observed pattern was consistent with the accumulation

hypothesis, in the sense that the group performing hard cognitive

tasks ended the experiment with more glutamate in the lPFC

than the control group, (Glu/Ins: t = 2.23, p = 0.03, Glu/tCr: t =

2.27, p = 0.03, Glu/tNAA: t = 1.68, p = 0.10, between-group

t test in session 5), no difference being observed in the visual

cortex (Glu/Ins: t = �1.10, p = 0.28, Glu/tCr: t = �0.95, p =

0.35, Glu/tNAA: t = �0.44, p = 0.66; between-group t test in
session 5). However, contrary to our expectations, the interac-

tion was not driven by an increase in the hard condition but by

a decrease in the easy condition.

We also measured metabolic diffusion in the same VOIs using

a second semi-LASER sequence added with diffusion gradi-

ents29 and again found a significant three-way interaction

involving glutamate (Figure 4B, lower part). More specifically,

the interaction was observed for the apparent diffusion coeffi-

cient (ADC) of Glx (glutamate and glutamine quantified together:

b = 6.95e�06, p = 0.02, see Table S3). This interaction was

driven by Glx ADC increasing across sessions in the lPFC (but

not in V1) of participants performing the hard version of cognitive

tasks (but not the easy version). This is consistent with the hy-

pothesis that glutamate concentration is regulated during cogni-

tive control exertion, potentially leading to higher concentrations

in the extracellular space where diffusion is faster. The pattern

was in line with the prediction of the metabolic accumulation

model, as the interaction was driven by an increase in the hard

condition versus a steady state in the easy condition.

Finally, we assessed the correlation between behavioral and

neuro-metabolic measures of cognitive fatigue, as was done in

our previous studies between behavioral and fMRI measures.24,25

After regressing out variables of no interest (see STAR Methods),

we tested thecorrelation acrossparticipantsbetween the increase

inLCbias (fromsession1 to session5) and the increase inGlu con-

centration andGlx diffusion, separately (see Figure 5). The correla-

tionwaspositive inbothcases, but significant forGlx diffusion only

(r = 0.43, p = 0.039), not Glu concentration (r = 0.30, p = 0.24). The

significant correlation suggests that the choicebias towardLCop-

tionswas linked to the level ofGlx diffusion andhence toa need for

slowing down glutamate accumulation.
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Figure 4. MR spectroscopy results
Glutamate was the only metabolite to show the expected three-way interaction (group 3 region 3 session).

(A) Data collection. The left lateral prefrontal region (axial slice at the bottom) was defined as the cluster showing reduced activity with cognitive fatigue in a

previous fMRI study.24 On top slices are shown the locations of theMRS voxels of interest (VOIs, 353 253 15mm) in the primary visual cortex (V1, left) and in the

lateral prefrontal cortex (lPFC, right). The lPFC VOI was individually adjusted to cover most of the cluster identified with fMRI, whereas the V1 VOI was placed to

cover the medial part of the occipital cortex. The glutamate peak (Glu) is indicated within an example individual spectrum acquired in the lPFC.

(B) Main results from 1H MRS. Top: glutamate concentration levels were normalized over concentrations of total creatine (tCr, shown here), myoinositol (Ins,

shown in Figure S2), and total N-acetyl aspartate (tNAA, shown in Figure S2). The three-way interaction (group 3 region 3 session) was significant in the three

normalized measures. For visual comparison with behavioral measures and model predictions, data were also normalized to the grand mean of the first session.

See Figure S3 for additional metabolites. Bottom: main results from diffusion-weighted MRS. Glx (glutamate plus glutamine) were again the only metabolites for

which diffusion measures (apparent diffusion coefficients [ADCs], see STAR Methods) showed the expected three-way interaction. Error bars indicate inter-

participant standard errors of the mean (SEM). Stars on brackets indicate significant group-by-session interactions.

See Tables S2 and S3 for results of the statistical analysis.
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Modeling the link between neural activity and metabolic
measures
To examine whether the downregulation of cognitive control, re-

sulting in decreased lPFC activity, as observed using fMRI in our

previous study,24 could explain the pattern of lPFC glutamate

measures, as observed using MRS in the present study, we

developed a Markov chain model. This model (see Figure 6) pre-

dicts the evolution of a metabolic measure X across time, de-

pending on two opposite flows: an accumulation due to control

exertion (indexed by fMRI activity) and a clearance proportional

to X (measured by MRS).

Results show thatMRSmeasureswere consistent with the prin-

ciple of a metabolic regulation mechanism, reducing lPFC activity

to maintain glutamate accumulation within acceptable levels (i.e.,

manageable by clearance processes). However, the concentra-

tion and diffusion measures suggest different parameterizations

of the model, notably regarding baseline lPFC glutamate levels

in the morning (relative to glutamate accumulation rate).

DISCUSSION

In this study, we investigated the impact of performing hard

cognitive control tasks for several hours, compared with perform-

ing easy versions of the same tasks for the same duration. We

observed (1) a shift in preferences toward LC options, (2) a
3570 Current Biology 32, 3564–3575, August 22, 2022
reduction of pupil dilation during economic choice, (3) a glutamate

concentration maintained at a high level in the lPFC, and (4) an in-

crease in glutamate/glutamine diffusion within the lPFC. This

pattern of results is compatiblewith the assumption of an increase

in the cost of cognitive control, related to the necessity of main-

taining glutamate levels within acceptable boundaries. The

elevated cost would both limit the recruitment of cognitive control

during choice and bias decisions away from costly options.

The present behavioral results replicate and extend previously

published observations that exerting intense cognitive control,

either for intellectual work24 or endurance sport,25 induces a

form of cognitive fatigue that manifests as an increased prefer-

ence for immediate options. The key results are significant

group-by-session interactions, showing a specific effect of task

difficulty, ruling out time or boredom as potential explanations.

We did not find such an interaction in self-reported fatigue, which

similarly increased across sessions in the two groups. This may

be due to participants mapping the range of their subjective sen-

sations on the same portion of the rating scale, as they were un-

aware of the other condition (imposed on the other group). It could

also reflect a dissociation between actual fatigue of the cognitive

control brain system and conscious perception of fatigue. This

dissociation is common in everyday life; for instance, when peo-

ple go on working or driving and start making errors because

they failed to detect their true fatigue state. In any case, it shows



Figure 5. Correlation between behavioral and MR spectroscopy

measures

For each participant of the high-demand group, the increase (from first to last

session) was calculated for both the behavioral measure (choice bias toward

low-cost option [LC] after regressing out the effect of cost domain) and the MR

spectroscopy measures (Glu/tCr ratio or Glx apparent diffusion coefficient

[ADC] after regressing out nuisance variables such as quality estimates of

metabolic spectra, gray matter concentration in the scanned voxel, and

headmovement parameters). Graphs show the correlation across participants

(dots), with regression lines and confidence intervals (shadow areas). The star

indicates that the correlation with LC bias was only significant for ADC Glx.
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that subjective ratings cannot be taken as absolutemeasures and

that cognitive fatigue might be better evidenced by preference

shifts toward LC options in economic decisions. Conversely,

choice-related markers of cognitive fatigue might not account

for the subjective perception of intense fatigue that represents a

frequent clinical symptom in many neuropsychiatric conditions.23

As in previous studies, this fatigue did not affect performance in

cognitive control tasks (N-back and N-switch), suggesting that

cognitive control exertion is sustained in these tasks, despite an

increase in its cost, due to the high benefit attached to correct

performance. Indeed,making correct responses in cognitive con-

trol tasks entailed an objective monetary benefit, whereas the

benefit of making a sound decision in economic choice tasks

was more difficult to estimate. The new observations provide

further support for an interpretation of the preference shift as

stemming from an elevation of cognitive control cost.

First, we have introduced other types of discount factors in our

economic choices (probability, cognitive effort, and physical

effort), on top of delay. The shift in preference was specifically

observed for choices that involve cognitive control (waiting longer

or exerting more effort to obtain better rewards), not for choices

involving risk (a cost associated to the lottery, not imposed on

the participant). These results are consistent with the idea that

mental and physical effort both involve cognitive control because

they both require to over-rule automatic routines.25 In all cases

but probability discounting, the shift in preference was captured

in the choice model by an additive bias favoring LC options, not

by the choice consistency (inverse temperature) parameter.

Note that a decrease in choice consistency could not mimic a

preference shift with our design because options were tailored

around individual indifference points, such that participants

started the experiment at chance level (with a 50/50 preference

between LC and HC options). Also, choices were not more impul-

sive in the sense that theyweremade faster with cognitive fatigue.

As in previous experiments, choice RT did not vary with the num-

ber of sessions completed along the day and did not depend on

which option was selected (costly or uncostly).
Second, we used eye-tracking during scanning sessions and

observed that cognitive fatigue was accompanied by lesser pupil

dilation whenmaking a choice. This can be taken as evidence for

lower cognitive effort invested in economic choice, consistent

with the reduced lPFC activity that was found in our previous

study using fMRI. Indeed, pupil dilation has been validated as

an index of cognitive effort.33,36–40 Pupil dilation has also been

associated with the activation of noradrenaline neurons in the lo-

cus coeruleus and hence activation of the anterior cingulate cor-

tex.41–44 It is tempting to interpret these results in the light of the

theoretical framework assuming that the intensity of cognitive

control is adjusted by the anterior cingulate cortex, depending

on expected costs and benefits.35 Applied to our case, the

decrease in pupil dilation would suggest that the reduction of

cognitive control during economic choice, due to its elevated

cost, is mediated by the anterior cingulate cortex downregulat-

ing activity in the lPFC, which we observed with fMRI.

The next question in this general account of cognitive fatigue

was about the cost of cognitive control: why is it increasing

with the performance of high-demand tasks? To articulate the

cost-benefit arbitration framework with a neuro-metabolic ac-

count of cognitive fatigue, we imagined two scenarios: cognitive

control could be reduced to prevent some resource from

dangerous exhaustion or to prevent some by-product from

dangerous accumulation. These two scenarios predicted a

three-way interaction between group, region, and session, which

we only found in glutamate levels, whatever the normalization

procedure. At the end of the day, lPFC glutamate concentration

and glutamate/glutamine diffusion were significantly higher in

the group performing high-demand tasks relative to the low-de-

mand group, although there was no difference in the visual cor-

tex. These observations are consistent with higher-demand

cognitive control tasks being associated with greater glutamate

release,45,46 which would result in steeper glutamate accumula-

tion with time on task across a workday.

However, the interaction observed in glutamate concentration

was mainly driven by a decrease in lower-demand conditions,

which we did not expect. However, we verified that such a

pattern was still consistent with our dynamic model including

clearance proportional to glutamate concentration and accumu-

lation related to the intensity of cognitive control (hence to

lPFC activity). The fitted parameters indicated that what we

had not anticipated was a high level of lPFC glutamate at the

beginning of the day. Facing the new scanning environment

and implementing new instructions (e.g., to provide a manual

response without moving the head) might already be cognitive

control demanding,47 possibly explaining the elevated glutamate

level. In this scenario, the gradual elimination of glutamate would

be observable in the low-demand conditions, although it would

be compensated by gradual accumulation related to task perfor-

mance in the high-demand conditions. Such a scenario was

corroborated by results showing that glutamate/glutamine diffu-

sion was higher in the lPFC after high-demand cognitive control

exertion, compared with the control group and region. Diffusion

measures displayed the expected pattern, with an increase

related to intense cognitive control, and no change in low-de-

mand conditions. The interpretation can hence be refined, as a

change in glutamate/glutamine diffusion might signal a relative

accumulation in the extracellular compartment (where diffusion
Current Biology 32, 3564–3575, August 22, 2022 3571
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Figure 6. Model linking neural activity to metabolic measures

(A) Formalization of the dynamic model of metabolite concentration. In our

model, the evolution of metabolite X across time follows a Markov chain. Xt + 1

is determined by Xt, minus a passive clearance depending on X level, plus

accumulation of X due to exerting control at time t (for cognitive tasks or

economic choices). We illustrate here the accumulation model because it fits

with glutamate measurements. Note that a resource exhaustion model would

follow the same logic, except that exerting control would deplete X, which

would need to be restored instead of cleared.
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of molecules is faster), presumably related to strong spiking ac-

tivity.31,32 Note however that although release in the extracellular

space is a standard interpretation of the diffusion measure, it

could in principle reflect other phenomena, such as release

from vesicles to the intracellular space, or change in the gluta-

mate/glutamine ratio (because the two molecules may diffuse

in different compartments).

Obviously, our results are only correlational and cannot be

taken as proof that what limits cognitive control exertion is the

need to prevent glutamate accumulation. Causal manipulations

would be required to validate this assumption. In addition, the

metabolic spectrum was narrow and constrained by technical

limitations, as there are metabolites that cannot be quantified

with in-vivo MRS methods or at least in a 3T MRI scanner, using

a semi-LASER sequence, with the echo-time optimized for gluta-

mate. For instance, GABA would also have been a possible

candidate but could not be reliably quantified with our MRS

data acquisition sequence. In any case, it should be noted that

the target substance requiring regulation may not be glutamate

itself but any substance whose concentration is linked to gluta-

mate accumulation. Nevertheless, glutamate regulation has

been pointed out as an essential component in the brain energy

budget and discussed as a potential source of cognitive fa-

tigue.48–50 Indeed, there are good reasons for which glutamate

accumulation may need to be regulated.

Glutamate is well known as the main excitatory neurotrans-

mitter in the brain, which must be maintained in tight balance

with inhibitory neurotransmission for regular cortical func-

tioning.51–53 Glutamate is present in the cells at high concentra-

tions, as it is involved in the detoxification of ammonia and also

serves as a precursor for the synthesis of proteins.54 It is there-

fore important to limit glutamate release, both because it is a

useful resource in the intracellular compartment and because it

is a potentially toxic by-product in the extracellular compart-

ment. In line with our results, extracellular glutamate tends to

accumulate in stressful conditions or with increasing task de-

mands such as working memory load.46,55 The issue with too

high concentrations of extracellular glutamate is not only the

disruption of excitation/inhibitory balance but also the induction

of activation bursts, whichmight impair the transmission of infor-

mation and cause excitotoxicity in the most severe cases.51,52,54

A known regulation mechanism at the synaptic level is glutamate

reuptake through transportation into surrounding glial cells56,57

or axons58,59 and conversion into glutamine. Unfortunately, our

measurement technique was not sensitive enough to explore

molecular/cellular mechanisms. Although we could distinguish
(B) Predictions of glutamate measurements. Top plots represent the input to

themodel, i.e., lPFC fMRI activity extracted from a previous study.24 Data were

normalized between 0 and 1 across conditions, but separately for the cognitive

tasks and economic choice, upsampled to 22 sessions and smoothed with a

moving average. Middle plots show the two components driving the dynamics

of glutamate measure: accumulation due to lPFC activity (during both cogni-

tive task and economic choice) and clearance proportional to glutamate level.

The bottom plots show two simulations with different sets of parameters that

correspond to glutamate concentration measures (b0 = 0:85; bclear = 0:09;

btask = 0:12; bchoice = 0:01) and glutamate/glutamine diffusion measures

(b0 = 0:14; bclear = 0:04; btask = 0:11; bchoice = 0:001). In both cases, the

interaction between group and session is driven by the reduction of lPFC

activity with fatigue in the hard group.
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concentrations of glutamate and glutamine, diffusion measures

pooled the two metabolites. Additional limitations relate to the

low spatial and temporal resolution of MRS scanning. As our

VOI was about 40 cm3, it is impossible to draw precise conclu-

sions about anatomical locations, and because data acquisition

takes about 10min, it is impossible to knowwhich particular task

events most contributed to glutamate accumulation.

In the dynamic model, fMRI and MRS measures were inte-

grated to verify that our data were compatible with glutamate

accumulation being the trigger of cognitive control regulation.

Nevertheless, there are some gaps in this demonstration, as we

took some shortcuts. An obvious one is that we did not collect

fMRI and MRS data in the same participants; hence, we could

only make predictions at the group level and could not test in-

ter-individual correlations. However, the assumption that the

BOLD signal is linearly related to glutamate release is corrobo-

rated by simultaneous fMRI and MRS recordings in the visual

cortex.60 On a related note, the very principle of themodel, postu-

lating that glutamate is regulated, may have weakened inter-

individual correlations between glutamate levels and behavioral

signatures of fatigue. This is because glutamate level is supposed

to be maintained at a given boundary, by reducing lPFC activity

during choice; hence, the choice bias inferred from the behavior

should be strongly correlated with lPFC activity, as we indeed

observed in our previous studies,24,25 but only weakly with gluta-

mate level, as we observed here. Note that our MRS findings are

not just mirroring the fMRI findings: lPFC BOLD activity was

reduced across sessions, whereas glutamate concentration

was steady or slightly increasing, as was glutamate/glutamine

diffusion. This is evidence of some accumulation taking place: if

glutamate was purely reflecting the momentary activity of the

brain region, it should have plummeted throughout the day.

Even if our model provides proof of concept that a metabolic

account of cognitive fatigue can be combined with a cost-benefit

mechanistic framework, several aspects remain speculative at

this stage. Notably, how glutamate levels would be monitored

to estimate the costs of cognitive control is unclear. It remains

possible that the brain may not monitor glutamate itself but any

phenomenon linked to glutamate accumulation (e.g., GABA syn-

thesis). Also, an explanation is still missing for why cognitive con-

trol regions would accumulate glutamate more than other regions

like the visual cortex. On a different note, research is needed to

explore the recovery of glutamate levels at rest or during sleep.

Interestingly, the cognitive control network is deactivated in rest

conditions that activate the default mode network,10,61 which

could favor the clearance of extracellular glutamate. Moreover,

it has been shown that glutamate concentrations decrease during

sleep, in relation to EEG slow-wave activity.62 Glutamate could

therefore belong to the potentially toxic substances that are elim-

inated during sleep, which could mediate recovery from cognitive

fatigue.63 Finally, how cognitive fatigue due to excessive use of

cognitive control relates to other forms of fatigue remains to be

specified. As it was also observed in a mild form of burnout syn-

drome25 and patients with low-grade glioma,23 we tend to believe

that an elevated cost of cognitive control is key to several clinical

manifestations of fatigue,64,65 but this speculation still requires

empirical confirmation. It would also require a theoretical articula-

tion between the objective fatigue of the cognitive control brain

system documented here with choice-related markers and the
subjective fatigue sensation that might represent the main

complaint of patients in the clinics.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
We included a total of n = 40 participants, n = 24 in the high-demand condition (age mean m = 22.21 y, standard deviation SD = 6.91,

13 female), n = 16 in low-demand condition (age m = 24.56 y, SD = 6.12, 10 female). The two groups were matched regarding impul-

sivity trait (as measured by Barratt’s Impulsiveness Scale BIS-11) and baseline fatigue state (as measured by Brief and Multidimen-

sional Fatigue Inventory questionnaires, BFI and MFI-20). All participants gave informed consent before participating in the study. All

participants were screened for exclusion criteria: left-handedness, age under 20 or above 39 y, regular use of drugs or medication,

any history of psychiatric or neurological diagnosis, and contraindications to MRI scanning (pregnancy, claustrophobia, metallic im-

plants). In both conditions, 2 additional participants stopped the experiment before completion andwere therefore excluded from the

data analysis. All participants ate a sandwich and a fruit during the first break. Water was the only allowed drink during the day and

was available without restrictions. Participants received 50V as financial compensation for the two training sessions. For their per-

formance on the experiment day, they received 5V plus another 3V for each percent above 75% in their average performance in the

cognitive tasks, which would result in 50V for an average of 90% correct responses maintained throughout the day. Additionally, one

choice trial in each domain (probability, delay, effort) was pseudo-randomly chosen and implemented. The study was approved by

the local ethics committee of the Piti�e-Salpêtrière Hospital (CPP no 113-15, ID RCB: 2015-A01445-44).

METHOD DETAILS

Tasks
Two cognitive control tasks were used to induce cognitive fatigue: N-switch and N-back. In each trial of both tasks, a letter appeared

on the screen, colored either red or green. Participants had to give their response within a 0.8s time window, followed by a 0.8 s inter-

trial interval. During N-switch blocks, participants had to perform a discrimination task that depended on the color of the letter: upper

case vs. lower case for one color, vowel vs. consonant for the other color (red or green, counterbalanced across participants). The

task was switched 12 times per block of 24 trials in the hard condition, whereas it was switched only once in the easy condition. Dur-

ing N-back blocks, participants had to indicate whether the letter on the screen was the same as the letter presented in three trials

(hard condition) or one trial (easy condition) before.

To reveal cognitive fatigue, we presented four choice trials after each block of 24 task trials. The time out for choice trials was

3.25 s, followed by a jittered inter-trial interval (mean 1.25 s, SD = 0.33). Each choice trial opposed a small-reward/low-discount
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option with a big-reward/high-discount option. Rewards ranged from 0.1V to 50V. All rewards were presented with 2 digits precision

but rounded to the first digit: for example, 41.23V had been rounded to 41.20V. Discount factors were of four different types: delay,

probability, cognitive effort, and physical effort. Delays ranged from zero (reward received in cash immediately after the experiment)

to one year (reward received by bank transfer), with intermediate levels of three days, one week, one month, and three months).

The probability of winning the lottery (vs. nothing) ranged from 5% to 100% with intermediate levels of 25%, 50%, 75%, and

95%. The cognitive effort consisted of performing the N-switch task for 30 minutes after the main experiment. Effort levels corre-

sponded to the number of switches in a 24-trial block: 0, 2, 4, 6, 9, or 12. The physical effort consisted of pedaling on a stationary

bike for 30 minutes after the main experiment. Effort levels corresponded to the resistance of the bike, expressed in percentage

of the maximum power that the participant could develop during calibration: 0%, 12.5%, 25%, 37.5%, 56.25%, 75%. Participants

were instructed that one randomly selected choice of each type would be realized, meaning that money would be given to the partic-

ipant but only after the chosen delay / playing the chosen lottery / exerting the chosen effort level.

All participants completed two sessions of training on the day before the main experiment. Each training session started with the

easy version of the cognitive control tasks and gradually increased in difficulty until performance reached 90% correct responses at

the highest difficulty level. During the second training session, participants were also instructed about the choice tasks, and they

practiced with a test set of choices to get familiarized.

On the day of the main experiment, participants first rehearsed the cognitive control tasks to ensure their performance was still

above 90% correct responses. Then they underwent a choice calibration procedure. For all choice trials, the big reward was fixed

to 50V, while the small reward was associated with either zero cost (e.g., 0 days for delay) or the lowest cost (e.g., 3 days). For each

discounting domain and cost level separately, the size of the small reward was adjusted with a staircase procedure depending on the

choice of the participant. Had the participant chosen the low-cost option twice in a row, the small reward was reduced to the mean

between its current value and that of the last rejected low-cost option (0V for the first trial). Had the participant rejected the low-cost

option twice in a row, the small reward was increased to the mean between its current value and that of the last accepted low-cost

option (50V for the first trial). If the low-cost option was accepted/rejected only once, the small reward value was reduced/increased

by 10%. The staircase procedure stopped when the difference between accepted and rejected small rewards was smaller than 4V.

Themean between the last-rejected and last-accepted small reward was taken as the indifference point for each cost level of a given

domain. On average, participants made 15.47 [7-108] choices to reach the indifference point.

To reduce noise in these estimates, the calibration procedure was repeated three times and indifference points were averaged,

separately for every cost level. In total, 36 indifference points were estimated, corresponding to four choice domains times nine

cost levels (five opposed to zero discount, e.g., one year vs. 0 days, and four opposed to lowest discount, e.g., one year vs. 3 days).

In the main experiment, for every cost level, we tailored choice options around participant-specific indifference points, with five

trials presenting small rewards at the indifference point (drawn from a normal distribution centered at the indifference point with

SD=1), one trial with the small reward 30% below and one trial with the small reward 30% above the indifference point. The choice

trials close to indifference were meant to maximize the sensitivity for detection of a preference shift, while distant trials were meant to

ensure that computational models could be fittedwith recoverable parameters. The consequence of tailoring choice options was that

participants started the experiment with an average choice rate close to 50%, leaving room for either decrease or increase with fa-

tigue. Under these constraints, small rewards were randomly drawn such that each of the 5 sessions presented novel choices. This

resulted in a total of 5 sessions 3 4 choice types 3 (4+5 cost levels) 3 (5+1+1 trials) = 1260 choice trials per participant.

At the beginning of each session, participants rated their subjective fatigue by positioning a cursor on a visual analog scale be-

tween 0 (‘‘I’m in top form’’) and 100 (‘‘I’m totally exhausted’’).

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational modeling
To analyze choice behavior, we used a computational modeling approach. A priori, we favored multiplicative forms for delay and

probability discounting, because a delayed or probabilistic reward must be positive (always better than nothing) and subtractive

forms for effort discounting because the reward may not be worth the cost (so the value can be negative). We nonetheless used

Bayesian model comparison to identify the discounting functions that provided the best account of choices made during calibration

for each cost domain. The most plausible discounting functions were indeed exponential for delay (as in our previous studies), hy-

perbolic for probability, and parabolic for effort (see equations below).

In all models, rewards were first discounted with different functions depending on the considered factor (D: delay in days, P: win-

ning probability, E: effort level) to generate subjective values (SV):

Delay discounting:66

SV = Re� kD (Equation 1)

Probability discounting:67

SV =
R

1+ k 1�P
P

(Equation 2)
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Cognitive and physical effort discounting:68,69

SV = R � kE2 (Equation 3)

with the free parameter k controlling the steepness of discounting in each function. Then subjective values of the low-cost (LC) and

high-cost (HC) options are compared and transformed into the probability of choosing the low-cost option (pLC) through a softmax

function:

pLC =
1

1+ e�ðbðSVLC �SVHCÞ+biasÞ (Equation 4)

With the inverse temperature parameter b controlling choice consistency with subjective values and the bias parameter shifts the

choice probability towards the low-cost option.

The different models were inverted using a variational Bayes approach under the Laplace approximation, implemented in the VBA

toolbox70 (available at https://mbb-team.github.io/VBA-toolbox) programmed in Matlab R2019a (MathWorks, Natick, MA, USA). We

first modeled the calibration choices in each participant to build informed priors for the main experiment. Then, using the individual

priors, we estimated all posterior parameters independently for each participant, session, and choice type.

Pupil dilation
During sessions one, three, and five, we recorded pupil size with an Eyelink 1000 eye-tracker (SR Research, right eye recorded,

1000 Hz sampling rate). Time series were pre-processed by removing blink periods, fixations outside the screen, and samples

outside three times the median signal. Removed samples were replaced by linear interpolation. Time series were then band-pass

filtered between 1/128 Hz and 1 Hz, down-sampled to 60 Hz, z-scored across all sessions per participant, epoched around choice

trials, and corrected for baseline differences across trials (by subtraction of the mean pupil size within the 500 ms before choice

onset). Within-trial pupil size time course was analyzed using a sample-wise regression approach: for each time sample, pupil

size was regressed against session number across trials. To remove potential confounds with low-level variables, the linear regres-

sionmodel also included low-cost choice (1 or 0), low-cost choice in the trial before (1 or 0), the choice type (probability, delay, cogni-

tive effort, physical effort), type of low-cost option (zero or non-zero), the inter-trial interval before choice onset, the cognitive task

performance for the current block, the block number and the trial number within the block. The regression was run at the individual

level and regression estimates were tested against 0 at the group level with a 1-D random field theory implementation in the VBA

toolbox.70

MRS data acquisition
Magnetic Resonance Spectroscopy (MRS) was performed on a 3 T Siemens MAGNETOMPrisma Fit MRI scanner (Siemens Medical

Solutions, Erlangen, Germany), equippedwith gradient coils capable of reaching 80mT/mon each of the three axes. The standard RF

body coil was used for excitation and a 64-channel receive-only head coil for reception.

Participants alternated between performing the tasks inside the scanner (sessions 1, 3, and 5) and outside the scanner (sessions 2

and 4). Before every new scanning session, the spectroscopic volumes of interest (VOI) were manually placed to maximize the over-

lap with those of the previous session. To precisely position the VOI and to perform tissue segmentation, the MRS protocol was

preceded by a 3DT1-weightedmagnetization-prepared rapid gradient echo sequence [field of view=256 x 256; isotropic resolution =

1 mm; TR/TE = 2300/4.18 ms; total acquisition time = 4 min 44 s]. A VOI of 35325315 mm3 was positioned in the lateral prefrontal

cortex. The size of the VOI was adapted to cover most of the activation cluster observed at the group level in our fMRI study24 while

respecting the block shape imposed by theMRS sequence and aminimum volumewhich was needed to reach an acceptable signal-

to-noise ratio. First, on the axial slice, the VOI, with an anterior-posterior expansion of 35mm, was placed on themiddle frontal gyrus.

We used the posterior border of the triangular part of the inferior frontal gyrus as the posterior reference. The VOI was then rotated to

follow the cortex orientation and to include as little CSF as possible. Second, on the coronal slice, the VOI, which spanned 25 mm,

was again placed to cover the middle frontal gyrus and was rotated to follow the cortex orientation and to avoid including CSF. A

control VOI of the same size was positioned over the primary visual cortex.

For the MRS data acquisition, we used a modified single-voxel semi-LASER sequence27,28 (TR/TE = 5000/28 ms; number of com-

plex points = 2048; averages = 64; total acquisition time = 5min 30 s). B0 shimming in the VOIs was performed using a fast automatic

shimming technique with echo-planar signal trains utilizing mapping along projections, FAST(EST)MAP.71 Before the MRS acquisi-

tion, the RF power for the asymmetric slice-selective 90� pulse (duration, 2 ms) of the semi-LASER sequence was optimized to pro-

duce the maximum signal. This was in turn used to automatically adjust the power of the 180� hyperbolic secant adiabatic full pas-

sage pulses (duration, 4 ms). Water suppression was performed using variable power with optimized relaxation delays (VAPOR) and

suppression of signal contamination from other brain regions was achieved with outer volume suppression (OVS). In addition, unsup-

pressed water spectra were acquired for eddy current corrections. The contribution of cerebrospinal fluid (CSF) to the VOI was cor-

rected by segmenting the brain and estimate the proportion of CSF in the VOI.

MRS data analysis
All spectra were processed inMATLABR2019a (MathWorks, Natick, MA, USA). Eddy currents and shot-to-shot phase and frequency

correction were performed as described previously.28 LCModel72 (Version 6.3.0-G) was used for the quantification of metabolite
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concentrations. The basis set was simulated using the density matrix formalism and included alanine, ascorbate, aspartate, creatine,

g-aminobutyric acid, glycerophosphorylcholine, phosphocholine, phosphocreatine, glucose, glutamine, glutamate, glutathione,

myo-inositol, scyllo-inositol, lactate, N-acetylaspartate, N-acetylaspartylglutamate, phosphorylethanolamine, and taurine, as well

as macromolecule spectra that were acquired in healthy volunteers for a previous study.28 Metabolite quantification was considered

reliable for Cram�er Rao Lower Bounds (CRLB) < 20%, sowe excluded data for 10%of the participants. According to this criterion, the

following metabolites were reliably quantified: total creatine (tCr), myo-inositol (Ins), total N-acetylaspartate (tNAA), total choline

(tCho), glutathione (GSH), glycerophosphocholine (GPC), glutamine (Gln) and glutamate (Glu).

To account for local inhomogeneities in the VOIs, as well as reduce the high inter-participant variability in the absolute concentra-

tion due to the variable amounts of CSF, gray and white matter in the VOIs, we report metabolic concentration as a ratio to the base-

line peaks of Ins, tNAA, and tCr. To control for potential confounds, we included the followingmeasures as covariates in the statistical

analysis: age, linewidth (as estimated by LCModel), signal-to-noise ratio (as estimated by LCModel), grey matter concentration in the

voxel (estimated by a Freesurfer segmentation of the VOI), and movement regressors which were estimated in SPM1273 based on

pre/post-measurement EPI images.

Diffusion-weighted magnetic resonance spectroscopy acquisition
Diffusion-weightedmagnetic resonance spectroscopy (DW-MRS) was performed in the same VOIs as for theMRS acquisitions using

a single-voxel semi-LASER sequence with diffusion gradients added in a bipolar configuration (TE = 120 ms, spectral width = 3 kHz,

number of complex points = 2048).29 All resonances were excited using a slice-selective 90� pulse (pulse length of 2.52 ms) followed

by two pairs of slice-selective adiabatic refocusing pulses in the other two dimensions (HS1, R = 20, pulse length 7.5 ms). All

acquisitions were synchronized with the cardiac cycle using a pulse-oximeter device, to start each acquisition every three heart-

beats, while maintaining a minimum TR of 2500ms. Diffusion-weighting was applied in three orthogonal directions ([1, 1, -0.5],

[1, -0.5, 1], [-0.5, 1, 1] in the VOI coordinate system) with diffusion gradient duration = 22 ms, diffusion time = 60 ms and four

increasing gradient strengths g = 0, 19, 39, 58 mT/m, resulting in the b-values b0 = 0, b1 = 1080, b2 = 4300 and b3 = 9770 s/mm2.

Sixteen averages were collected for each diffusion-weighting condition and saved as individual free induction decays for further

post-processing. Water suppression was performed using VAPOR and OVS suppression.74 For eddy current corrections, unsup-

pressed water reference scans were acquired from the same VOIs using the same parameters as water suppressed spectra.

DW-MRS spectral processing
DW-MRS data were corrected as described previously.29 Eddy current corrections were performed for each DW condition using wa-

ter reference scans. Zero-order phase fluctuations and frequency drifts were corrected on single averages before summation using

an area minimization and penalty algorithm and a cross-correlation algorithm, respectively.75 A peak-thresholding procedure was

applied, for each DW condition, to discard the single spectra with artifactually low SNR caused by non-translational tissue motion.29

A threshold of 70% for the proportion of spectra rejected per DW condition was set. No datasets were excluded using this criterion.

The remaining spectra, for each condition, were then averaged.

The averaged spectra were analyzedwith LCModel formetabolite quantification. The basis set was simulated based on the density

matrix formalism76 and using chemical shifts and J-couplings reported previously.77,78 The basis set included alanine, ascorbate,

aspartate, creatine, g-aminobutyric acid, glucose, glutamate, glutamine, glutathione, glycerophosphorylcholine, mIns, lactate,

N-acetylaspartate, N-acetylaspartylglutamate, phosphocreatine, phosphorylcholine, phosphorylethanolamine, scyllo-inositol,

and taurine. Independent spectra for the CH3 and CH2 groups of NAA, Cr, and PCr were simulated and included in the basis set.

Metabolite quantificationwas considered reliable for CRLB < 20%at b0, and no datawere excluded due to this criterion. Signal/noise

was > 10 at all b-values.

ADCs were calculated for the metabolites fitted by LCModel. Metabolite ADCs for tNAA, tCr, tCho, Glx, and Ins were computed in

each VOI and session by fitting a stretched exponential to the logarithmic metabolite signal decay:

log

�
Smet;b

Smet;0

�
= � a+ ð � ADC � bÞg (Equation 5)

Were Smet;b is themetabolite signal at a given b-value, Smet;0 is themetabolite signal at b0, ADC is the apparent diffusion coefficient

(scaling factor) and g is the stretching factor. To control for potential confounds in the statistical analysis of ADC, we added the

following measures as covariates: age, linewidth and signal/noise as estimated by LCModel, grey matter concentration in the voxel,

and the proportion of spectra rejected during preprocessing.

Metabolic accumulation model
To test the link between neural activity measured using fMRI in our previous study using the same behavioral protocol24 and the pre-

sent spectroscopy measures, we developed a metabolic accumulation model (see Figure 6), following a Markov chain:

Glut = Glut� 1 � bclearGlut� 1 + btaskBOLDtask;t + bchoiceBOLDchoice;t (Equation 6)

Themodel assumes that glutamate accumulates at a rate (Glut - Glut-1) that is proportional to instantaneous neural activity (proxied

byBOLD signalmeasuredwith fMRI during the cognitive tasks and economic choice) and dissipates at a rate that is proportional to its

current level. To generate the inputs to the dynamic model, we averaged BOLD activity measured for each session and group in our
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previous study.24 The BOLD activity was then upsampled to 22 sessions, normalized between 0 and 1, and smoothed with a moving

average, before entering into the dynamic model. We then fitted both Glu concentration (mean of Glu/tCr, Glu/Ins, and Glu/tNAA) and

Glx diffusion (ADC) measures, separately, as if they had been measured during sessions 2, 12, and 22, to match the timing of data

acquisition in the two studies. The model was inverted to estimate posterior parameters of the three scaling factors (bclear, btask, and

bchoice) using the VBA toolbox.70

Statistical analysis
All statistical analyseswere performed inMATLABR2019a (MathWorks, Natick, MA, USA) with linearmixedmodels (function fitglme).

Intercepts and all within-participant factors (e.g., session) were estimated on the participant level. All between-participant factors

(e.g., condition) were estimated at the group level. Response times (RTs) during choice were log-transformed to correct a skewed

distribution and we excluded trials with short RTs of <0.1 s.
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