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SUMMARY

Behavioral activities that require control over automatic routines typically feel effortful and result in cogni-
tive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cogni-
tive control, objectified by more impulsive decisions. However, the origins of such control cost inflation
with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would
relate to the necessity of recycling potentially toxic substances accumulated during cognitive control
exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain me-
tabolites throughout an approximate workday, during which two groups of participants performed either
high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-
related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation
during decision-making and a preference shift toward short-delay and little-effort options (a low-cost
bias captured using computational modeling). At the end of the day, high-demand cognitive work re-
sulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain
region (lateral prefrontal cortex [IPFC]), relative to low-demand cognitive work and to a reference brain
region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a
neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes
IPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous
workday.

INTRODUCTION

Even professional chess players start making mistakes, typi-
cally after 4-5 h in the game, which they would not make
when well rested. A consensual explanation of why chess play-
ing induces cognitive fatigue is that planning moves cannot rely
on learned effortless routines (except at the beginning of the
game) because the space of possibilities is way too large. Win-
ning the game, therefore, requires the capacity to monitor new
context-action mappings, a capacity that is known as cognitive
or executive control.”? In neuroscience, behavioral tasks have
been developed to vary the demand in cognitive control, by
imposing frequent remapping of stimulus-response associa-
tions based on contextual information, as in working memory
and task-switching paradigms. Using these paradigms, func-
tional neuroimaging studies have identified a lateral prefron-
tal-parietal system recruited when more cognitive control
must be engaged.®*
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However, the reason why exerting cognitive control is ex-
hausting remains unclear.® Explanations have been proposed
in the behavioral economics and social psychology literatures,
which have investigated a related notion of self-control or self-
regulation. This self-control capacity is notably involved when re-
sisting an impulse (e.g., to eat tasty junk food or to scream with
pain) for the sake of long-term goals (e.g., to stay in good health
or to remain socially acceptable). Resource depletion theories®’
have suggested that exerting such control may tap on global en-
ergetic supply (such as blood glucose). However, evidence in
favor of these theories has been reconsidered, such that empir-
ical ground is still lacking.® In any case, these theories fail to
explain what is special with self-control and why other cognitive
processes such as vision would not induce (and suffer from)
global resource depletion. Moreover, a global resource depletion
account would contradict the well-shared idea that energy con-
sumption by the brain is constant and globally unaffected by

cognitive processing. '’
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Noting the absence of biological grounds for fatigue related to
cognitive control, other authors have suggested functional ex-
planations. The general idea is that cognitive fatigue would be
a sensation generated by the brain, whose purpose is to stop
performing the current demanding task for the benefit of a
more rewarding activity.’*'* In that framework, fatigue would
stem from a cost-benefit calculation that adjusts the behavior
to enjoy available pleasures or avoid opportunity costs. An argu-
ment in favor of cognitive fatigue as a functional adaptation is
that increasing the payoff of the ongoing task tends to improve
performance, even in a state of exhaustion,'® suggesting that
there is no true loss of capacity. However, a difficulty with a
purely functional account is that fatigue appears unnecessary:
if there is a good reason to stop working on a task and turn to
a more gratifying activity, the brain could figure it out without
generating an illusion of fatigue. Also, it becomes implausible
to maintain that cognitive fatigue is just a functional adaptation
when considering the numerous pathological conditions, such
as burnout and depression, in which fatigue precisely prevents
the patient from enjoying life opportunities.'®'”

To articulate the functional and biological accounts of cogni-
tive fatigue, we propose (1) that such fatigue stems from an in-
crease in the cost of exerting cognitive control, (2) which in
turn stems from metabolic alterations in the brain system under-
pinning cognitive control. Rather than performance decrement
with time-on-task, which can be confounded with boredom,
counteracted by training, or compensated by motivation,'® we
reasoned that cognitive fatigue might be better captured by eco-
nomic choices where monetary benefits are discounted by effort
or delay costs. A choice bias for low-cost (LC) options would
thus represent an objective marker of cognitive fatigue, even in
the absence of a conscious fatigue sensation that could be re-
ported on a psychometric scale. Indeed, subjective fatigue re-
ports are notoriously unreliable, due to limitation of insight, social
desirability bias, and variability in the mapping from sensations
to rating scales.'9?°

In a previous study,”* we developed a daylong protocol mixing
cognitive control tasks meant to induce cognitive fatigue and in-
tertemporal choices to reveal cognitive fatigue. To avoid con-
founding cognitive control exertion with boredom or simply
time, we compared groups of participants performing easy and
hard versions of the same tasks for the same duration. Only
with hard versions did we observe an increase in the preference
for immediate rewards over larger later rewards. This increased
choice impulsivity after a day of hard work was associated with
decreased activity in a specific component of the cognitive con-
trol system: the left lateral prefrontal cortex (IPFC). The same
behavioral and neural signatures of cognitive fatigue were also
observed in endurance athletes suffering from a mild form of
burnout due to training overload.?® Previous results, therefore,
support our hypothesis that cognitive fatigue arises from an in-
crease in the cost of recruiting the cognitive control brain system.

However, these previous studies using functional MRI (fMRI)
could not address the question of why the cost of cognitive con-
trol increases when used for a prolonged duration. This study
aimed to fill this gap, using in-vivo 'H magnetic resonance spec-
troscopy (MRS) to quantify metabolites in neural tissues, while
participants followed a similar daylong protocol. It has been sug-
gested before that the cost could arise from the need to clear
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waste products that would accumulate during cognitive control
exertion and would potentially be toxic for neural functions.?®
Another possibility would be that the cost arises from the need
to restore some energetic resource or metabolic precursor
which, unlike blood glucose, would be specifically consumed
in cognitive control brain regions. The case of glutamate is
particularly interesting, as when released in high quantity, it
may be both missing inside the cell (for the neuron to maintain
its activity) and disturbing synaptic transmission (to other neu-
rons) outside the cell. Thus, glutamate may be considered a sub-
stance that could be either depleted or accumulated with neural
activity. To monitor metabolites of the glutamate family, we used
an optimized 'H MRS sequence.?”*?® We then looked for a three-
way interaction between groups (easy versus hard cognitive
work), brain regions (IPFC versus visual cortex), and time on
task (session number).

In addition, we used diffusion-weighted 'H MRS*° to
monitor the diffusion of glutamate-related substances,*°
because we anticipated that their concentration might remain
constant, even if the metabolic account for cognitive fatigue is
correct. The reason is that spectroscopic measures of meta-
bolic concentrations cannot distinguish between cell types
nor between cell compartments. A depletion inside the cell
could therefore be compensated by an accumulation outside
the cell. Diffusion measures are useful to detect this sort of
phenomenon because they are differentially sensitive to com-
partments, as diffusion is more limited inside cells or vesicles
than outside cells.®"** The same three-way interaction be-
tween group, region, and session was therefore tested on
diffusion MRS data.

Finally, compared with our previous protocol, we added
behavioral tests and measures to better specify the link between
cognitive fatigue and the cost of cognitive control. In particular,
we included other domains of economic choice with options
that trade monetary rewards against costs that were either
related to cognitive control (effort discounting) or not (probability
discounting). Relatedly, we extended our computational model
of economic choice with additional bias parameters favoring
LC options in all domains. In addition, we measured pupil dilation
during decision-making as an index of cognitive effort invested in
deliberation, as we had no fMRI measurement to document the
reduction in cognitive control exertion. Last, to better dissociate
these choice-related markers of cognitive fatigue from experi-
enced fatigue sensation, we collected subjective self-reports
on a visual rating scale.

RESULTS

Behavioral measures of cognitive fatigue

To induce cognitive fatigue, participants followed a previously
validated experimental protocol®* (see Figure 1). For 6.25 h, par-
ticipants performed cognitive tasks (N-switch and N-back) that
require cognitive control. In both tasks, letters were displayed
on a computer screen every 1.60 s. In the N-switch task, partic-
ipants had to perform either a vowel versus consonant or an up-
per versus lower case discrimination task, depending on the co-
lor of the letter. The difficulty in this task depends on the rate of
switches (i.e., color changes), which was 1 versus 12 in 24 trials
for the easy versus hard versions. In the N-back task,
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Figure 1. Experimental design
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From top to bottom, the protocol is shown with diminishing time resolution, from single-trial to daylong experiment. In two training sessions (not shown) preceding the
testing day, participants learned to perform the cognitive tasks with a correct response rate higher than 90% and practiced the economic choices to reveal their
indifference points. During the main experiment, participants alternated between cognitive tasks and economic choices. One group of participants (n = 16) was
assigned the easy version and the other group (n = 24) the hard version of cognitive tasks. In every block, cognitive tasks included either 24 N-switch trials (1 versus 12
switches in the easy versus hard condition) or 24 N-back trials (1 versus 3-back in the easy versus hard condition). The task to do was announced at the beginning of
the block and was changed once per session. Economic choices included one trial per cost domain (delay, probability, and physical and cognitive effort). In all
choices, the two options were a variable reward at a low cost versus 50€ at a variable cost. Participants performed 5 sessions (S1-S5) of 75 blocks, for a total duration
of 6.25 h. Three of these sessions were performed in the scanner to simultaneously collect magnetic resonance spectroscopy (MRS) data.

participants had to state whether the letter on-screen was iden-
tical or different from the letter presented in N trials before. The
difficulty in this task depends on the distance between trials
(i.e., the load of information to keep in working memory), which
was 1 versus 3 for the easy versus hard versions. Participants
were split into two groups: the test group (n = 24) performed
the hard version (12-switch and 3-back), whereas the control
group (n = 16) performed the easy version of cognitive tasks.

In our search for behavioral signatures of mental fatigue, we
started with traditional measures: performance decrement and
self-report. Both groups were trained on the day before and
maintained a high level of performance throughout the test day
(correct response rate >80%, see Figure 2A). A three-factor
(group x session x task) linear mixed model fit on performance
showed a significant difference between groups (B = 0.06,
p < 0.01) and a significant decrease with session number (3 =
—0.01, p = 0.001), but no significant difference between tasks
(B = —0.009, p = 0.68) and no significant group-by-session
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interaction (B = —0.002, p = 0.61). In log-transformed response
times (RTs), the same model showed a significant difference be-
tween groups (B = —0.11, p < 0.001), a significant difference be-
tween tasks (B = —0.14, p < 0.001), but no significant effect of
session (§ = 0.001, p = 0.63) and no significant group-by-session
interaction (B = —0.004, p = 0.20). Thus, performance measures
confirmed that low-demand tasks were easier (with higher accu-
racy and shorter RT) than high-demand tasks but provided no
evidence for a fatigue effect (across sessions) that would differ
between groups.

In addition to objective performance, participants were also
asked to rate their subjective level of fatigue on a rating scale.
A two-factor (group X session) linear mixed model analysis
showed a significant increase with session number (8 = 9.30,
p < 0.001) but no significant difference between groups
(B = —8.14, p = 0.19) and no significant interaction (B = —0.32,
p = 0.85). Thus, the subjective report could not capture a fatigue
that would specifically relate to task difficulty, hence to the load
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Figure 2. Behavioral results

(A) Behavioral measures of cognitive fatigue. Top
graphs: average correct response rate (left) in
cognitive tasks (pooling N-switch and N-back trials)
and subjective rating of experienced fatigue (right),
between 0 (“I'm in top form”) and 100 (“I’m totally
exhausted”), separately for the groups performing
easy and hard versions. Middle graphs: median

response time (RT) during N-switch and N-back
5 tasks (left) and median RT during economic choice
tasks except probability discounting (right). Bottom
graphs: average bias parameter in economic
choices (pooling all cost domains but probability)
across experimental sessions (left) and for the
different cost domains in the hard condition (right)
shown across experimental sessions. The bias
parameter is an additive bonus for the low-cost
(LC) option in the choice model. Bias data are
normalized to the grand mean in the first session.

See Figure S1 for model-free behavioral results and

Table S1 for results of the statistical analysis.

5 (B) Pupillary measures of cognitive fatigue. The left
graph shows estimates (beta weights) from a linear
regression model meant to explain pupil size, at
each time point within an economic choice trial.
The model included intercept, group, and session
as factors of interest and various factors of no inter-
est (including choice and response time, see STAR
Methods). Before linear regression, pupil record-
ings were preprocessed, aligned to choice onset
(i.e., option display), and baseline corrected (by
subtracting the mean over the —500-0 ms time win-
dow). The vertical dashed line indicates the median

Physical effort

= Delay
Cognitive effort

= Probability

RT. The intercept shows the time course of pupil
5 dilation, irrespective of group and session. The
impact of cognitive fatigue corresponds to the dif-
ference in session effects between the easy and
hard conditions (stars indicate time points when
the difference is significant). For visual comparison
with the other behavioral results, the right graph
shows non-Z scored, but baseline corrected, pupil
% size during the time window when the group differ-
ence was significant, per group and session
(normalized to the grand mean of the first session).
In all graphs, error bars indicate inter-participant
standard errors of the mean (SEM). The error bars
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on cognitive control. To assess other potential psychological
states that may have affected choices, we also asked partici-
pants to rate their level of hunger and stress. Hunger ratings
increased before lunch (sandwich and fruit eaten during the
10-min break) but trivially decreased afterward, whereas stress
ratings were stable throughout the day (Figure S1A). These re-
sults suggest that self-reported fatigue (like hunger and stress)
should be distinguished from the actual fatigue related to the
exertion of cognitive control.

To reveal cognitive fatigue associated with demand on
cognitive control, we turned to economic choices. Participants
made four choices after each 24-trial block of cognitive task tri-
als. Each choice opposed a small-reward/low-cost (LC) option
to a big-reward/high-cost (HC) option. The four choices

for subjective ratings of fatigue are plotted but are
too small to be visible in the graph. Stars on
brackets indicate significant group-by-session in-
teractions.

corresponded to the four possible cost domains: (1) delay in
reward delivery (bank transfer, as in previous protocol), (2)
cognitive effort (difficulty level of a 30-min block of N-switch
task to be performed after the experiment), (3) physical effort
(power of a 30-min cycling session on a home bike after the
experiment), and (4) probability of reward delivery (in a lottery
played after the experiment). Big rewards were always 50€,
and HCs were randomly varied across five predefined levels.
LCs were either zero or a close-to-zero fixed level (such as
3 days for delay discounting). Small rewards (associated with
LC options) were adjusted to individual indifference points, in
a calibration session before the experiment, such that each
participant started the protocol in the morning with a rate of
LC choices of around 50%.

Current Biology 32, 3564-3575, August 22, 2022 3567




¢ CellPress

To analyze economic choices, we used a computational
modeling approach that was previously validated.?>?° Models
included a domain-specific discounting function (with a free dis-
count parameter k) that integrated rewards and costs to
generate option values, and a softmax choice function (with a
free inverse temperature ) that generated selection probabili-
ties from the difference between option values. In addition to
these standard parameters (k for the steepness of discounting
and @ for the consistency of choices), we included an additive
bias parameter that shifted the softmax function toward the se-
lection of the LC option. All free parameters were estimated
per participant and session.

To determine whether a computational parameter would cap-
ture cognitive fatigue related to task difficulty, we looked for
group-by-session interactions in a two-factor linear mixed model
analysis performed across cost domains. The interaction was
neither significant for discounting steepness k (p = 0.24), nor
for choice consistency 8 (p = 0.63), but was significant for the
LC bias (p = 0.02, see Figure 2A and Table S1). The same anal-
ysis performed separately in each cost domain showed that the
interaction was significant for delay, cognitive, and physical
effort discounting (all p < 0.05) but not for probability discounting
(p = 0.98). Thus, the signature of cognitive fatigue was captured
by the same LC bias parameter as in our previous studies,”**°
now extended to other cost domains that involve cognitive con-
trol (not only to wait for gratification but also to exert effort), but
not to factors that do not require cognitive control (such as the
outcome probability in a lottery).

Note that a model-free analysis would lead to similar conclu-
sions. Indeed, the LC choice rate followed the same pattern as
the LC bias parameter: no significant change in the low-demand
group, but a highly significant increase (p < 0.001) in the high-de-
mand group. Among domains, the LC choice rate significantly
increased for delay, physical effort, and cognitive effort dis-
counting, but not probability discounting (see Figure S1), again
mirroring the LC bias parameter. Thus, the computational
decomposition into parameters capturing different sources of
variance only contributed to clarifying the impact of cognitive fa-
tigue on economic choice, with a significant group-by-session
interaction. Note also that including performance as a covariate
in the linear mixed model analysis did not change the main result
(additional performance regressor: p = 0.85, group-by-session
interaction: p = 0.02), ruling out a potential effect of frustration
related to the error rate (which participants could not monitor
anyway because they were provided no feedback about their
performance in cognitive tasks).

The computational signature of cognitive fatigue suggests a
shift of preference favoring the options involving low control
costs. An alternative would be that fatigue changes the way
choices are made, favoring heuristics that avoid the pain of delib-
eration. From this perspective, participants might choose the LC
option because it is easier to valuate. However, this would not
explain why we observed a similar shift toward options with
non-zero LC, which are harder to valuate than zero-cost options.
When adding the zero/non-zero-cost factor to the linear model,
we found no evidence for a different effect of session on the
two trial types (interaction trial-type x session: § = 0.003, p =
0.87). In addition, a time-saving heuristic would predict that
choices would be made faster and faster along the day, which
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was not the case (see Figure 2A). Indeed, a three-factor
(group x session x choice) linear mixed model fitted on choice
RT across cost domains (except probability) showed borderline
effect of task difficulty (hard versus easy: § = 0.11, p = 0.06), no
main effect of session number (from 1 to 5: g = —0.01, p = 0.34),
no effect of choice type (LC versus HC option: § = —0.01, p =
0.58), and, critically, no significant interaction (all p >0.14).
Thus, there was no evidence for cognitive fatigue resulting in
the use of time-saving heuristics.

Pupillary measures of cognitive fatigue

Although fatigue induced a systematic bias favoring options that
require less cognitive control, we could not check whether this
bias was related to reduced IPFC activity during choice, as we
observed in previous studies,>**° because there was no fMRI
scanning here. However, as an index of cognitive effort exerted
during economic choice, we measured pupil dilation, which has
been associated to the demand in cognitive control and the level
of effort invested.®*

Within-trial pupil size time series were submitted to a sample-
wise multiple regression against session number and all relevant
nuisance variables (see STAR Methods). The time course of the
intercept (see Figure 2B, left plot) shows, irrespective of experi-
mental variables, an initial constriction for the first second, fol-
lowed by a dilation ending with the choice. The initial constriction
is commonly seen as a response to low-level features, like a sur-
prise signal evoked by a change in stimulus display, independent
of luminance,®* whereas the late dilation likely reflects the effort
invested in the deliberation.>* When comparing the regression
estimates of session number between groups, we observed a
significant difference (after correcting for multiple comparisons
using random field theory) in a late time cluster (from 1.42 to
3.50 s). The difference was driven by the late dilation plummeting
with session number in the hard group (see Figure 2B, right plot),
suggesting that less effort was invested in choice deliberation
with cognitive fatigue.

Metabolic measures of cognitive fatigue

Behavioral results suggest that the fatigue-induced preference
shift toward LC options is associated with less effort invested
in decision-making. This pattern is consistent with our proposal
that cognitive fatigue can be conceived as an increase in the cost
of recruiting cognitive control. To explain why control cost is
increased by the performance of hard cognitive tasks, we turned
to brain metabolism. Our model (see Figure 3A) assumes that re-
cruiting cognitive control regions either exhaust some metabolic
resource or accumulate some toxic by-product. This metabolic
alteration may somehow be sensed by a meta-controller that
would adjust the intensity of control exertion depending on ex-
pected costs and benefits, as previously suggested.®® Thus,
the diminution of control exertion would be the outcome of a
regulation loop aiming at maintaining the concentration of me-
tabolites within acceptable limits. Increasing the expected ben-
efits could naturally counteract the impact of increased meta-
bolic costs and maintain the intensity of control exertion. This
is why the reduction of control exertion is more salient in eco-
nomic choices, where the expected benefit cannot be precisely
estimated, compared with cognitive tasks, in which correct per-
formance results in a precise payoff.
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(A) Model. Our conceptual model assumes that the amount of cognitive control to be invested over the behavior is submitted to a cost/benefit trade-off. The
benefit of control is to improve performance (depending on task difficulty) and hence the associated reward (depending on payoff schedule), or to make a sound
economic choice. The cost of control relates to the necessity of either restoring an exhausted resource or clearing out an accumulated by-product of neural
activity. The model, therefore, specifies the relationships between behavioral observables (accuracy in cognitive tasks and bias in economic choice) and brain

measures (IPFC activity with fMRI, and X concentration with MRS).

(B) Predictions. Regarding the metabolite X (be it an exhausted resource or an accumulated by-product), the model predicts a three-way interaction between
region (IPFC versus V1), group (easy versus hard conditions), and session (growing fatigue).

To keep the predictions simple (see Figure 3B). We assumed
that metabolic alteration (either exhaustion or accumulation) (1)
would only occur when performing hard cognitive tasks (not
easy ones), (2) would only affect the IPFC (the region identified
as related to cognitive fatigue in previous studies) and not the
primary visual cortex (V1) (although it is constantly stimulated
in this experiment), and (3) would progressively develop
with session number, until it reaches a plateau due to meta-
regulation. Thus, the two metabolic hypotheses predicted a
(group X region x session) three-way interaction.

Totest for this three-way interaction, we measured in-vivo meta-
bolic concentrations with MRS, using an optimized semi-LASER
"H sequence,?’*® in both the left IPFC and V1 voxels of interest
(VOls), during sessions 1, 3, and 5 of the experiment (Figure 4A).
The only metabolite showing a significant three-way interaction
was glutamate, irrespective of the ratio computed for normaliza-
tion (Figure 4; see Figure S2 for other metabolites): glutamate/
myo-Inositol (Glu/Ins, B = 0.06, p = 0.02), glutamate/total creatine
(Glu/tCr, B = 0.04, p < 0.01, see Table S2), and glutamate/total
N-acetyl aspartate (GIu/tNAA, B = —0.02, p = 0.03). Alog-likelihood
ratio test confirmed a significant improvement of the linear mixed
model fit when adding interaction terms (Glu/Ins: p < 0.001, Glu/
tCr: p < 0.001, Glu/tNAA: p < 0.001).

The observed pattern was consistent with the accumulation
hypothesis, in the sense that the group performing hard cognitive
tasks ended the experiment with more glutamate in the IPFC
than the control group, (Glu/Ins: t = 2.23, p = 0.03, Glu/tCr: t =
2.27, p = 0.03, GIu/tNAA: t = 1.68, p = 0.10, between-group
t test in session 5), no difference being observed in the visual
cortex (Glu/Ins: t = —1.10, p = 0.28, Glu/tCr: t = —0.95, p =
0.35, GIu/tiNAA: t = —0.44, p = 0.66; between-group t test in

session 5). However, contrary to our expectations, the interac-
tion was not driven by an increase in the hard condition but by
a decrease in the easy condition.

We also measured metabolic diffusion in the same VOlIs using
a second semi-LASER sequence added with diffusion gradi-
ents?® and again found a significant three-way interaction
involving glutamate (Figure 4B, lower part). More specifically,
the interaction was observed for the apparent diffusion coeffi-
cient (ADC) of Glx (glutamate and glutamine quantified together:
B = 6.95e—06, p = 0.02, see Table S3). This interaction was
driven by GIx ADC increasing across sessions in the IPFC (but
not in V1) of participants performing the hard version of cognitive
tasks (but not the easy version). This is consistent with the hy-
pothesis that glutamate concentration is regulated during cogni-
tive control exertion, potentially leading to higher concentrations
in the extracellular space where diffusion is faster. The pattern
was in line with the prediction of the metabolic accumulation
model, as the interaction was driven by an increase in the hard
condition versus a steady state in the easy condition.

Finally, we assessed the correlation between behavioral and
neuro-metabolic measures of cognitive fatigue, as was done in
our previous studies between behavioral and fMRI measures.**>°
After regressing out variables of no interest (see STAR Methods),
we tested the correlation across participants between the increase
in LC bias (from session 1 to session 5) and the increase in Glu con-
centration and Glx diffusion, separately (see Figure 5). The correla-
tion was positive in both cases, but significant for GIx diffusion only
(r=0.43, p =0.039), not Glu concentration (r = 0.30, p = 0.24). The
significant correlation suggests that the choice bias toward LC op-
tions was linked to the level of Gix diffusion and hence to a need for
slowing down glutamate accumulation.
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Figure 4. MR spectroscopy results

Glutamate was the only metabolite to show the expected three-way interaction (group X region x session).

(A) Data collection. The left lateral prefrontal region (axial slice at the bottom) was defined as the cluster showing reduced activity with cognitive fatigue in a
previous fMRI study.>* On top slices are shown the locations of the MRS voxels of interest (VOIs, 35 x 25 x 15 mm) in the primary visual cortex (V1, left) and in the
lateral prefrontal cortex (IPFC, right). The IPFC VOI was individually adjusted to cover most of the cluster identified with fMRI, whereas the V1 VOI was placed to
cover the medial part of the occipital cortex. The glutamate peak (Glu) is indicated within an example individual spectrum acquired in the IPFC.

(B) Main results from "H MRS. Top: glutamate concentration levels were normalized over concentrations of total creatine (tCr, shown here), myoinositol (Ins,
shown in Figure S2), and total N-acetyl aspartate (tNAA, shown in Figure S2). The three-way interaction (group X region x session) was significant in the three
normalized measures. For visual comparison with behavioral measures and model predictions, data were also normalized to the grand mean of the first session.
See Figure S3 for additional metabolites. Bottom: main results from diffusion-weighted MRS. Glx (glutamate plus glutamine) were again the only metabolites for
which diffusion measures (apparent diffusion coefficients [ADCs], see STAR Methods) showed the expected three-way interaction. Error bars indicate inter-

participant standard errors of the mean (SEM). Stars on brackets indicate significant group-by-session interactions.

See Tables S2 and S3 for results of the statistical analysis.

Modeling the link between neural activity and metabolic
measures

To examine whether the downregulation of cognitive control, re-
sulting in decreased IPFC activity, as observed using fMRI in our
previous study,”* could explain the pattern of IPFC glutamate
measures, as observed using MRS in the present study, we
developed a Markov chain model. This model (see Figure 6) pre-
dicts the evolution of a metabolic measure X across time, de-
pending on two opposite flows: an accumulation due to control
exertion (indexed by fMRI activity) and a clearance proportional
to X (measured by MRS).

Results show that MRS measures were consistent with the prin-
ciple of a metabolic regulation mechanism, reducing IPFC activity
to maintain glutamate accumulation within acceptable levels (i.e.,
manageable by clearance processes). However, the concentra-
tion and diffusion measures suggest different parameterizations
of the model, notably regarding baseline IPFC glutamate levels
in the morning (relative to glutamate accumulation rate).

DISCUSSION

In this study, we investigated the impact of performing hard
cognitive control tasks for several hours, compared with perform-
ing easy versions of the same tasks for the same duration. We
observed (1) a shift in preferences toward LC options, (2) a
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reduction of pupil dilation during economic choice, (3) a glutamate
concentration maintained at a high level in the IPFC, and (4) an in-
crease in glutamate/glutamine diffusion within the IPFC. This
pattern of results is compatible with the assumption of anincrease
in the cost of cognitive control, related to the necessity of main-
taining glutamate levels within acceptable boundaries. The
elevated cost would both limit the recruitment of cognitive control
during choice and bias decisions away from costly options.

The present behavioral results replicate and extend previously
published observations that exerting intense cognitive control,
either for intellectual work®* or endurance sport,”® induces a
form of cognitive fatigue that manifests as an increased prefer-
ence for immediate options. The key results are significant
group-by-session interactions, showing a specific effect of task
difficulty, ruling out time or boredom as potential explanations.
We did not find such an interaction in self-reported fatigue, which
similarly increased across sessions in the two groups. This may
be due to participants mapping the range of their subjective sen-
sations on the same portion of the rating scale, as they were un-
aware of the other condition (imposed on the other group). It could
also reflect a dissociation between actual fatigue of the cognitive
control brain system and conscious perception of fatigue. This
dissociation is common in everyday life; for instance, when peo-
ple go on working or driving and start making errors because
they failed to detect their true fatigue state. In any case, it shows
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Figure 5. Correlation between behavioral and MR spectroscopy
measures

For each participant of the high-demand group, the increase (from first to last
session) was calculated for both the behavioral measure (choice bias toward
low-cost option [LC] after regressing out the effect of cost domain) and the MR
spectroscopy measures (Glu/tCr ratio or Glx apparent diffusion coefficient
[ADC] after regressing out nuisance variables such as quality estimates of
metabolic spectra, gray matter concentration in the scanned voxel, and
head movement parameters). Graphs show the correlation across participants
(dots), with regression lines and confidence intervals (shadow areas). The star
indicates that the correlation with LC bias was only significant for ADC Glx.

that subjective ratings cannot be taken as absolute measures and
that cognitive fatigue might be better evidenced by preference
shifts toward LC options in economic decisions. Conversely,
choice-related markers of cognitive fatigue might not account
for the subjective perception of intense fatigue that represents a
frequent clinical symptom in many neuropsychiatric conditions.
As in previous studies, this fatigue did not affect performance in
cognitive control tasks (N-back and N-switch), suggesting that
cognitive control exertion is sustained in these tasks, despite an
increase in its cost, due to the high benefit attached to correct
performance. Indeed, making correct responses in cognitive con-
trol tasks entailed an objective monetary benefit, whereas the
benefit of making a sound decision in economic choice tasks
was more difficult to estimate. The new observations provide
further support for an interpretation of the preference shift as
stemming from an elevation of cognitive control cost.

First, we have introduced other types of discount factors in our
economic choices (probability, cognitive effort, and physical
effort), on top of delay. The shift in preference was specifically
observed for choices that involve cognitive control (waiting longer
or exerting more effort to obtain better rewards), not for choices
involving risk (a cost associated to the lottery, not imposed on
the participant). These results are consistent with the idea that
mental and physical effort both involve cognitive control because
they both require to over-rule automatic routines.?® In all cases
but probability discounting, the shift in preference was captured
in the choice model by an additive bias favoring LC options, not
by the choice consistency (inverse temperature) parameter.
Note that a decrease in choice consistency could not mimic a
preference shift with our design because options were tailored
around individual indifference points, such that participants
started the experiment at chance level (with a 50/50 preference
between LC and HC options). Also, choices were not more impul-
sive in the sense that they were made faster with cognitive fatigue.
As in previous experiments, choice RT did not vary with the num-
ber of sessions completed along the day and did not depend on
which option was selected (costly or uncostly).
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Second, we used eye-tracking during scanning sessions and
observed that cognitive fatigue was accompanied by lesser pupil
dilation when making a choice. This can be taken as evidence for
lower cognitive effort invested in economic choice, consistent
with the reduced IPFC activity that was found in our previous
study using fMRI. Indeed, pupil dilation has been validated as
an index of cognitive effort.>*>**~*° Pupil dilation has also been
associated with the activation of noradrenaline neurons in the lo-
cus coeruleus and hence activation of the anterior cingulate cor-
tex.*"™* It is tempting to interpret these results in the light of the
theoretical framework assuming that the intensity of cognitive
control is adjusted by the anterior cingulate cortex, depending
on expected costs and benefits.*> Applied to our case, the
decrease in pupil dilation would suggest that the reduction of
cognitive control during economic choice, due to its elevated
cost, is mediated by the anterior cingulate cortex downregulat-
ing activity in the IPFC, which we observed with fMRI.

The next question in this general account of cognitive fatigue
was about the cost of cognitive control: why is it increasing
with the performance of high-demand tasks? To articulate the
cost-benefit arbitration framework with a neuro-metabolic ac-
count of cognitive fatigue, we imagined two scenarios: cognitive
control could be reduced to prevent some resource from
dangerous exhaustion or to prevent some by-product from
dangerous accumulation. These two scenarios predicted a
three-way interaction between group, region, and session, which
we only found in glutamate levels, whatever the normalization
procedure. At the end of the day, IPFC glutamate concentration
and glutamate/glutamine diffusion were significantly higher in
the group performing high-demand tasks relative to the low-de-
mand group, although there was no difference in the visual cor-
tex. These observations are consistent with higher-demand
cognitive control tasks being associated with greater glutamate
release,*>"*® which would result in steeper glutamate accumula-
tion with time on task across a workday.

However, the interaction observed in glutamate concentration
was mainly driven by a decrease in lower-demand conditions,
which we did not expect. However, we verified that such a
pattern was still consistent with our dynamic model including
clearance proportional to glutamate concentration and accumu-
lation related to the intensity of cognitive control (hence to
IPFC activity). The fitted parameters indicated that what we
had not anticipated was a high level of IPFC glutamate at the
beginning of the day. Facing the new scanning environment
and implementing new instructions (e.g., to provide a manual
response without moving the head) might already be cognitive
control demanding,*’ possibly explaining the elevated glutamate
level. In this scenario, the gradual elimination of glutamate would
be observable in the low-demand conditions, although it would
be compensated by gradual accumulation related to task perfor-
mance in the high-demand conditions. Such a scenario was
corroborated by results showing that glutamate/glutamine diffu-
sion was higher in the IPFC after high-demand cognitive control
exertion, compared with the control group and region. Diffusion
measures displayed the expected pattern, with an increase
related to intense cognitive control, and no change in low-de-
mand conditions. The interpretation can hence be refined, as a
change in glutamate/glutamine diffusion might signal a relative
accumulation in the extracellular compartment (where diffusion
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Figure 6. Model linking neural activity to metabolic measures

(A) Formalization of the dynamic model of metabolite concentration. In our
model, the evolution of metabolite X across time follows a Markov chain. X, 4
is determined by X;, minus a passive clearance depending on X level, plus
accumulation of X due to exerting control at time t (for cognitive tasks or
economic choices). We illustrate here the accumulation model because it fits
with glutamate measurements. Note that a resource exhaustion model would
follow the same logic, except that exerting control would deplete X, which
would need to be restored instead of cleared.
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of molecules is faster), presumably related to strong spiking ac-
tivity.>'*? Note however that although release in the extracellular
space is a standard interpretation of the diffusion measure, it
could in principle reflect other phenomena, such as release
from vesicles to the intracellular space, or change in the gluta-
mate/glutamine ratio (because the two molecules may diffuse
in different compartments).

Obviously, our results are only correlational and cannot be
taken as proof that what limits cognitive control exertion is the
need to prevent glutamate accumulation. Causal manipulations
would be required to validate this assumption. In addition, the
metabolic spectrum was narrow and constrained by technical
limitations, as there are metabolites that cannot be quantified
with in-vivo MRS methods or at least in a 3T MRI scanner, using
a semi-LASER sequence, with the echo-time optimized for gluta-
mate. For instance, GABA would also have been a possible
candidate but could not be reliably quantified with our MRS
data acquisition sequence. In any case, it should be noted that
the target substance requiring regulation may not be glutamate
itself but any substance whose concentration is linked to gluta-
mate accumulation. Nevertheless, glutamate regulation has
been pointed out as an essential component in the brain energy
budget and discussed as a potential source of cognitive fa-
tigue.*®*°° Indeed, there are good reasons for which glutamate
accumulation may need to be regulated.

Glutamate is well known as the main excitatory neurotrans-
mitter in the brain, which must be maintained in tight balance
with inhibitory neurotransmission for regular cortical func-
tioning.>'~°® Glutamate is present in the cells at high concentra-
tions, as it is involved in the detoxification of ammonia and also
serves as a precursor for the synthesis of proteins.*” It is there-
fore important to limit glutamate release, both because it is a
useful resource in the intracellular compartment and because it
is a potentially toxic by-product in the extracellular compart-
ment. In line with our results, extracellular glutamate tends to
accumulate in stressful conditions or with increasing task de-
mands such as working memory load.*®>° The issue with too
high concentrations of extracellular glutamate is not only the
disruption of excitation/inhibitory balance but also the induction
of activation bursts, which might impair the transmission of infor-
mation and cause excitotoxicity in the most severe cases.®'*>**
A known regulation mechanism at the synaptic level is glutamate
reuptake through transportation into surrounding glial cells®®°’
or axons®®*° and conversion into glutamine. Unfortunately, our
measurement technique was not sensitive enough to explore
molecular/cellular mechanisms. Although we could distinguish

(B) Predictions of glutamate measurements. Top plots represent the input to
the model, i.e., IPFC fMRI activity extracted from a previous study.>* Data were
normalized between 0 and 1 across conditions, but separately for the cognitive
tasks and economic choice, upsampled to 22 sessions and smoothed with a
moving average. Middle plots show the two components driving the dynamics
of glutamate measure: accumulation due to IPFC activity (during both cogni-
tive task and economic choice) and clearance proportional to glutamate level.
The bottom plots show two simulations with different sets of parameters that
correspond to glutamate concentration measures (8g = 0.85, Bgear = 0.09,
Btask = 0.12, Benoice = 0.01) and glutamate/glutamine diffusion measures
(Bo = 0.14,Bciear = 0.04, Brask = 0.11, Bepoice = 0.001). In both cases, the
interaction between group and session is driven by the reduction of IPFC
activity with fatigue in the hard group.
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concentrations of glutamate and glutamine, diffusion measures
pooled the two metabolites. Additional limitations relate to the
low spatial and temporal resolution of MRS scanning. As our
VOI was about 40 cm®, it is impossible to draw precise conclu-
sions about anatomical locations, and because data acquisition
takes about 10 min, it is impossible to know which particular task
events most contributed to glutamate accumulation.

In the dynamic model, fMRI and MRS measures were inte-
grated to verify that our data were compatible with glutamate
accumulation being the trigger of cognitive control regulation.
Nevertheless, there are some gaps in this demonstration, as we
took some shortcuts. An obvious one is that we did not collect
fMRI and MRS data in the same participants; hence, we could
only make predictions at the group level and could not test in-
ter-individual correlations. However, the assumption that the
BOLD signal is linearly related to glutamate release is corrobo-
rated by simultaneous fMRI and MRS recordings in the visual
cortex.®° On a related note, the very principle of the model, postu-
lating that glutamate is regulated, may have weakened inter-
individual correlations between glutamate levels and behavioral
signatures of fatigue. This is because glutamate level is supposed
to be maintained at a given boundary, by reducing IPFC activity
during choice; hence, the choice bias inferred from the behavior
should be strongly correlated with IPFC activity, as we indeed
observed in our previous studies,***> but only weakly with gluta-
mate level, as we observed here. Note that our MRS findings are
not just mirroring the fMRI findings: IPFC BOLD activity was
reduced across sessions, whereas glutamate concentration
was steady or slightly increasing, as was glutamate/glutamine
diffusion. This is evidence of some accumulation taking place: if
glutamate was purely reflecting the momentary activity of the
brain region, it should have plummeted throughout the day.

Even if our model provides proof of concept that a metabolic
account of cognitive fatigue can be combined with a cost-benefit
mechanistic framework, several aspects remain speculative at
this stage. Notably, how glutamate levels would be monitored
to estimate the costs of cognitive control is unclear. It remains
possible that the brain may not monitor glutamate itself but any
phenomenon linked to glutamate accumulation (e.g., GABA syn-
thesis). Also, an explanation is still missing for why cognitive con-
trol regions would accumulate glutamate more than other regions
like the visual cortex. On a different note, research is needed to
explore the recovery of glutamate levels at rest or during sleep.
Interestingly, the cognitive control network is deactivated in rest
conditions that activate the default mode network,'®®" which
could favor the clearance of extracellular glutamate. Moreover,
it has been shown that glutamate concentrations decrease during
sleep, in relation to EEG slow-wave activity.®” Glutamate could
therefore belong to the potentially toxic substances that are elim-
inated during sleep, which could mediate recovery from cognitive
fatigue.®® Finally, how cognitive fatigue due to excessive use of
cognitive control relates to other forms of fatigue remains to be
specified. As it was also observed in a mild form of burnout syn-
drome?® and patients with low-grade glioma,®® we tend to believe
that an elevated cost of cognitive control is key to several clinical
manifestations of fatigue,*®° but this speculation still requires
empirical confirmation. It would also require a theoretical articula-
tion between the objective fatigue of the cognitive control brain
system documented here with choice-related markers and the
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subjective fatigue sensation that might represent the main
complaint of patients in the clinics.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Matlab R2019a Mathworks SCR_001622

Psychophysics Toolbox http://psychtoolbox.org/ SCR_002881

SPM12 FIL, London SCR_007037

Lcmodel http://s-provencher.com/ SCR_014455
lcmodel.shtml

Deposited data https://zenodo.org/record/ https://doi.org/10.5281/
6795446 zenodo.6795446

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Antonius Wiehler
(antonius.wiehler@gmail.com).

Materials availability
No new materials have been generated.

Data and code availability
The data are available at https://zenodo.org/record/6795446.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

We included a total of n = 40 participants, n = 24 in the high-demand condition (age mean m = 22.21 y, standard deviation SD = 6.91,
13 female), n = 16 in low-demand condition (age m =24.56 y, SD = 6.12, 10 female). The two groups were matched regarding impul-
sivity trait (as measured by Barratt’s Impulsiveness Scale BIS-11) and baseline fatigue state (as measured by Brief and Multidimen-
sional Fatigue Inventory questionnaires, BFl and MFI-20). All participants gave informed consent before participating in the study. All
participants were screened for exclusion criteria: left-handedness, age under 20 or above 39 y, regular use of drugs or medication,
any history of psychiatric or neurological diagnosis, and contraindications to MRI scanning (pregnancy, claustrophobia, metallic im-
plants). In both conditions, 2 additional participants stopped the experiment before completion and were therefore excluded from the
data analysis. All participants ate a sandwich and a fruit during the first break. Water was the only allowed drink during the day and
was available without restrictions. Participants received 50€ as financial compensation for the two training sessions. For their per-
formance on the experiment day, they received 5€ plus another 3€ for each percent above 75% in their average performance in the
cognitive tasks, which would result in 50€ for an average of 90% correct responses maintained throughout the day. Additionally, one
choice trial in each domain (probability, delay, effort) was pseudo-randomly chosen and implemented. The study was approved by
the local ethics committee of the Pitié-Salpétriere Hospital (CPP no 113-15, ID RCB: 2015-A01445-44).

METHOD DETAILS

Tasks
Two cognitive control tasks were used to induce cognitive fatigue: N-switch and N-back. In each trial of both tasks, a letter appeared
on the screen, colored either red or green. Participants had to give their response within a 0.8s time window, followed by a 0.8 s inter-
trial interval. During N-switch blocks, participants had to perform a discrimination task that depended on the color of the letter: upper
case vs. lower case for one color, vowel vs. consonant for the other color (red or green, counterbalanced across participants). The
task was switched 12 times per block of 24 trials in the hard condition, whereas it was switched only once in the easy condition. Dur-
ing N-back blocks, participants had to indicate whether the letter on the screen was the same as the letter presented in three trials
(hard condition) or one trial (easy condition) before.

To reveal cognitive fatigue, we presented four choice trials after each block of 24 task trials. The time out for choice trials was
3.25 s, followed by a jittered inter-trial interval (mean 1.25 s, SD = 0.33). Each choice trial opposed a small-reward/low-discount
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option with a big-reward/high-discount option. Rewards ranged from 0.1€ to 50€. All rewards were presented with 2 digits precision
but rounded to the first digit: for example, 41.23€ had been rounded to 41.20€. Discount factors were of four different types: delay,
probability, cognitive effort, and physical effort. Delays ranged from zero (reward received in cash immediately after the experiment)
to one year (reward received by bank transfer), with intermediate levels of three days, one week, one month, and three months).
The probability of winning the lottery (vs. nothing) ranged from 5% to 100% with intermediate levels of 25%, 50%, 75%, and
95%. The cognitive effort consisted of performing the N-switch task for 30 minutes after the main experiment. Effort levels corre-
sponded to the number of switches in a 24-trial block: 0, 2, 4, 6, 9, or 12. The physical effort consisted of pedaling on a stationary
bike for 30 minutes after the main experiment. Effort levels corresponded to the resistance of the bike, expressed in percentage
of the maximum power that the participant could develop during calibration: 0%, 12.5%, 25%, 37.5%, 56.25%, 75%. Participants
were instructed that one randomly selected choice of each type would be realized, meaning that money would be given to the partic-
ipant but only after the chosen delay / playing the chosen lottery / exerting the chosen effort level.

All participants completed two sessions of training on the day before the main experiment. Each training session started with the
easy version of the cognitive control tasks and gradually increased in difficulty until performance reached 90% correct responses at
the highest difficulty level. During the second training session, participants were also instructed about the choice tasks, and they
practiced with a test set of choices to get familiarized.

On the day of the main experiment, participants first rehearsed the cognitive control tasks to ensure their performance was still
above 90% correct responses. Then they underwent a choice calibration procedure. For all choice trials, the big reward was fixed
to 50€, while the small reward was associated with either zero cost (e.g., 0 days for delay) or the lowest cost (e.g., 3 days). For each
discounting domain and cost level separately, the size of the small reward was adjusted with a staircase procedure depending on the
choice of the participant. Had the participant chosen the low-cost option twice in a row, the small reward was reduced to the mean
between its current value and that of the last rejected low-cost option (O€ for the first trial). Had the participant rejected the low-cost
option twice in a row, the small reward was increased to the mean between its current value and that of the last accepted low-cost
option (50< for the first trial). If the low-cost option was accepted/rejected only once, the small reward value was reduced/increased
by 10%. The staircase procedure stopped when the difference between accepted and rejected small rewards was smaller than 4€.
The mean between the last-rejected and last-accepted small reward was taken as the indifference point for each cost level of a given
domain. On average, participants made 15.47 [7-108] choices to reach the indifference point.

To reduce noise in these estimates, the calibration procedure was repeated three times and indifference points were averaged,
separately for every cost level. In total, 36 indifference points were estimated, corresponding to four choice domains times nine
cost levels (five opposed to zero discount, e.g., one year vs. 0 days, and four opposed to lowest discount, e.g., one year vs. 3 days).

In the main experiment, for every cost level, we tailored choice options around participant-specific indifference points, with five
trials presenting small rewards at the indifference point (drawn from a normal distribution centered at the indifference point with
SD=1), one trial with the small reward 30% below and one trial with the small reward 30% above the indifference point. The choice
trials close to indifference were meant to maximize the sensitivity for detection of a preference shift, while distant trials were meant to
ensure that computational models could be fitted with recoverable parameters. The consequence of tailoring choice options was that
participants started the experiment with an average choice rate close to 50%, leaving room for either decrease or increase with fa-
tigue. Under these constraints, small rewards were randomly drawn such that each of the 5 sessions presented novel choices. This
resulted in a total of 5 sessions X 4 choice types x (4+5 cost levels) x (5+1+1 trials) = 1260 choice trials per participant.

At the beginning of each session, participants rated their subjective fatigue by positioning a cursor on a visual analog scale be-
tween 0 (“I'm in top form”) and 100 (“I’'m totally exhausted”).

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational modeling
To analyze choice behavior, we used a computational modeling approach. A priori, we favored multiplicative forms for delay and
probability discounting, because a delayed or probabilistic reward must be positive (always better than nothing) and subtractive
forms for effort discounting because the reward may not be worth the cost (so the value can be negative). We nonetheless used
Bayesian model comparison to identify the discounting functions that provided the best account of choices made during calibration
for each cost domain. The most plausible discounting functions were indeed exponential for delay (as in our previous studies), hy-
perbolic for probability, and parabolic for effort (see equations below).

In all models, rewards were first discounted with different functions depending on the considered factor (D: delay in days, P: win-
ning probability, E: effort level) to generate subjective values (SV):

Delay discounting:®®

SV = Re P (Equation 1)
Probability discounting:®”
SV = L (Equation 2)
BREY q
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Cognitive and physical effort discounting:°®°°

SV = R — kE? (Equation 3)

with the free parameter k controlling the steepness of discounting in each function. Then subjective values of the low-cost (LC) and
high-cost (HC) options are compared and transformed into the probability of choosing the low-cost option (p,¢) through a softmax
function:

1

Pie = 3 g 8Vic Vo) +bias) (Equation 4)

With the inverse temperature parameter ¢ controlling choice consistency with subjective values and the bias parameter shifts the
choice probability towards the low-cost option.

The different models were inverted using a variational Bayes approach under the Laplace approximation, implemented in the VBA
toolbox’? (available at https://mbb-team.github.io/VBA-toolbox) programmed in Matlab R2019a (MathWorks, Natick, MA, USA). We
first modeled the calibration choices in each participant to build informed priors for the main experiment. Then, using the individual
priors, we estimated all posterior parameters independently for each participant, session, and choice type.

Pupil dilation

During sessions one, three, and five, we recorded pupil size with an Eyelink 1000 eye-tracker (SR Research, right eye recorded,
1000 Hz sampling rate). Time series were pre-processed by removing blink periods, fixations outside the screen, and samples
outside three times the median signal. Removed samples were replaced by linear interpolation. Time series were then band-pass
filtered between 1/128 Hz and 1 Hz, down-sampled to 60 Hz, z-scored across all sessions per participant, epoched around choice
trials, and corrected for baseline differences across trials (by subtraction of the mean pupil size within the 500 ms before choice
onset). Within-trial pupil size time course was analyzed using a sample-wise regression approach: for each time sample, pupil
size was regressed against session number across trials. To remove potential confounds with low-level variables, the linear regres-
sion model also included low-cost choice (1 or 0), low-cost choice in the trial before (1 or 0), the choice type (probability, delay, cogni-
tive effort, physical effort), type of low-cost option (zero or non-zero), the inter-trial interval before choice onset, the cognitive task
performance for the current block, the block number and the trial number within the block. The regression was run at the individual
level and regression estimates were tested against 0 at the group level with a 1-D random field theory implementation in the VBA
toolbox.”®

MRS data acquisition

Magnetic Resonance Spectroscopy (MRS) was performed on a 3 T Siemens MAGNETOM Prisma Fit MRI scanner (Siemens Medical
Solutions, Erlangen, Germany), equipped with gradient coils capable of reaching 80 mT/m on each of the three axes. The standard RF
body coil was used for excitation and a 64-channel receive-only head coil for reception.

Participants alternated between performing the tasks inside the scanner (sessions 1, 3, and 5) and outside the scanner (sessions 2
and 4). Before every new scanning session, the spectroscopic volumes of interest (VOI) were manually placed to maximize the over-
lap with those of the previous session. To precisely position the VOI and to perform tissue segmentation, the MRS protocol was
preceded by a 3D T1-weighted magnetization-prepared rapid gradient echo sequence [field of view = 256 x 256; isotropic resolution =
1 mm; TR/TE = 2300/4.18 ms; total acquisition time = 4 min 44 s]. A VOI of 35x25x15 mm?® was positioned in the lateral prefrontal
cortex. The size of the VOI was adapted to cover most of the activation cluster observed at the group level in our fMRI study®* while
respecting the block shape imposed by the MRS sequence and a minimum volume which was needed to reach an acceptable signal-
to-noise ratio. First, on the axial slice, the VOI, with an anterior-posterior expansion of 35 mm, was placed on the middle frontal gyrus.
We used the posterior border of the triangular part of the inferior frontal gyrus as the posterior reference. The VOI was then rotated to
follow the cortex orientation and to include as little CSF as possible. Second, on the coronal slice, the VOI, which spanned 25 mm,
was again placed to cover the middle frontal gyrus and was rotated to follow the cortex orientation and to avoid including CSF. A
control VOI of the same size was positioned over the primary visual cortex.

For the MRS data acquisition, we used a modified single-voxel semi-LASER sequence®”?® (TR/TE = 5000/28 ms; number of com-
plex points = 2048; averages = 64; total acquisition time =5 min 30 s). BO shimming in the VOIs was performed using a fast automatic
shimming technique with echo-planar signal trains utilizing mapping along projections, FAST(EST)MAP.”' Before the MRS acquisi-
tion, the RF power for the asymmetric slice-selective 90° pulse (duration, 2 ms) of the semi-LASER sequence was optimized to pro-
duce the maximum signal. This was in turn used to automatically adjust the power of the 180° hyperbolic secant adiabatic full pas-
sage pulses (duration, 4 ms). Water suppression was performed using variable power with optimized relaxation delays (VAPOR) and
suppression of signal contamination from other brain regions was achieved with outer volume suppression (OVS). In addition, unsup-
pressed water spectra were acquired for eddy current corrections. The contribution of cerebrospinal fluid (CSF) to the VOI was cor-
rected by segmenting the brain and estimate the proportion of CSF in the VOI.

MRS data analysis
All spectra were processed in MATLAB R2019a (MathWorks, Natick, MA, USA). Eddy currents and shot-to-shot phase and frequency

correction were performed as described previously.”® LCModel”” (Version 6.3.0-G) was used for the quantification of metabolite
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concentrations. The basis set was simulated using the density matrix formalism and included alanine, ascorbate, aspartate, creatine,
y-aminobutyric acid, glycerophosphorylcholine, phosphocholine, phosphocreatine, glucose, glutamine, glutamate, glutathione,
myo-inositol, scyllo-inositol, lactate, N-acetylaspartate, N-acetylaspartylglutamate, phosphorylethanolamine, and taurine, as well
as macromolecule spectra that were acquired in healthy volunteers for a previous study.”® Metabolite quantification was considered
reliable for Cramér Rao Lower Bounds (CRLB) < 20%, so we excluded data for 10% of the participants. According to this criterion, the
following metabolites were reliably quantified: total creatine (tCr), myo-inositol (Ins), total N-acetylaspartate (tNAA), total choline
(tCho), glutathione (GSH), glycerophosphocholine (GPC), glutamine (GIn) and glutamate (Glu).

To account for local inhomogeneities in the VOIs, as well as reduce the high inter-participant variability in the absolute concentra-
tion due to the variable amounts of CSF, gray and white matter in the VOls, we report metabolic concentration as a ratio to the base-
line peaks of Ins, tNAA, and tCr. To control for potential confounds, we included the following measures as covariates in the statistical
analysis: age, linewidth (as estimated by LCModel), signal-to-noise ratio (as estimated by LCModel), grey matter concentration in the
voxel (estimated by a Freesurfer segmentation of the VOI), and movement regressors which were estimated in SPM127° based on
pre/post-measurement EPl images.

Diffusion-weighted magnetic resonance spectroscopy acquisition
Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) was performed in the same VOIs as for the MRS acquisitions using
a single-voxel semi-LASER sequence with diffusion gradients added in a bipolar configuration (TE = 120 ms, spectral width = 3 kHz,
number of complex points = 2048).%° All resonances were excited using a slice-selective 90° pulse (pulse length of 2.52 ms) followed
by two pairs of slice-selective adiabatic refocusing pulses in the other two dimensions (HS1, R = 20, pulse length 7.5 ms). All
acquisitions were synchronized with the cardiac cycle using a pulse-oximeter device, to start each acquisition every three heart-
beats, while maintaining a minimum TR of 2500ms. Diffusion-weighting was applied in three orthogonal directions ([1, 1, -0.5],
[1, -0.5, 1], [-0.5, 1, 1] in the VOI coordinate system) with diffusion gradient duration = 22 ms, diffusion time = 60 ms and four
increasing gradient strengths g = 0, 19, 39, 58 mT/m, resulting in the b-values b0 = 0, b1 = 1080, b2 = 4300 and b3 = 9770 s/mm?.
Sixteen averages were collected for each diffusion-weighting condition and saved as individual free induction decays for further
post-processing. Water suppression was performed using VAPOR and OVS suppression.”* For eddy current corrections, unsup-
pressed water reference scans were acquired from the same VOls using the same parameters as water suppressed spectra.

DW-MRS spectral processing

DW-MRS data were corrected as described previously.?® Eddy current corrections were performed for each DW condition using wa-
ter reference scans. Zero-order phase fluctuations and frequency drifts were corrected on single averages before summation using
an area minimization and penalty algorithm and a cross-correlation algorithm, respectively.”> A peak-thresholding procedure was
applied, for each DW condition, to discard the single spectra with artifactually low SNR caused by non-translational tissue motion.?°
A threshold of 70% for the proportion of spectra rejected per DW condition was set. No datasets were excluded using this criterion.
The remaining spectra, for each condition, were then averaged.

The averaged spectra were analyzed with LCModel for metabolite quantification. The basis set was simulated based on the density
matrix formalism’® and using chemical shifts and J-couplings reported previously.””:”® The basis set included alanine, ascorbate,
aspartate, creatine, y-aminobutyric acid, glucose, glutamate, glutamine, glutathione, glycerophosphorylcholine, mins, lactate,
N-acetylaspartate, N-acetylaspartylglutamate, phosphocreatine, phosphorylcholine, phosphorylethanolamine, scyllo-inositol,
and taurine. Independent spectra for the CH3 and CH2 groups of NAA, Cr, and PCr were simulated and included in the basis set.
Metabolite quantification was considered reliable for CRLB < 20% at b0, and no data were excluded due to this criterion. Signal/noise
was > 10 at all b-values.

ADCs were calculated for the metabolites fitted by LCModel. Metabolite ADCs for tNAA, tCr, tCho, Glx, and Ins were computed in
each VOI and session by fitting a stretched exponential to the logarithmic metabolite signal decay:

log (S’"e“’) = —a+(— ADCxb)" (Equation 5)
'met.0
Were Spet 5 is the metabolite signal at a given b-value, Spet o is the metabolite signal at by, ADC is the apparent diffusion coefficient
(scaling factor) and v is the stretching factor. To control for potential confounds in the statistical analysis of ADC, we added the
following measures as covariates: age, linewidth and signal/noise as estimated by LCModel, grey matter concentration in the voxel,
and the proportion of spectra rejected during preprocessing.

Metabolic accumulation model
To test the link between neural activity measured using fMRI in our previous study using the same behavioral protocol®* and the pre-
sent spectroscopy measures, we developed a metabolic accumulation model (see Figure 6), following a Markov chain:

Gluy = Glui_1 — BeiearGlut — 1 + BraskBOLDiask ¢ + Benoice BOLDcpoice ¢ (Equation 6)

The model assumes that glutamate accumulates at a rate (Glu, - Gluy.4) that is proportional to instantaneous neural activity (proxied
by BOLD signal measured with fMRI during the cognitive tasks and economic choice) and dissipates at a rate that is proportional to its
current level. To generate the inputs to the dynamic model, we averaged BOLD activity measured for each session and group in our

Current Biology 32, 3564-3575.e1-€5, August 22, 2022 e4




¢? CellPress Current Biology

previous study.”* The BOLD activity was then upsampled to 22 sessions, normalized between 0 and 1, and smoothed with a moving
average, before entering into the dynamic model. We then fitted both Glu concentration (mean of Glu/tCr, Glu/Ins, and Glu/tNAA) and
Gix diffusion (ADC) measures, separately, as if they had been measured during sessions 2, 12, and 22, to match the timing of data
acquisition in the two studies. The model was inverted to estimate posterior parameters of the three scaling factors (Bgjear, Btask, and
Benoice) Using the VBA toolbox.”®

Statistical analysis

All statistical analyses were performed in MATLAB R2019a (MathWorks, Natick, MA, USA) with linear mixed models (function fitgime).
Intercepts and all within-participant factors (e.g., session) were estimated on the participant level. All between-participant factors
(e.g., condition) were estimated at the group level. Response times (RTs) during choice were log-transformed to correct a skewed
distribution and we excluded trials with short RTs of <0.1 s.
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