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Abstract

The relevant growth of human-machine interaction (HMI) systems in recent years is leading to the necessity of
being constantly aware of the cognitive workload level of an operator, especially in a safety-critical context such
as aviation. Since the confusion in the definition of this concept, this paper clarifies this terminology and also
highlights its relationship with stress. Thus, we analysed the state-of-the-art of cognitive workload evaluations,
showing three up-to-date methodologies: subjective, behavioural and physiological. In particular, the physiological
approach is increasingly gaining attention in the literature due to today’s exponential growth of biomedical sensors.
Therefore, a review of the most adopted physiological signals in the workload evaluation is provided, focusing on
the aeronautical field. We conclude by highlighting the necessity of a multimodal approach for mental workload
assessment as a result of this analysis.

Nomenclature

Aol area of interest

BR breath rate

BRO blink-related oscillation

CWL cognitive workload

DBN dynamic Bayesian network

ECG electrocardiogram

EDA electrodermal activity

EEG electroencephalography

EMG electromyography

EOG electrooculography

fNIRS functional near infrared spectroscopy
GSR galvanic skin response

HFE human factors and ergonomics

HR heart rate

HRV heart rate variability

ICAO International Civil Aviation Organisation
LoA level of autonomy

MCH modified Cooper Harper
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MUM-T manned-unmanned teaming

MWL mental workload

NASA TLX National Aeronautics and Space Association Task Load Index
OT™M one-to-many

PPG photoplethysmography

RCO reduced crew operations

RPE retinal pigmented epithelium

SA situation awarness

SC skin conductance

SCL skin conductance level

SCR skin conductance response

SPO single pilot operation

SVM support vector machines

TSVD time varying singular value decomposition
TV tidal volume

UAS unmanned aircraft system

UAV unmanned aerial vehicle

USAF United States Air Force

1.0 Introduction

The achievement of an ever-increasing level of safety has always been a key element of human-machine
interaction (HMI) systems. Thanks to the disruptive growth of the technological market in the last few
years, it is increasingly common to find contexts where an operator interacts with a machine that exhibits
a certain level of automation; hence the necessity of always guaranteeing an adequate safety level during
a performance [1]. These scenarios can be found in everyday life, such as when driving a car and in
specific jobs, as in the case of Industry 4.0 operators, air traffic controllers or pilots [2]. Moreover,
the exponential rise of new safety-critical contexts, such as the space market, brings new challenges in
developing and designing appropriate HMI systems [3, 4].

The concept of safety is particularly important in the aviation sector. Because of the major role played
by the air transport industry in the global economy, the key element to maintaining its vitality is to ensure
safe, secure, efficient and environmentally sustainable operations at the global, regional and national
levels. As shown in Fig. 1, this is demonstrated by data presented in the 2021 Safety Report by the
International Civil Aviation Organisation (ICAO), highlighting a decreasing trend in accident rate that
occurred over the last ten years. These results can be explained by the improvement in safety during
flight operations [5].

According to the Federal Aviation Administration (FAA) Report [6], 60-80% of fatal accidents can
be related to human errors, and around half of them occur during the highest workload phases of flight
missions [7]. These correspond to the take-off and landing phases when the crew is dealing with the
highest workload, and the airplane is in proximity to the ground, reducing manoeuvre margins in case
of an emergency. Thus, pilot workload monitoring has always been a central research topic in enhancing
civil and military aviation safety levels, especially through subjective assessments, in-flight training and
specific aircraft and cockpit design.

Moreover, despite today’s regulations requiring a pilot and a co-pilot on board the aircraft, in recent
years, attention to the so-called single pilot operations (SPOs) is growing in the aeronautical field. The
term SPO refers to the condition of flying an aircraft with only one pilot on board, assisted by advanced
system automation and/or ground operators providing piloting support services [8]. In order to maintain
ahigh level of safety during flight missions, the need to develop a cockpit assistant to monitor in real-time
the cognitive state of health of the pilot represents a key point in both the civil and military aeronautical
fields.
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Figure 1. This figure shows the aeronautical accidents trend from 2010 to 2020 [5]. It highlights a
decreasing trend in the accidents per year, fatal accidents per year and the accident rate (defined as the
number of accidents per million departures).

As the military aeronautical field is concerned, the next-generation fighters will be provided with the
capability of managing a fleet of unmanned aerial vehicles (UAVs). The domain of manned-unmanned
teaming (MUM-T), where (multiple) unmanned aerial vehicles are operated from an aircraft cockpit,
causes an even broader range of tasks for the cockpit crew. Although several approaches successfully
showed that operating multiple UAVs from a cockpit is possible, the challenge of unbalanced and pos-
sibly overtaxing workload conditions remains an open question. Hence the need for a cockpit assistant
system that is able to understand the pilot’s mental workload and consequently modulate the level of
autonomy (LoA) of the UAVs and the fighter itself. This allows the pilot to always operate in an optimal
workload condition and in the most demanding military environments [9].

On the other hand, the push towards the SPOs in civil aviation is led by the necessity of reducing
operating costs. Significant cost savings can be produced by halving the number of pilots, especially in
smaller regional aircraft operated on shorter routes, which may not be economically viable with higher
capacity airliners. In fact, direct operating costs attributable to flight deck crew rise as aircraft size
decreases. Moreover, a second driver for this transition is represented by the issues relating to a potential
shortage of commercial pilots in the near future. However, the benefits of SPOs in civil aviation can be
achieved only by guaranteeing the same (or higher) safety and handling quality level regulated to date
in the European Union Aviation Safety Agency (EASA) parts [10]. Therefore, a cockpit assistant with
the potential to understand the mental workload of the pilot and his/her ability/inability to operate the
airliner is a fundamental need to foster this disruptive transition.

For this reason, understanding how the evaluation of the cognitive state of an operator has been
addressed to date is important for developing the next generation of intelligent systems in HMI envi-
ronments. This paper aims to benefit in this direction by reviewing the state-of-the-art of physiological
approach for an operator’s cognitive mental workload monitoring, focusing on aircraft pilots.

This paper is structured as follows. Section 2 clarifies the definition of mental workload. Then,
Section 3 introduces the concept of the physiological approach for the mental workload assessment
by describing the most significant signals related to this methodology. Section 4 investigates the link
between these physiological signals and the variation of an operator’s mental workload, analysing 29
papers selected from a state-of-the-art study. Finally, in Section 5, the conclusions are drawn.
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Figure 2. Cognitive mental workload scheme [2]. The figure shows how an operator’s performance is
influenced by depletion factors (internal or external) and the imposed task load.

2.0 Mental workload definition

The concept of mental workload (MWL) has been studied for decades by several influential texts and
chapters in the human factors and ergonomics (HFE) field [11]. However, due to its complex and
multidisciplinary nature, a unique and universally accepted definition is still missing [31]. For example,
from a psychological perspective, Wickens defined MWL in his Multiple Resource Theory [14] as the
relationship between a task’s (quantitative) resource demands and the operator’s capacity to meet those
demands. Young et al. [1] considered the influence of the external and internal environment, defining
MWL as the ‘product of the demand/s of the task and the capacity/ies of the person performing the
task, where demands and capacities may be moderated by context.” In general, lots of conceptualisa-
tions of MWL consist of a multidimensional idea structured in four main components, which can be
represented by Debie et al. [2] in Fig. 2: (1) Task Load: the amount of work or external duties that the
operator has to perform; (2) Mental Load: the level of mental resources an individual is able to supply to
maintain a high-performance level while performing a task; (3) Depletion Factors: internal and external
factors such as stress, fatigue, motivation, attitude, etc.; (4) Performance: the outcome the operator is
performing.

It is important to highlight that the definition of mental load in Fig. 2 represents the component
related to the mental load of an operator without considering external factors, while the MWL concept,
which this paper aims to address, is represented by the mental condition that Debie et al. [2] referred in
their work as cognitive load. Therefore, the possible confusion between MWL and cognitive workload
(CWL) is evident, seeming to imply two different constructs. However, according to Hancock et al. [11],
‘the two terms address one issue and should be treated to mean exactly the same thing’ therefore, in the
following of this text, MWL and CWL will be treated as synonymous.

Despite the multifaceted characteristic of MWL, some recent studies tried to clarify this concept,
providing an implementable framework. An important contribution is given by Van Acker et al. [12],
finding the defining attributes of MWL (the features that frequently recur while examining definitions
and descriptions and that must exist for the concept to occur) in: task demands and the operator’s neu-
ral capabilities interaction; the dynamic distribution, supervision and use of mental resources; and
the triggering of a linked subjective response. From this analysis, they defined MWL as ‘a subjec-
tively experienced physiological processing state, revealing the interplay between one’s limited and
multidimensional cognitive resources and the cognitive work demands being exposed to.’

Therefore, thanks to the comprehensive approach of this work and its recent formulation, we treat
MWL or CWL as referring to this definition of Van Acker [12].

2.1 Stress

A concept that often appears with MWL in the literature is stress. Thus, it is necessary to clarify what
this term refers to and its link with CWL. The meaning of stress depends on the field of application,
and it is different for different people in different situations. There has been much debate about this
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theme in the scientific community leading to a not unique definition of it [16]. Regarding the aviation
sector, this concept can be associated with ‘the response of the body to stimuli that affect the normal
physiological balance of a person, causing physical, mental or emotional strain’ [7]. This condition is
not easy to assess because something stressful for one person is not necessarily the same for another.
Moreover, although a stressful condition in the same instance may positively affect an operator, focusing
his attention and vigilance, most of the time, this leads to unsafe situations, such as neglecting key tasks a
pilot.

Stimuli that can lead to a stress condition are called stressors, and the most common ones in avi-
ation are noise, uncomfortable temperature, vibrations and high workload levels [7]. When the pilot
has to accomplish too many tasks in too little time, then potential risk conditions arise. Thus, a direct
cause-effect link exists between mental workload and the pilot’s stress. Referring to Fig. 2, the stress
condition can be inserted in the Depletion Factor block, representing an internal condition influencing
the cognitive workload of an operator.

3.0 Methods for mental workload assessment

An excessive or limited mental workload can lead to situations that are dangerous, especially when man-
aging complex systems like aircraft, cars or the airport’s control tower, causing errors and accidents.
Thus, it is clear the necessity to monitor the mental workload of an operator during its performance.
The literature shows three up-to-date cognitive workload measurement methodologies: subjective,
behavioural and physiological [15]. In particular, subjective evaluations consist of questionaries sub-
mitted to pilots at the end of the performance. Behavioural measures are based on monitoring pilot
activities during the flight mission and checking the correspondence between the performed actions
and those planned beforehand. Finally, physiological measures are related to monitoring the operator’s
physiological signals to infer his cognitive workload condition.

Whereas subjective evaluations and behavioural measures are methods studied and adopted for sev-
eral years, the physiological MWL assessment has been increasingly used in recent years due to the
improvement of sensor technologies, leading to unobtrusive measures providing objective and accurate
information about MWL [13]. Therefore, this paper focuses on the most adopted physiological signals
for MWL evaluation, while providing a general overview of subjective evaluations and behavioural
measures.

Subjective evaluation

As said before, subjective evaluations are post-performance self-reported measures used more fre-
quently than other techniques, mainly because they are inexpensive and simple to administer. The most
widely used of these tools is the National Aeronautics and Space Association Task Load Index (NASA
TLX). The NASA TLX is so frequently adopted that this survey has become synonymous with the
concept of mental workload, and it is considered the gold standard in workload measurement in human-
computer interaction studies [17]. The NASA TLX is a multi-dimensional rating scale that adopts six
workload dimensions to provide diagnostic information about each dimension’s nature and relative
contribution in influencing overall operator workload. These six drivers are: mental demand, physi-
cal demand, temporal demand, performance, effort and frustration [18]. However, the NASA TLX is
not exempt from some limitations. These include how sources of stress are integrated, the tool’s lack
of construct validity, its sensitivity to changes in workload over time and how the NASA TLX can be a
source of workload [19]. Due to these drawbacks, behavioural data, physiological measures, and subjec-
tive metrics are frequently combined. Other examples of subjective evaluations are the uni-dimensional
Bedford scale, designed to identify an operator’s spare mental capacity while completing a task, and the
uni-dimensional Cooper-Harper and modified Cooper-Harper (MCH) scales. The former was developed
to evaluate the aircraft’s handling qualities [20], while the latter assumes a direct relationship between
the level of difficulty of aircraft controllability and pilot workload [21].
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Behavioural evaluation

Monitoring pilots’ behaviour in the cockpit during a flight mission is another effective way to infer
their cognitive workload. This approach is performed in the literature through primary and/or secondary
task performance measures. The former consists of monitoring the operator’s performance through vari-
ables linked with the primary task, represented by the main focal point of the given domain, for which
we are attempting to determine the MWL’s level [11]. For instance, checking if the pilot pressed a but-
ton, fixated on a specific display or answered a control tower’s question can provide useful information
about pilots’ workload condition compared to a reference, a priori-defined activities plan. The latter
consists of a task designed to compete with the same cognitive resources as the primary one. Thus, the
operator’s MWL can be inferred by analysing the performance decreasing on secondary tasks while
maintaining attention on primary tasks [11]. A key contribution in this field is given by A. Schulte from
the Universitdt der Bundeswehr, Miinchen, thanks to developing a workload-adaptive and task-specific
associate system for military helicopters and fighters. This system acts as an additional artificial crew
member that can monitor the pilot’s activities, confront them with a reference plan and understand their
mental workload. Then, by assessing the crew’s workload and the existing and upcoming task condi-
tions, it adapts the amount of its support to maintain the pilot’s workload always in an optimal state,
avoiding overload situations [22]. The behavioural approach is based on Ref. [23]: (1) a task model that
consists of the characterisation of each duty that the crew can operate during a mission, described by
properties, and connected to other functions by relations, based on the Multiple Resource Model intro-
duced by Wickens in Refs [24-26]; (2) a mission plan that represents the pilot’s current tasks and those
to be performed in the future; (3) activities that are ‘those elementary tasks that the user performs in
parallel at a certain time’ [22]. Therefore, by checking during the mission the execution of the planned
activities and correlating the missed ones with their quantified workload value, it is possible to deter-
mine if the pilot is in a tolerable MWL condition. The MUM-T represents a typical implementation of
this concept to improve future military aviation [22]. The same MUM-T application was adopted by
Chen et al. [27] to develop a specific mathematical behavioural model that allows the evaluation of the
cognitive workload by adopting three factors: (1) pilot utilisation factor that quantifies the effort in the
interaction process with the UAVs; (2) UAV request rate that is linked with the number of UAV’s in the
fleet and (3) the number of humans—robotics interactions.

3.1 Physiological evaluation

The relationship between the mental workload of an operator and the variation of his physiological
signals is an issue that has been investigated for decades. As early as 1979, Moray described in the
proceeding of a NATO conference the different aspects associated with the mental workload by also
referring to physiological measures [28]. However, apart from a few studies developed during the years
[29], only in the last ten years is it possible to observe an increasing growth of research about this
topic. This phenomenon can be easily explained by observing the exponential development in the sensor
technologies field. Indeed, the biomedical technology market is growing as fast as smartphones and
the Internet [30]. Reliable and cheaper wearable sensors are therefore available on the market, making
physiological measures easier and more accurate also in complex conditions like an aircraft cockpit or
a car. This allows for a deeper investigation of how the variation of cognitive workload can influence
the human body [31]. Furthermore, the literature shows several signals that can be related to the mental
workload of an operator during a performance: heart activity, skin activity, eye activity, brain activity,
respiration, body temperature, muscle activation and voice patterns. Nevertheless, based on previous
studies’ output, only the following signals are the most significant [2, 18, 31]: heart activity, skin activity,
eye activity, brain activity and respiration. Before analysing how these signals are related to the variation
of mental workload, a physiological description is provided hereinafter.

3.1.1 Heart activity
Heart activity can be measured with the electrocardiogram (ECG) or photoplethysmography (PPG), and
it is the most adopted physiological signal that has ever been related to cognitive workload. In Kramer’s
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Figure 3. This figure represents the cardiac cycle measured through both ECG and PPG. The time
delay between the peaks of the two signals is due to the blood pulse wave traveling from the heart to
the spot where the PPG sensor is placed (in this case, it is represented by the time delay of about 0.2s,
typical of a finger PPG).

review in 1991, the usefulness of this signal to assess mental workload was highlighted [32]. Several
features can be obtained from the ECG or the PPG, which adoption varies in the field of application
[33]. In particular, heart rate (HR) and heart rate variability (HRV) are the most adopted parameters in
the literature that can be related to cognitive workload variations. These characteristics can be inferred
from the ECG and PPG signals:

« Asshown in Fig. 3, ECG represents the electrical activity of the human heart. Its pattern is com-
posed of five waves — P, Q, R, S and T. By evaluating the distance between the QRS complexes
(for example, through artificial neural networks, genetic algorithms, adaptive threshold, etc.), it
is possible to obtain HR and the HRV [34].

« Heart activity can also be monitored through the PPG. This consists of measuring blood volume
changes in a microvascular bed of the skin based on optical properties, such as absorption, scat-
tering and transmission properties of human body composition under a specific light wavelength
[35]. The peak-to-peak interval of this signal is adopted to infer HR and HRV. Compared to mea-
surements obtained by ECG, the difference is the time it takes the pulse wave to travel from the
heart to the spot where the PPG sensor is placed [36].

3.1.2 Eye activity

Thanks to the recent significant development of ocular technologies, eye activity measures are becoming
more and more efficient for assessing an operator’s MWL [31]. The monitoring of eye movements has
been studied for several years in different fields of application (such as education, user experience and
the study of cognitive learning processes) [51]. However, only with the development of portable and
unobtrusive eye-tracker, this technology has been introduced in complex environments and work condi-
tions [18]. Therefore, eye activity analysis is related to tracking gaze and pupil measures, which means
monitoring the oculomotor events that function as the basis for several eye movement and pupil assess-
ments: fixations, saccades, smooth pursuit, blinks and vergence [52]. During MWL analysis, only some
parameters are usually considered: blinks, fixations, saccades and pupil dilation. In fact, fixations repre-
sent the period when our visual gaze remains at a particular location, and saccades are rapid movements
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Figure 4. EDA can be divided into two components. The tonic and slower one is the SCL, while the
phasic and faster component is represented by the SCR.

between fixations. Common analysis metrics include fixation or gaze durations, fixation rate, transition
rate, saccadic amplitudes, saccadic velocities and various transition-based parameters between fixations
and/or regions of interest [53]. Moreover, according to Ayres et al. [ 18], many studies have demonstrated
that pupil dilation is positively correlated with the cognitive workload imposed by the tasks. The eye
blink rate can be measured through electrooculography (EOG), which consists of ‘recording the stand-
ing corneal-retinal potential arising from hyperpolarisations and depolarisations existing between the
cornea and the retina’ [54].

3.1.3 Skin activity

An increasingly important physiological feature in the study of MWL is the monitoring of skin activity,
particularly the so-called electrodermal activity (EDA). This represents an electrical manifestation of the
sympathetic innervation of the sweat glands, where their function modifies the conductance of an applied
current. This modification allows for measuring the changes in electric skin conductance (SC), resulting
in an increase in electrical conductance in accordance with sweating [58]. The interesting characteristic
of this signal is that the sweat glands, thus the EDA signal, are more responsive to psychological stimuli
rather than thermal stimuli; therefore, emotional information can be inferred [59]. As shown in Fig. 4,
the SC signal can be decomposed into a tonic and a phasic component that are respectively called skin
conductance level (SCL) and skin conductance response (SCR). These signals have different time scales
and relationships to exogenous stimuli and can be expressed as follows [60]:

SC=SCR+ SCL ()

o SCL represents the tonic component of the EDA signal, and it is a measure related to the slow
shifts of the EDA. The SCL is typically computed as the mean of several measurements taken
during a specific non-stimulation rest period.

« SCR s the phasic component of the EDA. It reflects the short-time response to the stimulus. The
typical shape of the SCR comprises a relatively rapid rise from the conductance level followed
by a slower asymptotic exponential decay back to the baseline. This EDA’s component is also
called galvanic skin response (GSR).
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3.1.4 Brain activity

In MWL assessment, monitoring brain activity has always played a key role. Understanding how the
brain works during a performance is extremely important because as cognitive workload increases for a
specific task, available brain resources for other not primary tasks decrease. The cognitive processing of
further tasks may be delayed or hampered if the brain’s resources are depleted below a threshold point
[63]. Throughout the years, the assessment of brain activity related to MWL has usually been led with
methodologies like electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and
functional near-infrared spectroscopy (fNIRS) [18]. However, today the most adopted ones are EEG and
fNIRS because of the improvement of sensors, making them portable, easy to use and reliable [2]. These
signals represent two different ways to monitor the MWL:

« EEG is a technique that measures electrical potential from the brain and represents electrically
sensed signals over time that can be decomposed in the frequency domain. Usually, this signal
is categorised into four frequency-based bands: Delta (< 4 Hz), Theta (4 Hz to 8 Hz), Alpha
(8 Hz to 13 Hz), and Beta (13 Hz to 30 Hz) [64]. A key feature of the EEG signal is represented
by event-related potentials (ERPs) representing small changes in the brain’s electrical activity
recorded from the scalp, realised by internal or external events [65].

« fNIRS consists of a non-invasive tool to evaluate regional tissue oxygenation at the bedside con-
tinuously. fNIRS exploits the scalp and skull’s transparency to infrared light and the differences
in absorption spectra between oxyhemoglobin and deoxyhemoglobin to quantify the local oxygen
saturation of hemoglobin in the brain respiration, thus highlighting the activation or deactivation
of specific brain areas [66]. For instance, fNIRS evaluations over the prefrontal cortex (PFC)
have a direct link to working memory, decision-making, and executive control, which are all
aspects directly related to MWL.

3.1.5 Respiration

In everyday life, whenever a person performs actions involving mental effort, it is evident how breathing
is also affected [72]. According to Ayers et al. [18], the relationship between respiration and MWL has
been studied for decades, highlighting how behavioural, psychological and metabolic processes affect
respiratory measures. Nevertheless, this signal did not obtain the same attention in MWL evaluation
as ocular or cardiac signals; therefore, it is possible to find less research on this topic in the literature.
Respiratory monitoring can generally be assessed through non-invasive contact or non-contact methods.
The former is related to evaluating one of the following characteristics: respiratory airflow, respiratory
sounds, air temperature, air humidity, air components, respiratory-related chest or abdominal move-
ments and modulation of cardiac activity [77]. The latter, instead, can be obtained by leveraging radar,
optical and thermal technologies [78]. However, the main features that have been extrapolated from the
respiratory signal are those based on time and volume (and their variability), in particular, the breath
rate (BR) and the tidal volume (TV).

« Breath rate represents the number of respirations per minute.

« Tidal volume is the volume of air that is inhaled and exhaled with each breath [73].

4.0 Biosignals for physiological workload evaluaion

Based on the growing interest in the link between physiological signals and MWL highlighted in the pre-
vious section, it is necessary to investigate the state-of-the-art of biosignals for a physiological workload
evaluation. This research started in March 2022 and lasted three months.

The methodology adopted for selecting the papers on which to conduct our analysis consisted in
searching the keywords ‘mental workload” OR ‘cognitive workload’ OR ‘stress assessment’ together
with ‘physiological’ OR each of the aforementioned physiological signals on the databases Google
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Table 1. This table reports for each database the number of papers obtained
during our research by inserting the keywords ‘mental workload’, ‘cognitive
workload’ and ‘stress assessment’ together with each of the words reported
in the first column of the table. As it is possible to observe, the core results
were obtained through the Google Scholar database.

Google Scholar Web of Science IEEE Xplore

Physiological 306 183 26
Heart 182 153 24
Respiration 10 5 2

Skin 33 14 1

Eye 167 71 15
Brain 193 90 8

TOT 1,483

Scholar (core collections), Web of Science, and IEEE Xplore Digital Library. A second research was
performed by introducing ‘pilot” OR ‘aviation’ on the same databases. This resulted in 1483 overall
papers, as reported in Table 1.

In this analysis, we first eliminated duplicates after acquiring the results reported in Table 1. We then
screened the papers by reading the titles and abstracts. Finally, we narrowed the number of selected
articles by reading the full text from the subset obtained. The inclusion criteria were the following: (1)
peer-reviewed journal articles, book sections, conference papers and technical reports written in English;
(2) papers that assessed the MWL evaluation directly through the physiological signals without intro-
ducing time limits; (3) papers that adopted significant and consistent equipment and tests/simulations;
(4) papers that performed a structured and consistent analysis of the physiological signals related to
evaluating different levels of MWL (for example through statistical or machine learning techniques).
We focused on articles that can give us a comprehensive information collection and exclude similar
results. We manually searched the reference lists of the publications determined to be pertinent to find
additional sources. Moreover, priority was given to papers considering several signals simultaneously.
As aresult, 29 papers were selected and analysed in the following paragraphs (shown in Table 2).

A subsection is introduced for each of the signals presented in Section 3. The aim is to report the
goals and results obtained in the research of each paper. In particular, the focus is on investigating the
relationship between the aforementioned physiological signals and the variation of MWL with a general
perspective, followed by a focus on their aeronautical application. Moreover, the features adopted by the
selected papers for each signal and their relationship with the MWL variation are reported in Tables 3—7.
The (1) symbol represents an increase of the feature as the MWL increases, the ({) symbol a decrease
and the (—) character an uncertain trend. In these tables, the trends that are generally possible to observe
from the literature (and therefore in the majority of the papers considered in our study) are reported. As
pointed out above, due to the high subjectivity of the topic and the dependence on the application context,
these trends should not be taken as an absolute truth but more as a general trend found in the literature
and, in particular, in the papers discussed in this article. Furthermore, the paper’s characteristics are
summarised in two tables: Table 2 reports the reference, the name of the authors, and the physiological
signals adopted in their research, marked with a (e) sign; Table 8 shows the implemented methods, the
kind of test, the involved population and the year of publication.

4.1 Heart activity

The literature put in evidence how HR and HRV are highly sensitive physiological features for assessing
MWL variations in general applications [18, 37]. In particular, Hughes et al. [33], studying the impact
of workload manipulations on various cardiac measurements, showed that the sensitivity of the HR and
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Table 2. State-of-the-art comparison of the physiological signals for mental workload assessment. The
analysed papers and relative biosignals are reported and compared.

Heart Eye Skin Brain

References Authors activity activity activity activity Respiration Others
[15] McKendrick et al. .
[29] Wilson et al. . . o . o
[33] Hughes et al. .
[37] Miyake et al. o o o
[38] Gable et al. . .
[39] Morere et al. . . .
[40] Katsis et al. . o o . .
[41] Liao et al. . . . .
[42] Giorgi et al. . . .
[43] Pongsakornsathien et al. . . . . .
[44] Lim et al. . . . .
[45] Planke et al. . . . . .
[46] Wang et al. . . .
[47] Mansikka et al. .
[48] Wei et al. .
[49] Gentili et al. . .
[50] Martin et al. . .
[55] Belkhiria et al. . .
[56] Vanneste et al. . o .
[57] Dilli Babu et al. .
[61] Setz et al. .
[62] Ghaderyan et al. .
[67] Rebsamen et al. .
[68] Svinkunaite et al. .
[69] Hajra et al. o
[70] Herff et al. .
[71] Mohanevelu et al. .
[74] Romine et al. . . .
[76] Salomone et al. .

Table 3. Heart rate and heart rate variability most adopted features for MWL evaluation. It is reported
the feature’s name, a brief description, the unit of measure (U. M.) and the qualitative expected trend
with respect to an increasing MWL.

Mental
Feature Description U.M. workload
HR Time interval between two consecutive heart beats S 0
SDNN Standard deviation of NN intervals ms J
SDRR Stadard deviation of RR interval ms N
RMSSD Root mean square of successive RR interval differences ms 0
pNN50 Percentage of successive NN intervals that differ more than 50 ms %o J
LF Absolute power of the low-frequency band (0.04-0.15Hz) ms? 0
HF Absolute power of the high-frequency band (0.15-0.4Hz) ms? N
LF/HF LF to HF ratio %o 0
Poicaré axes  Direction of the Poincare axes ms N
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Table 4. Eye activity most adopted features for MWL evaluation. It is reported the
qualitative expected trend with respect to an increasing MWL.

Mental

Feature Description U. M. workload
Fixations Period of time when our gaze ms 0

remains at a particular location Hz

(duration, frequency, count) -
Saccades Small, rapid movements between ms N

fixations, usually from 20 to 200 Hz

(duration, frequency, count) =
Blink rate Full or partial eye closure measure - 0
Pupil diameter Pupil size measure mm 0

Table 5. Skin activity most adopted features for MWL evaluation. It is reported the qualitative expected
trend with respect to an increasing MWL.

Mental
Feature Description U. M. workload
SCL mean Mean value of SCL uS 0
SLC standard deviation  Standard deviation of SCL uS -
SCR mean Mean value of SCR uS 0
SCR standard deviation  Standard deviation of SCR uS -
Number of SCR peaks Number of peaks of the SCR component of the EDA - 0
Magnitude of SCR Magnitude of the SCR manifestations uS -
Duration of SCR Duration of the SCR manifestations ms -

Table 6. Brain activity most adopted features for MWL evaluation. It is reported the qualitative expected
trend with respect to an increasing MWL.

Mental
Feature Description U.M.  workload
fNIRS deoxygenated hemoglobin Variation of concentration levels of pmol N
(Hb) level the deoxygenated hemoglobin
related to the baseline
fNIRS oxygenated hemoglobin Variation of concentration level of pmol 0
(HbO2) level the oxygenated hemoglobin related
to the baseline
EEG theta band absolute spectral Spectral power content of the EEG wV? 0
power theta band
EEG alpha band absolute spectral Spectral power content of the EEG uwv?2 N
power alpha band
EEG theta/alpha ratio Ratio between the theta and alpha - -
spectral power content
EEG event related potentials (ERPs) ERPs are the measured brain Vv N

response to a specific sensory,
cognitive or motor event
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Table 7. Respiration most adopted features for MWL evaluation. It is reported the qualitative
expected trend with respect to an increasing MWL.

Feature Description U. M. Mental workload
Breath rate Number of breath per minute min’! J
Tidal volume Air inspired in one respiratory cycle mL 4
Minute ventilation Air inspired in one minute L min! N

Table 8. State-of-the-art comparison of the physiological signals for mental workload assessment. This
table shows the adopted methods, the implemented tests, the involved sample, and the year of publication

for each paper.
References Methods Tests Sample  Year

[15] Labeling methods: Difficulty Spatial memory tasks 34 2021
split Rasch model
stress-strain curve
classification algorithms:
elastic net random forest

[29] Statistical analysis (ANOVA Live in-flight 10 2002
test)

[33] Morris and DeShon’s - - 2019
procedure

[37] Test/retest Multi-attribute task battery trial 15 2009

[38] Statistical analysis (ANOVA Driving test with n-back test 8 2015
test)

[39] Support vector machine (SVM)  Stroop test and acoustic induction 9 2016

[40] Support vector machine (SVM) — - 2006

[41] Dynamic Bayesian network Math task audio task 5 2005
(DBN)

[42] Statistical analysis (Wilcoxon N-back test Doctor game test 17 2021
signed-rank and ANOVA Webcall task
test)

[43] - - - 2019

[44] - - - 2018

[45] Statistical analysis (ANOVA One-to-many UAS scenario 5 2020
test and correlation)

[46] Statistical analysis (ANOVA Simulated flight tasks 24 2016
test)

[47] Statistical analysis (ANOVA Simulated flight tasks 26 2016
test)

[48] Bayesian Fisher discrimination  Simulated flight tasks 16 2014
and classification

[49] Statistical analysis (ANOVA Simulated flight tasks 38 2014
test)

[50] - Live flight Simulated flight 7 2019

[55] Statistical analysis (ANOVA Auditory noise Arithmetical 10 2021

test)

count Working memory load
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Table 8. Continued

References Methods Tests Sample  Year

[56] Statistical analysis (pairwise Woking memory test 46 2020
comparison)

[57] Statistical analysis (ANOVA test)  Simulated flight Live flight 14 2019

[61] Linear discriminating analysis Arithmetic tasks 33 2010

(LDA) Support vector
Machine (SVM) Nearest class
center (NCC) algorithm

[62] Time varying Singular value Arithmetic tasks 35 2018
Decomposition

[67] Quadratic discriminant analysis Mental arithmetic task 16 2011
classifier (PyMVPA)

[68] Random forest classification N-Back test 14 2021

[69] Statistical analysis (ANOVA) N-back test 26 2019

[70] Linear discriminant analysis N-back test 10 2014
(LDA) classifier

[71] Statistical analysis (Friedman and  Simulated flight tasks 16 2020
Wilcoxon signed-rank test)

[74] Constantlogistic regression naive ~ Playing Sudoku Browsing the 7 2020
Bayes K nearest neighbors Internet Sitting and doing
Decision tree Support vector nothing

machine Neural networks
AdaBoost random forest
[76] Statistical analysis (ANOVA test) Time load dual Back task 24 2021
Simon Task Dual
psychomotor Vigilance task

HRYV to cognitive demands reflected relatively stable effects. Similarly, Gable et al. [38] compared the
commonly used measure of HR to that of pupil size (PS) in detecting changes in CWL in a driving
environment. They obtained that the HR of drivers while performing an n-back test increased according
to the variation of MWL. Different stress levels were successfully discriminated by Zhang et al. [39]
considering the participants’ HRV and other physiological signals. In this case, the parameters were clas-
sified based on a support vector machines (SVM) model. The same classifier was adopted by Katsis et al.
[40] that considered HRV to develop an integrated telemedicine platform for assessing affective phys-
iological states. They observed that the system’s classification accuracy into five predefined emotional
classes (high stress, low stress, disappointment, euphoria and neutral face) reached 86.0%. Furthermore,
a heterogeneous approach considering HRV was also adopted by Liao et al. [41], who modeled a user’s
stress and mental workload through a dynamic Bayesian network (DBN) framework, showing that the
inferred user stress level was consistent with that predicted by psychological theories. Another approach
was used by Giorgi et al. [42] that considered some physiological measures and HR, obtained with a PPG
sensor, to assess users’ workload, stress and emotional states during specific tests. They demonstrated
the reliability of today’s wearable devices for this kind of application and the capability of discriminating
different stress levels.

4.1.1 HR and HRV in the aviation field
Heart measures related to cognitive workload are also considered in the aviation industry when speak-
ing about developing a cockpit assistant for SPOs. Thus, several studies [43—45] highlight how
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cardiorespiratory data are essential in the development of cognitive human-machine interface systems
able to understand the cognitive workload of a pilot. In particular, Pongsakornsathien et al. [43] dis-
cusses recent advances in sensor networks for aerospace cyber-physical systems, focusing on cognitive
muman-machine interface systems. Lim et al. [44] provided a detailed review of human-machine inter-
faces and interactions on-board civil and military aircraft. Both of them showed how HR grew as the
MWL increased. Then they evaluated HRV through time-domain and frequency-domain metrics speci-
fying the relative trends associated with the variation of MWL (such as the mean of inter-beat intervals
decreases as MWL increases).

Moreover, concrete experiments on flight simulators or aircraft have been performed in recent years.
Wang et al. [46] studied how HR varied during a simulated mission, showing how this parameter sig-
nificantly differentiated experienced and inexperienced pilots (the HR was higher for inexperienced
pilots). The analysis of HR and HRV was also adopted during instrument flight rules proficiency tests
by Mansikka et al. [47]. They put in evidence how HR and HRV could identify differences between
mission segments (and consequently to MWL) even when there were no significant performance dif-
ferences between them. Different results, however, were gained by Wei et al. [48] that, evaluating HR
and HRV during some flight simulations, obtained that HRV detection was able to effectively reflect the
MWL, while HR did not, probably because the physical effort is the primary effect on the heart rate. The
effectiveness of HRV in MWL assessment was also studied by Gentili et al. [49], who simulated aircraft
piloting tasks under three progressive levels of challenge. He observed that a decrease in HRV (measured
through the mean squared successive differences) closely mirrored the increase in task demands. It is
possible to find in the literature also in-flight measurement of MWL through a physiological approach.
In 2002, Wilson [29] tried to monitor different physiological signals, including HR and HRV, during
an approximately ninety-minutes scenario containing both visual and instrument flight conditions. He
found that cardiac and electrodermal measures were highly correlated and exhibited changes in response
to the various demands of the flights. Nevertheless, HRV was less sensitive rather than HR, in contrast
with the simulation results [46-49]. Another significant in-flight test that studied the feasibility of assess-
ing the pilot’s cognitive workload condition with a physiological approach was provided by the United
States Air Force (USAF) with the project reported in Ref. [S0]. Their test consisted of a C-17 refueling
mission while measuring ECG and eye tracker data. These data were compared with those obtained
on a simulator. In this case, four scenarios of different difficulties were defined and integrated with a
secondary auditory response task. Then, they processed the physiological signals through a specific
deterministically nonlinear dynamical classifier to evaluate cognitive workload, to extrapolate a work-
load index based on a ten-level scale similar to the Bedford scale. The evaluation of this workload index
during the refueling mission showed consistency with the most-demanding MWL phases of the flight
mission (takeoff, refuel and landing). In particular, their in-flight results showed that the ECG signal was
sensitive to low and high workload conditions, corroborated by the subjective report gained at the end
of the tests. Also, the workload index obtained from the ECG monitoring at the simulator demonstrated
a direct link with the difficulty of the tasks, highlighting the validity of assessing MWL through cardiac
monitoring.

4.2 Eye activity

It is possible to find lots of research investigating MWL or stress conditions by exploiting eye activity
analysis. For instance, Liao et al. [41] could discriminate different stress levels with a heterogeneous
approach, also considering the detection of eye movements. Moreover, Gable et al. [38] found that pupil
size measurements were able to detect MWL variations with fewer participants than HR evaluations,
suggesting that using PS may be a better way to detect real-time changes in workload. By studying the
relationship between cognitive workload (low vs. high) and eye movements (saccades, fixations and
smooth pursuit), Belkhiria and Peysakhovich [55] found that the blink rate and saccades amplitude,
measured through the EOG, increased along with the cognitive load increase. Moreover, EOG metrics
were also considered by Vanneste et al. [56] that, examining whether and how well experienced cognitive
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load can be measured through psycho-physiological data (EDA, EEG, EOG), highlighted that the eye
blink rate could be related to cognitive load. EOG measures were used by Giorgi et al. [42] to assess the
correlation between the eye blink rate (EBR) and the MWL. However, they observed that in their tests,
EBR resulted in less sensitivity to cognitive workload variations than other parameters such as HR or
HRV.

4.2.1 Eye activity in the aerospace field

Detecting eye movements is also a key aspect of the MWL assessment in the aerospace field. It is possi-
ble to find several examples of flight mission simulations that monitor the pilot’s eye activity, especially
through eye-tracker technologies, that recently became an efficient and reliable tool to assess mental
workload [44]. For instance, during their simulated flight tasks, Wang et al. [46] considered fixation
durations, saccade rate and blink rate (together with other cardiorespiratory variables) to evaluate pilots’
MWL. Their results showed that saccade and blink rate could indicate pilots’ differences in information
access strategy, highlighting the different ranges of task demands. Also, Dilli Babu et al. [57] inves-
tigated the use of eye gaze trackers in the military aviation environment to automatically estimate the
pilot’s cognitive load from ocular parameters. According to their research, different flight conditions
substantially impact ocular metrics like the fixation rate. For instance, the rate of descent during an
air-to-ground dive training exercise, the normal load factor of the aircraft during constant G-level turn
manoeuvres, and the pilot’s control inceptor and tracking error during simulation activities were all
highly connected with it as well.

Despite eye-tracking studies applied to simulations being the most common in the MWL assessment
in aerospace, some examples of in-flight missions adopting this kind of technology exist. In particular,
Wilson [29], during his aforementioned tests, monitored the eye blink rate of 10 general aviation pilots
through EOG data, collected from electrodes placed above and below the right eye and lateral to the
outer canthus of both eyes. His results showed that blink rates decreased during the more highly visually
demanding segments of the flights. Instead, Martin et al. [50], tried to adopt eye-tracking technologies
during a refueling mission. Despite some drawbacks, such as calibration problems or glares and shadows
due to the sun’s relative position with respect to the aircraft, the eye-tracking data was used to understand
how the pilot interacts with the cockpit and which are the more focused areas of interest (Aol). This
allowed the authors to understand where the pilots focused their gaze during the refueling mission,
providing useful information about their attention.

4.3 Skin activity

Especially in recent years, it is possible to find several studies that investigate the relationship between
EDA signals and cognitive workload and stress [18]. Setz et al. [61] investigated the discriminating capa-
bility of EDA in distinguishing these two cognitive conditions in an office environment. This context
was simulated through specific computer tests with a component of psychologically induced stress. The
obtained distributions of the EDA peak height and the instantaneous peak rate provide information about
an operator’s state of stress, according to data obtained with a wearable device. Another study focused
on the EDA analysis is provided by Ghaderyan et al. [62] that implemented a time-varying singular
value decomposition (TSVD) approach to extract information about MWL from participants of arith-
metic tasks. In this case, the results showed an extremely high accuracy rate demonstrating how this
algebraic approach is valuable for the following automatic cognitive load estimation task. Moreover,
the aforementioned works of Zhang et al. [39], Katsis et al. [40] and Liao et al. [41] also considered
EDA to feed their modes to infer physiological states, obtaining significant results in terms of clas-
sification accuracy. They highlight how heterogeneous sources can be reliably handled to recognise
stress and MWL. Similar results were also obtained by Vanneste et al. [56] that monitored the dura-
tion of SCR and other parameters and were able to correlate these features with the results obtained
through the subjective report. A different approach was adopted by Giorgi et al. [42] analysing only the
EDA’s tonic component (SCL) to assess the emotional state of an operator. Finally, Miyake et al. [37],
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studying the test/retest consistency of physiological responses induced by mental tasks, found that the
SCL component significantly correlated with their tests, although highlighting large differences between
individuals.

4.3.1 Skin activity in the aerospace sector

In the aerospace sector, the analysis of the EDA signal is not frequently introduced in MWL assessment
research. In fact, the recent improvement in EDA sensor capability makes it possible to find references
to monitoring skin activity only in a few works. An example is given by Wilson [29] that, during the
aforementioned in-flight tests, took EDA signals and observed that cardiac and electrodermal measures
were highly correlated and showed variations according to the different workload conditions of the
flights.

4.4 Brain activity

Several studies investigate the relationship between these signals and cognitive load. Rebsamen et al.
[67] extracted EEG during a mental arithmetic task with five different difficulty levels and trained a
classifier to discriminate three conditions: relaxed, low and high. Their results showed an average classi-
fication accuracy of 62%, highlighting a significant link between EEG and MWL. Instead, Belkhiria and
Peysakhovich [55] investigated the correlation between EEG theta/alpha ratio and EOG signal obtained
during specific MWL tests. Their analysis highlighted how an increase in theta/alpha ratio could be
predicted by ocular features such as saccades and blinks during high workload phases due to the direct
link between EEG and EOG characteristics. Given that, a caveat to consider is that EEG is frequently
contaminated with EOG signals and that blinks contain significant delta and theta band activity, lead-
ing to the findings that could be likely a spurious correlation. Moreover, the relationship between EEG
and EOG was also assessed by the aforementioned work of Vanneste et al. [56], which obtained weak
evidence in the association between a lower EEG alpha power, a higher alpha peak frequency and an
increase in cognitive load. The link between ocular movements and brain effects was also investigated by
Hajra et al. [69]. In particular, they examined blink-related oscillations (BROs), which represent brain-
wave responses that follow spontaneous blinking, linked to the environmental monitoring and awareness
processing, in an N-Back working memory scenario with simultaneous visual inputs. They obtained that
BRO responses were present during the n-back task and that the response amplitudes were dynamically
modified by the difference in workload between the O-back and 3-back situations.

The fNIRS signal was considered by McKendrick et al. [15], exploring three different ways of labeling
cognitive states, two algorithms for supervised learning and three techniques for handling class imbal-
ances. They found that labels that consider individual characteristics are extremely beneficial when used
with supervised learners for neurophysiological mental state prediction. They also observed that when
states are defined using individual differences modeling, it may be able to construct classifiers of certain
mental states which are person- and task-independent. On the other hand, Svinkunaite et al. [68] anal-
ysed fNIRS to assess mental workload from a different perspective. They aimed to understand whether
including heart rate and respiration features contained in the fNIRS signal improved the accuracy of
the classification level of mental workload. Their results showed how this approach outperformed the
highest mean accuracies of previous studies by around 10%. A similar approach was adopted by Herff
et al. [70] that measured fNIRS in the PFC during n-back tests. They obtained an accuracy of 78% in
single-trial discrimination of three workload levels from each other. The results highlighted how even
low workload tasks could be easily discriminated from a resting condition through their specific fNIRS
analysis.

4.4.1 Brain activity in the aerospace sector
The monitoring of brain activity through EEG or fNIRS signals is a discussed aspect of the MWL
evaluation in the aerospace field [43, 44]. In the work mentioned above by Planke et al. [45], they
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considered the EEG signal, together with eye tracking measurement, to monitor MWL during their
simulation of one-to-many (OTM) unmanned aircraft systems (UASs). In particular, they compared
a specific EEG index with subjective data, measures obtained through a behavioural approach (task
index) and eye-tracking data. The results showed a good correlation between the physiological data
and the task index. EEG-derived ERP was considered by Gentili et al. [49] to select physiological and
brain biomarkers of MWL during a simulated aircraft piloting task under three progressive levels of
challenge. They obtained that specific parameters extrapolated from ERPs and EEG varied according to
the increased workload, highlighting the link between MWL and ERPs. Mohanavelu et al. [71] extracted
the spectral features of EEG to assess the dynamic workload of an aircraft’s pilot during a simulation of
a flight mission, discriminating four different MWL conditions: normal, moderate, high and very high.
They obtained the engagement of specific brain regions during different flying conditions under different
cognitive loading. Moreover, the EEG signal was taken into account by Wilson [29] in his in-flight tests,
obtaining that alpha and delta bands of the brain activity exhibited significant variations to the varying
demands of the scenarios.

4.5 Respiration

It is possible to find some studies investigating the relationship between respiration and MWL, despite
their amount being fewer concerning the previously analysed signals. Katsis et al. [40] considered respi-
ration measures in their heterogeneous approach because they considered that the rapidity and depth of
breathing could indicate emotional arousal and physical activity. They succeeded in developing a system
that could estimate a person’s emotional state through a classification vector of features also gained from
respiratory measures. Moreover, Miyake et al. [37] monitored the BR and other parameters to examine
the consistency of physiological output during specific test and retest sessions. Their results showed that
the respiration measures are not the most reliable to assess the MWL of an operator if compared to EDA.

4.5.1 Respiration measures in the aerospace field

Aerospace respiratory parameters for MWL assessment are usually extracted from the pilot with other
physiological parameters. This signal is traditionally analysed through multimodal approaches, studying
its variation with those of cardiac, ocular, etc. signals [44]. For instance, Pongsakornsathien et al. [43]
highlighted a decreasing trend of the BR by the increase in workload and HR, with the disadvantage
of the slow response of these signals to the rapid changes in cognitive states. Instead, Wang et al. [46]
included respiratory measures in their work to assess different levels of pilot experience. In particular,
they observed that the BR and the respiration amplitude (that can be linked to the TV) were lower in
experienced pilots thanks to their expertise and practice.

4.6 Other measures

Despite the most employed measures in MWL evaluation being cardiorespiratory, eye-tracking, skin
and brain signals, in the literature, it is possible to find also other physiological parameters adopted
for assessing the cognitive load of an operator during a performance, such as skin temperature and
electromyography (EMG). Therefore, the relationship between skin temperature and MWL is discussed
in the following paragraph, followed by a similar analysis based on the EMG. A paragraph about the
application of these two signals in the aviation field concludes the section.

4.6.1 Skin temperature

The evaluation of the effect of different cognitive loads on skin temperature was considered in a few
studies as a non-intrusive measure [74]. The idea is to find a relationship between the temperature trend
and the variation of MWL. The most common methods for assessing this biosignal trend are conductive
and infrared devices [79]. The conductive devices (such as thermocouples, thermistors and telemetry
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sensors) base their functioning on the heat energy transfer into the device directly contacting the sub-
ject, while infrared devices (such as infrared thermometers and infrared thermal imaging cameras) are
adopted as non-contact technologies.

The aforementioned work of Liao et al. [41] also considered skin temperature data to feed his DBN
framework and successfully monitor human stress. Similarly, Romine et al. [74] managed body tem-
perature with EDA and HR to develop a machine learning algorithm and understand how to develop a
real-time wearable device that can track MWL. Their results showed how their multimodal methodology
was able to consistently distinguish high, medium and low levels of cognitive load in a learning context.

4.6.2 Electromyography

The EMG signal ‘measures electrical currents generated in muscles during its contraction representing
neuromuscular activities’, where the muscles contraction and relaxation activities are controlled by the
nervous system [75]. Due to this link between EMG and the nervous system, some research tried to
correlate this signal to the variation of MWL in critical situations, extracting this signal from different
muscles. For instance, Salomone et al. [76] acquired EMG activity of the flexor pollicis brevis from
both hands to analyse cognitive fatigue during a specific computer test. They aimed to assess whether
cognitive fatigue increases the capture of the incorrect automatic response or if it impairs its suppres-
sion. They correlated EMG measures with subjective fatigue and perceived effort, obtaining that this
physiological signal can provide significant results in evaluating cognitive fatigue. The EMG signal was
also adopted in the aforementioned work of Katsis et al. [40]. In this study, facial EMG, with respira-
tion, EDA and ECG parameters, was considered to obtain the classifying vector of features necessary
to perform the emotional state evaluation tool. Moreover, Zhang et al. [39] placed EMG sensors on the
shoulder (trapezius muscle) to discriminate different stress levels during their heterogeneous approach.

4.6.3 Other measures in the aviation sector

In aviation, it is rarer to find studies linking physiological signals other than those reported above with
MWL. Indeed, when talking about high-level systems that allow the monitoring of the pilot’s health
status and cognitive load, numerous other possible signals are assumed to be taken into account (such
as body temperature, voice patterns, EMG, etc.) [43, 45], however concrete examples of this kind of
application are very infrequent. An example is provided by Wilson [29], that recorded the EMG signal
from the calf of the right leg during his aforementioned in-flight tests. He aimed to verify whether the
leg movements associated with controlling the aircraft artifactually influenced the EDA responses from
the foot. The results showed that EMG signal patterns did not show the same characteristics of EDA,
highlighting how the EMG data are not responsible for the EDA effects.

5.0 Conclusions

In the context of HMI and autonomous systems, this paper aimed to provide an overview of the cog-
nitive workload evaluation based on physiological measures. Due to the risk of confusion on what
the term MWL refers to, a clarification on its meaning was introduced, highlighting its multifaceted
nature. As the literature shows, there are mainly three ways to assess this mental condition: subjective,
behavioural and physiological. Notably, among these, the physiological approach for MWL evaluation is
gaining more and more attention in scientific research, leveraging the disruptive growth of the biomed-
ical sensor market in recent years. Thus, a state-of-the-art deep analysis on this topic was performed,
focusing our attention on the aeronautical context. In particular, the objectives, results obtained, methods
implemented, tests performed and year of publication were reported for each selected article.

The summary of the 29 reviewed articles in Table 2 shows that an operator’s cognitive load assessment
cannot be obtained merely by observing a single signal. Our work highlights how, despite the scientific
community’s great effort in recent years to solve this problem, no solution that allows real-time MWL
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evaluation and monitoring with sufficient reliability to be implemented on the next-generation aircraft
has yet been found. The possible explanation emerging from this paper may be that, as presented in
Fig. 2, multiple internal and external factors influence working conditions stimulating different psycho-
physiological areas, simultaneously manifesting on different biosignals. By focusing on Tables 2 and
8, it is possible to observe that no existing solutions comprehend all the involved physiological signals
together (heart, eye, skin, brain and respiration activities), with the test performed on a large population
in an operative environment. Considering the complexity and variety of the potential application fields
of HMI systems (such as aeronautics, transport or controls), it becomes evident that the only successful
solution could be using a multimodal approach.

Furthermore, a fruitful approach could merge the different evaluation methods presented in Section 3.
If subjective evaluations are often adopted together with the other assessments as post-performance ques-
tionnaires, a synergy between behavioural and physiological approaches still needs to be investigated.
The features of these two methods could overcome the unawareness of the former of the operator’s phys-
ical condition. On the other hand, it fosters a more accurate analysis of the latter, thanks to the knowledge
of the task plan.

For what concerned MWL in aeronautics, research has mainly been conducted on simulators, apart
from a few rare cases, pointing out the need for designing an efficient autonomous system to foster
the development of SPO in civil aviation and MUM teaming in the military field. In conclusion, the
availability of smaller, cheaper and more reliable wearable sensors allows for investigating technologies
that could not be realised so far to enhance safety and push the aviation sector to the next generation of
aircraft.
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