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Boulder, Colorado

1 INTRODUCTION 967
1.1 Chapter Objectives 968
2 QUESTIONS ADDRESSED BY HUMAN
PERFORMANCE MODELS 969
3 CLASSES OF SIMULATION MODELS 970
4 REDUCTIONIST APPROACH: TASK
NETWORK MODELING 971
4.1 Components of a Task Network Model 971
4.2 Task Network Model of a Process Control
Operator 974
4.3  Use of Task Network Modeling to Address
Specific Design Concerns 976

1 INTRODUCTION

Over the past few decades, human factors and
ergonomics  practitioners have been called upon
increasingly early in the system design and develop-
ment process. Early inputs from all disciplines result
in better and more integrated designs, as well as lower
costs, than if one or more disciplines is solely in
charge, finds out late in the development stage that
changes are required, and then calls apon the exper-
tise of the other disciplines. Our goal as human fac-
tors and ergonomics practitioners should be to pro-
vide substantive and well-supported input regarding
the human(s), his or her interaction(s) with the system,
and the resulting total performance. Total performance
includes a number of converging measures, including
task latency, type and probability of errors, quality of
performance, and workload measures. Furthermore, we
should be prepared to provide this input from the ear-
liest stages of system concept development and then
throughout the entire system or product life cycle.

To meet this challenge, many human factors and
ergonomics tools and technologies have evolved over
the years to support early analysis and design. Two
specific types of technologies are design guidance
(e.g., Boff et al., 1986; O’Hara et al., 1995) and high-
fidelity rapid prototyping of user interfaces (e.g., Dahl
et al., 1995). Design guidance technologies, either in
the form of handbooks or computerized decision sup-
port systems, put selected portions of the human fac-
tors and ergonomics knowledge base at the fingertips
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of the designer, often in a form tailored to a particular
problem, such as nuclear power plant design or Unix
computer interface design. However, design guides
have the shortcoming that they do not often provide
methods for making quantitative trade-offs in system
performance as a function of design. For example,
design guides may tell us that a high-resolution color
display will be better than a black-and-white display,
and they may even tell us the value in terms of
increased response time and reduced error rates. How-
ever, this type of guidance will rarely provide good
insight into the value of this improved element of the
human’s performance to the overall system’s perfor-
mance. As such, design guidance has limited value
for providing concrete input to system-level perfor-
mance prediction.

Rapid prototyping, on the other hand, supports
analysis of how a specific design and task allocation
will ‘affect human and system-level performance. The
disadvantage of prototyping, as with all human-subject
experimentation, is that it can be slow and costly.
In particular, prototypes of hardware-based systems,
such as aircraft and machinery, are very expensive to
develop, particularly at early design stages when there
are many widely divergent design concepts. Despite
the expense, hardware and software prototyping are
important tools for the human factors practitioner, and
their use is growing in virtually every application area.

Although these technologies are valuable to the
human factors practitioner, what is often needed is
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an integrating methodology that can extrapolate from
the base of human factors and ergonomics data, as
reflected in design guides and the literature, to support
system-level performance predictions as a function
of design alternatives. This methodology should also
bind with rapid prototyping and experimentation in a
mutually supportive and iterative way. As has become
the case in many engineering disciplines, a prime
candidate for this integrating methodology is computer
modeling and simulation.

Computer modeling of human behavior and per-
formance is not a new endeavor. Computer models
of complex cognitive behavior have been around for
over 20 years (e.g., Newell and Simon, 1972; Card
et al., 1983) and tools for computer modeling of task-
level performance have been available since the 1970s
(e.g., Wortman et al., 1978). However, three trends
have changed appreciably in the past decade to pro-
mote the use of computer modeling and simulation of
human performance as a standard tool for the practi-
tioner. First are the rapid increase in computer power
and the associated development of easier-to-use mod-
eling tools. People with an interest in predicting human
performance through simulation can select from a vari-
ety of computer-based tools (for a comprehensive list
of these tools, see McMillan et al., 1989). Second is
the increased focus by the research community on
the development of predictive models of human per-
formance rather than simply descriptive models. For
example, the GOMS model (Gray et al., 1993) repre-
sents the integration of research results into a model
for making predictions of how humans will perform in
a realistic task environment. Another example is the
research in cognitive workload that has been repre-
sented as computer algorithms (e.g., McCracken and
Aldrich, 1984; Farmer et al., 1995). Given a descrip-
tion of the tasks and equipment with which humans are
engaged, these algorithms support assessment of when
workload-related performance problems are likely to
occur, and often include identification of the quan-
titative impact of those problems on overall system
performance (Hahler et al., 1991). These algorithms
are particularly useful when embedded as key com-
ponents in computer simulation models of the tasks
and the environment. Third is the integration of those
algorithms into cognitive architectures that integrate
cognition, perception, and action into a single com-
putational framework that can be applied to a broad
range of tasks, from basic laboratory experiments used
to validate the architectural mechanisms to predict

Human/system
models

Better models,
validation

PERFORMANCE MODELING

operator performance on complex practical tasks (Gray
et al., 1997).

Perhaps the most powerful aspect of computer
modeling and simulation is that it provides a method
through which the human factors and ergonomics
team can “step up to the table” with the other
engineering disciplines, which also rely increasingly
on quantitative computer models. What we discuss in
this chapter are the methods through which the human
factors and ergonomics community can contribute
early to system design trade-off decisions.

1.1 Chapter Objectives

In this chapter we discuss some existing computer
tools for modeling and simulating human—system per-
formance. It is intended to provide the reader with
an understanding of the types of human factors and
ergonomics issues that can be addressed with model-
ing and simulation and some of the tools that are now
available to assist the human factors and ergonomics
specialist in conducting model-based analyses, and
an appreciation of the level of expertise and effort
that will be required to use these technologies. We
begin with two caveats. The first is that we are not
yet at a point where computer modeling of human
behavior allows sufficiently accurate predictions that
no other analysis method (e.g., prototyping) is likely
to be needed. In the early stages of system concept
development, high-level modeling of human-system
interaction may be all that is possible. As the system
moves through the design process, human factors and
ergonomics designers will often want to augment mod-
eling and simulation predictions with prototyping and
experimentation. In addition to providing high-fidelity
system performance data, these data can be used to
constrain, enhance, and refine the models. This con-
cept of human performance modeling supporting and
being supported by experimentation with human sub-
jects is represented in Figure 1. In essence, simulation
provides the human factors and ergonomics practi-
tioner with a means of extending the knowledge base
of human factors and of amplifying the effectiveness
of limited experimentation.

The second caveat is that the technologies discussed
here are evolving rapidly. We can be certain that
every tool discussed is undergoing constant change,
and that new modeling tools are being developed, We
are discussing computer-based tools, and we expect the
pace of change in these tools to mirror the pace in other
software tools, such as word processors, spreadsheets,

Focus

Experimentation

Figure 1 Synergy between modeling and experimentation.
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presentation and productivity tools, and Internet-based
applications. These detailed discussions of several of
the modeling tools are included to facilitate better
understanding of human performance modeling tools.
We encourage the reader to follow citations in this
chapter to assess the current state of any tool.
Most of these modeling tools have large, active
user communities that maintain Web sites to provide
introductory tutorials, software downloads, validated
models, and published papers. These resources are
invaluable both for the experienced modeler trying to
stay abreast of recent developments and the novice user
attempting to get up to speed on a new technology.

2 QUESTIONS ADDRESSED BY HUMAN
PERFORMANCE MODELS

Below are a few classes of problems to which
human--system modeling has been applied:

e How long will it take a human or team of
humans to perform a set of tasks as a function
of system design, task allocation, and individual
capabilities?

o What are the trade-offs in performance for dif-
ferent combinations of design, task allocation,
and individual capability selections?

e What are the workload demands on the human
as a function of system design and automation?

e How will human performance and resulting
system performance change as the demands of
the environment change?

e How many people are required on a team to
ensure safe, successful performance?

s How should tasks be allocated to optimize
performance?

s How will environmental stressors such as heat,
cold, or the use of drugs affect human-system
performance?

The list above is a sample rather than an exhaustive
list. The tools we discuss in this chapter are inherently
flexible, and we consistently discover that these tools
can be used to solve problems that the tool developers
never conceived. To assess the potential of simulation
to answer questions, in every potential human perfor-
mance modeling project we should first determine the
specific questions that the project is trying to answer.
Then we can conduct a critical assessment of what is
important in the human—machine system being mod-
eled. This will define the required content and fidelity
of the model. The questions that should be considered
about the system include:

. Human performance representation. What time
or duration of performance is important?
How is human performance initiated, and
what resolution of behavior is required? What
aspects of human performance, including task
management, load management, and goal man-
agement, are expected? How much is known
and constrained about the knowledge and

strategies that human users bring to bear on
this task?

2. Equipment representation. What equipment is
used to accomplish the task? To what level
of functional and physical description can and
should equipment be represented? Is it operable
by more than one human or system component?

3. Interface requirements. What information needs
to be conveyed to the humans, and when? Is
transformation of information required? How
often is information updated and monitored?

4. Control requirements. What processes need to
be controlled by the human, and to what level
of resolution? How much attention is required
by the human to perform control changes?

5. Logical and physical constraints. How is per-
formance supported through equipment oper-
ability and procedural sequences? What alarms
and alerts should be represented?

6. Simulation driver. What makes the system
function? The occurrence of well-defined events
(e.g., a procedure), the passage of time (e.g., the
control of a vehicle), or a hybrid of both?

By defining the purpose of the model and then
answering the questions above, the human factors
practitioner will get a sense of what is important
in the system and therefore what may need to be
represented in a model. In using human performance
models, perhaps the most significant task of the human
factors practitioner will be to determine what aspects
of the human—machine system to include in the model
and what to leave out. Many modeling studies have
failed because of the inclusion of too many factors
that although a part of human-system performance,
were not system performance drivers. Consequently,
the models become overly complex and expensive to
develop. In our experience, it is better to begin with a
model with too few aspects of the system represented
and then add to it than to begin a modeling project
by trying to model everything. The first approach may
succeed, whereas the second is often doomed.

Additionally, the human factors practitioner should
consider the measures of effectiveness of the system
that the model should be designed to predict. In
building the model, it is important to remember that the
goal will be to predict measures of human performance
that will affect system performance. Therefore, a
clear definition of what is important to performance
is necessary. The following aspects of performance
measures should be considered:

1. Success criteria. What operational success
measures are important to the system? Can
these be stated in relative terms, or must they
be measured in absolute terms?

2. Range of performance to be studied. What
experimental variables are to be explored by
the model? How important is it to establish
a range of performance for each experimental
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condition as a function of the stochastic (i.e.,
random) behavior of the system?

By asking the foregoing questions prior to begin-
ning a modeling project, the human factors practitioner
can develop a better sense of what is important in the
system in terms of both aspects that drive system per-
formance and the measures of effectiveness that are
truly of interest. Then, and only then, can a human
performance modeling project begin with a reasonable
hope of success.

In the remainder of this chapter we discuss two
classes of modeling tools for human performance
simulation, then report on recent efforts to unify
those two complementary classes in order to leverage
their strengths and alleviate their shortcomings. After
discussing each class of modeling tool, we provide
specific examples of a modeling tool and then provide
case studies about how these tools have been used in
answering real human performance questions.

3 CLASSES OF SIMULATION MODELS

Human performance can be highly complex and
involve many types of processes and behavior. Over
the years many models have been developed that
predict sensory processes (e.g., Gawron et al., 1983),
aspects of human cognition (e.g., Newell, 1990), and
human motor response (e.g., Fitts’s law). The current
literature in the areas of cognitive engineering, error
analysis, and human-computer interaction contains
many models, descriptions, methodologies, metaphors,
and functional analogies. However, in this chapter, we
are not focusing on the models of these individual
elements of human behavior but rather, on models that
can be used to describe human performance in systems.
These human-system performance models typically
include some of these elemental behavioral models as
components, but provide a structural framework that
allows them to be integrated with each other and put in
the context of human performance of tasks in systems.

We separate the world of human-system perfor-
mance models into two general categories that can
be described as reductionist models and first-principle
models. Reductionist models use human—system task
sequences as the primary organizing structure, as
shown in Figure 2. The individual models of human
behavior for each task or task element are con-
nected to this task sequencing structure. We refer
to it as reductionist because the process of model-
ing human behavior involves taking the larger aspects
of human-system behavior (e.g., “perform the mis-
sion”) and then reducing them successively to smaller
elements of behavior (e.g., “perform the function,”
“perform the tasks”). This continues until a level of
decomposition is reached at which reasonable esti-
mates of human performance for the task elements
can be made. One can also think of this as a top-
down approach to modeling human—system perfor-
mance. The example of this type of modeling that
we use in this chapter is task network modeling,
where the basis of the human-system model is a
task analysis.

PERFORMANCE MODELING
Missing
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Task 1
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Figure 2 Reductionist models of human performance.

First-principle models of human behavior are
structured around an organizing framework that
represents the underlying goals, principles, and mech-
anisms of human performance (Figure 3). Tools that
support first-principle modeling of human behavior
have structures embedded in them that represent
elementat aspects of human performance. For example,
these models might directly represent processes such
as goal-seeking behavior, task scheduling, sensation
and perception, cognition, and motor output. In tumn,
those processes might invoke fundamental actions such
as shifts of attention, memory retrieval, and con-
flict resolution among competing courses of action.
To use tools that support first-principle modeling,
one must describe how the system and environment
interacts with the human processes being modeled.
In this chapter we focus on the Adaptive Con-
trol of Thought—Rational (ACT-R) cognitive architec-
ture (Anderson and Lebiere, 1998).

It is worth noting that these two modeling strategies
are not mutually exclusive and, in fact, can be mutu-
ally supportive in any given modeling project. Often,
when one is modeling using a reductionist approach,
one needs models of basic human behavior to rep-
resent behavioral phenomena accurately and therefore
must draw on elements of first-principle models. Alter-
natively, when one is modeling human—system perfor-
mance using a first-principle approach, some aspects
of human-system performance and interrelationships
between tasks may be more easily defined using a
reductionist approach. Both classes of model have been
used to model individual and team performance. It is
also worth noting that recent advances in human per-
formance modeling tool development are blurring the
distinctions between these two classes (e.g., Hoagland
et al., 2001). Increased emphasis on interoperability
between models has caused researchers and developers
to focus on integrating reductionist and first-principle
models. In the final section of this chapter we present
one such attempt at integrating the ACT-R cognitive
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Figure 3 First-principle models of human performance.

Figure 4 Task network model representing a human dialing a telephone.

architecture with the Improved Performance Research
Integration Tool (IMPRINT).

4 REDUCTIONIST APPROACH: TASK
NETWORK MODELING

One technology that has proven useful for predicting
human—system performance is task network model-
ing. In a task nmetwork model, human performance is
decomposed into tasks. The fidelity of this decom-
position can be selective, with some functions being
decomposed several levels and others just one or
two. This is, in human factors engineering terms, the
task analysis. The sequence of tasks is defined by
constructing a fask network. This concept is illustrated
in Figure 4, which presents a sample task network for
dialing a telephone.

_ Task network modeling is an approach to model-
ing human performance in complex systems that has
evolved for several reasons. First, it is a reasonable
means for extending the human factors staple: the task
analysis. Task analyses organized by task sequence
are the basis for the task network model. Second,
task network models can include sophisticated sub-
models of the system hardware and software to create
a closed-loop representation of relevant aspects of the
puman-machine system. Third, task network model-
ing is relatively easy to use and understand. Recent
advancements in task network modeling technology

have made this technology more accessible to human
factors practitioners. Finally, task network modeling
can provide efficient, valid, and useful input to many
types of issues. With a task network model, the human
factors engineer can examine a design (e.g., control
panel redesign) and address questions such as “How
much longer will it take to perform this procedure?”
and “Will there be an increase in the error rate?” Gen-
erally, task network models can be developed in less
time and with substantially less effort than would be
required if a prototype were developed and human
subjects used. However, as stated before, for revolu-
tionary designs, modeling may not alleviate the need
for empirical data collection.

Task network models of human performance have
been subjected to validation studies with favorable
results (e.g., Lawless et al., 1995; Engh et al., 1998).
However, as with any modeling approach, the real
level at which validation must be considered is with
respect to a particular model, not with respect to the
general approach.

4.1 Components of a Task Network Model

To represent complex, dynamic human—system behav-
jor, many aspects of the system may need to be mod-
eled in addition to simply task lists and sequence. In
this section we use the task network modeling tool
Micro Saint Sharp as an example. The basic ingre-
dient of a Micro Saint Sharp task network model is
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Figure 5 Main window in Micro Saint Sharp for task network construction and viewing.

the task analysis as represented by a network or series
of networks. The level of system decomposition (i.e.,
how finely we decompose the tasks) and the amount of
the system that is simulated depends on the particular
problem. For example, in a power plant model, one can
create separate networks for each of the operators and
one for the power plant itself. Although the networks
may be independent, performance of the tasks can be
interrelated through shared variables. The relationships
among different components of the system, represented
by different segments of the network, can then com-
municate through changes in these shared variables.
For example, when an operator manipulates a control,
this may initiate an “open valve” task in a network
representing the plant. This could ripple through to a
network representing other operators and subsystems
and their response to the open valve. This basic task
network is built in Micro Saint Sharp via a point-and-
click drawing palette. Through this environment, the
user creates a network as shown in Figure 5. Networks
can be embedded within networks, allowing for hierar-
chical construction. In addition, the shape of the nodes
on the diagram can be chosen to represent specific
types of activity.

To reflect complex task behavior and interrelation-
ships, more detailed characteristics of the tasks need
to be defined. By double-clicking on a task, the user
opens up the task description window, as shown in
Figure 6. Below are descriptions of each of the items
on the tabs in this window.

o Task number. This value is an arbitrary number
for task referencing.

o Tuask name. This parameter contains a text
string used to identify the task.

o Time distribution. Micro Saint Sharp conducts
Monte Carlo simulations with task performance
times sampled from a distribution as defined by
this option (e.g., normal, beta, exponential).

e Mean time. This parameter defines average task
performance time for this task. This can be
a number, equation, or algorithm, as can all
values in the fields described below.

o Standard deviation. This value contains the
standard deviation of the task performance time,
assuming that the user has chosen a distribution
that is parameterized by a standard deviation.

o Release condition. Data in this field determine
when a task begins executing. For example,
a condition stating that this task will not
start before an operator is available might be
represented by a release condition such as the
following:

operator >= 1;

In other words, for the task to begin, at least one
operator must be available. If all operators are busy, the
value of the variable “operator” would equal zero until
a task is completed, at which time an operator becomes
available. This task would wait until the condition
was true before beginning execution, which would
probably occur as a result of the operator completing
the task that he or she is currently performing.

e Beginning effect. This field permits the user to
define how the system will change as a result of
the commencement of this task. For example, if
this task used an operator that other tasks might
need, we could set the following condition to
show that the operator is unavailable while he
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Figure 6 User interface in Micro Saint Sharp for providing input on a task.

or she performed this task:
operator = operator — 1;

Assignment and modification of variables in beginning
effects are one principal way in which tasks are
interrelated.
o Launch effect. This data element is similar to
a task beginning effect but is used to launch
high-resolution animation of the task.

o Ending effect. This field contains the definition
of how the system will change as a result of
the completion of this task. From the previous
example, when this task was complete and the
operator became available, we could set the
ending effect as follows:

operator = operator + 1;

at which point another task waiting for an operator
to become available could begin. Ending effects
are another important way in which tasks can be
interrelated through the assignment and modification
of variables.

Another notable aspect of the task network diagram
window shown in Figure 5 is the diamond-shaped icon
that follows every task. This icon encapsulates data
that describe the paths and the associated logic that
will be executed when this task is completed. Often,
this logic represents a human decision-making process.
In that case, the branches align to potential courses of
action that the modeled human could select. To define
the decision logic, the Micro Saint Sharp user would
use the “Paths™ tab on the task description dialogue,

as shown in Figure 7. There are three general types of
decisions to model:

e Probabilistic. In probabilistic decisions, the
human will begin one of several tasks based
on a random draw weighted by the proba-
bilistic branch value. These weightings can be
dynamically calculated to represent the current
context of the decision. For example, this deci-
sion type might be used to represent human
error likelihoods and would be connected to the
subsequent tasks that would be performed.

e Tuctical. In tactical decisions, the human will
begin one of several tasks based on the branch
with the highest “value.” This could be used to
model the many types of rule-based decisions
that humans make, as illustrated in Figure 7.

o Multiple. This would be used to begin several
tasks at the completion of this task, such as
when one human issues a2 command that begins
other crew members’ activities.

The fields on Figure 7 labeled ‘“decision code”
represent the values associated with each branch. The
values can be numbers, expressions, or complicated
algorithms defining the probability (for probabilistic
branches) or the desirability (for tactical and multiple
branches) of taking a particular branch in the network.
Again, any value on this screen can be not simply
numbers but also variables, algebraic expressions,
logical expressions, or groups of algebraic and logical
expressions that would, essentially, form a subroutine.
As the model executes, Micro Saint Sharp includes a
parser that evaluates the expressions included in the
branching logic when it is encountered in the task
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Figure 7 User interface in Micro Saint Sharp for defining task branching decision logic.

network flow. This results in a dynamic network in
which the flow through the tasks can be controlled
with variables that represent equipment state, scenario
context, or the task loading of the humans in the
system, to name a few examples. It is the power of
this parser that provides many task network models
with the ability to address complex problems.

There are other aspects of task network model
development. Some items define a simulation scenario,
defining continuous processes within the model, and
defining queues in front of tasks. Further details
of these features can be obtained from the Micro
Saint Sharp User’s Guide (Micro Analysis and Design,
2004). As a model is being developed and debugged,
the user can execute the model to test it and collect
data. The user can rearrange, open, and close a variety
of windows to represent a variety of display modes
providing differing levels of information during exe-
cution. The simulation speed can also be controlled,
to include pausing after every simulated task. Typi-
cally, during execution the user will display the task
network on the screen, and tasks that are currently exe-
cuting will be highlighted. In this mode, the analyst
can get a very clear picture of what events are occur-
ring in what sequence in the model, greatly aiding
debugging. Additionally, an animator mode is avail-
able. In this mode, the user can draw a graphical
representation of the system. Changes on the graphical
background can be tied to the task flow, providing a
powerful method to communicate the model’s findings
to stakeholders. Figure 8 presents a sample display
during model animation. Once a model is executed and
data are collected, the analyst has a number of alterna-
tives for data analysis. The data created during a model
execution can be reviewed within Micro Saint Sharp

or can be exported to statistical and graphics packages
for postprocessing.

As stated before, the basis for task network models
of human performance is the mainstay of human
engineering analysis, the task analysis. Much of the
information discussed above is generally included in
the task analysis. Task network modeling, however,
greatly increases the power of task analysis since the
ability to simulate a task network with a computer
permits prediction of human performance rather than
simply the description of human performance that a
task analysis provides. What may not be as apparent,
however, is the power of task network modeling as
a means of modeling human performance in systems.
Simply by describing the systems activities in this step-
by-step manmner, complex models of the system can
be developed where the human’s interaction with the
system can be represented in a closed-loop manner.
The preceding discussion, in addition to being an
introduction to the concepts, is also intended to suppoit
the argument that task network modeling is a mature
technology ready for application in a wide range of
problem domains.

4.2 Task Network Model of a Process Control
Operator

This simple hypothetical example illustrates how many
of the basic concepts of task network modeling can be
applied to studying human performance in a process
control environment. It is intended to iltustrate many of
the concepts described above. The simple human task
that we want to model is of an operator responding
to an annunciator. The procedure requires that the
operator compare readings on two meters. Based on
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Figure 9 Task network model of a process control operator responding to an annunciator.

the relative values of these readings, the operator must
either open or close a valve until the values on the
two meters are nearly the same. The task network
in Figure 9 represents the operator activities for this
model. Also, to allow the study of the effects of
different plant dynamics (e.g., control lags), a simple
one-node model of the line in which the valve is being
opened is included in Figure 10.

The operator portion of the model will run the
“monitor panels” task until the values of the variables
“meterl” and “meter2” are different. The simulation
could begin with these values being equal and then

precipitate a change in values based on what is referred
to as a scenario event (e.g., an event representing the
effects of a line break on a plant state). This event
could be as simple as

meterl = meterl + 2.0;

or as complex as an expression defining the change
in the meter as a function of line-break size, flow
rates, and so on. An issue that consistently arises
in model construction is how complex the plant
system model should be. If the problem under study
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Figure 10 Simple one-node model of the plant
integrated with the detailed operator model.

is purely operator performance, simple models will
usually suffice. However, if overall plant behavior is of
interest, the models of plant dynamics, such as meter
values, are more important. Again, we recommend the
“start simple” approach whenever possible.

When the transient occurs and the values of meterl
and meter2 start to diverge, the annunciator signal
will trigger. This annunciator would be triggered in
the plant portion of the model by a task-ending effect
such as

if meter]l <> meter2 then annunciator = 1;

Once the plant model sets the value of the variable
“annunciator” to 1, the operator will begin to move to
the appropriate board. Then the operator will continue
through a loop to check the values for meter! and
meter2 and either open valvel, close valvel, or make
no change. The determination of whether to make a
control input is determined by the difference in values
between the two meters. If the value is less than
the acceptable threshold, the operator would open the
valve further. If the value is greater than the threshold,
the operator would close the valve. This opening and
closing of the valve would be represented by changes
in the value of the variable valvel as a task-ending
effect of the tasks open valvel and close valvel. In
this simple model, operators do not consider rates of
change in values for meter! and therefore would get
into an operator-induced oscillation if there were any
response lag. A more sophisticated operator model
could use rates of change in the value for meterl in
deciding whether to open or close valves.

Again, this is a very small model reflecting simple
operator activity on one contro] via a review of two
displays. However, it illustrates how large models
of operator teams Jooking at numerous controls and
manipulating many displays could be built via the
same building blocks used in this model. The central
concepts of a task network and shared variable
reflecting human~system dynamics remain the same.

Given a task network model of a process control
operator in a “current” control room, how might the
model be modified to address human-centered design

PERFORMANCE MODELING

questions? Some examples are (1) modifying task
times based on changes in the time required to access
anew display; (2) modifying task times and accuracies
based on changes in the content and format of displays;
(3) changing task sequence, eliminating tasks, andfor
adding tasks based on changes in plant procedures; (4)
changing allocation of tasks and ensuing task sequence
based on reallocation of tasks among operators; and,
(5) changing task times and accuracies based on
stressors such as sleep loss or the effects of circadian
rhythm. This is not intended as a definitive list of
all the ways that these models may be used to study
design or operations concepts but should illustrate
how these models can be used to address design and
operational issues.

4.3 Use of Task Network Modeling to Address
Specific Design Concerns

In this section we examine two case studies in the
use of task network simulation for studying human
performance issues. The first case study explores
how task network modeling can be used to assess
task allocation issues in a cognitively demanding
environment. The second example explores how task
network modeling has been used to extend laboratory
and field research on human performance under stress
to new task environments. We should state clearly that
these examples are intended to be representative of
the types of issues that task network modeling can
address as well as approaches to modeling human
performance with respect to these issues. They are not
intended to be comprehensive with respect to either
the issues that might be addressed or the possible
techniques that the human factors practitioner might
apply. Simulation modeling is a technology whose
application leaves much room for creativity on the
part of the human factors practitioner with respect to
application areas and methods. These two case studies
are representative.

4.3.1 Crew Workload Evaluation

Perhaps the greatest contributor to human error in
many systems is the extensive workload placed on
the human operator. The inability of the operator to
cope effectively with all of his or her information
and responsibilities contributes to many accidents
and inefficiencies. In recognition of this problem,
new automation technologies have been introduced to
reduce workload during periods of high stress. Some of
these technologies are in the form of enhanced controls
and displays, some are in the form of tools that “push”
information to the operator and alert the operator
in order to focus attention, and still others consist
of adaptive tools that “take over” tasks when they
sense that the operator is overloaded. Unfortunately,
these technical solutions often introduce new tasks to
be performed that affect the visual, auditory, and/or
psychomotor workload of the operators.

Recently, new concepts in crew coordination have
focused on better management of human workload.
This area shows tremendous promise and is benefiting
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from efforts of human factors researchers. However,
their efforts are hindered because there are limited
opportunities to examine empirically the performance
of different combinations of equipment and crew com-
position in a realistic scenario or context. Additionally,
high workioad is not typically caused by a single task
but by situations in which multiple tasks must be per-
formed or managed simultaneously. It is not simply
the quantity of tasks that can lead to overload, but
also depends on the composition of those tasks. For
example, two cognitive tasks being performed in par-
allel are much more effortful than a simple motor
task and an oral communication task being performed
together. The occurrence of these sjtuations will not
typically be discovered through normal human engi~
neering task analysis or subjective workload analysis
until there is a system to be tested. That is often
too late to influence design. To rectify this problem,
there has been a significant amount of recent research
and development aimed at human workload predic-
tion models. Predictive models allow the designers of
a system to estimate operator workload without human
subject experimentation. From this and other research,
asolid theoretical basis for human workload prediction
has evolved as is described in Wickens (1984).

In this section we discuss a study using task net-
work modeling to predict the impact of task alloca-
tion on human workload. Although these examples
are posed in the context of the design of a mili-
tary system, the same techniques have been used in
nonmilitary applications such as process control and
user—computer interface design.

4.3.2 Modeling the Workload of a Future
Command and Control Process

The Army command and control (C2) comununity
is concerned with how new information technology
and organizational changes projected for tomorrow’s
battlefield will affect soldier tasks and workload.
To address this concern, an effort was undertaken
to model soldier performance under current and
future operational conditions. In this way, the impact

Task Network

of performance differences could be quantitatively
assessed so that equipment and doctrine design could
be influenced in a timely and effective manner.

In one C2 project, the primary concern was
to determine how tasks should be allocated and
automated such that a C2 team could evaluate all
the relevant data and make decisions within an
environment with particularly high time pressure.
Specifically, the effort was to address the following
key questions:

How many crew members do you need?
How do you divide tasks among jobs?
How does decision authority flow?

Can the crew meet decision timeline require-
ments?

o Is needed information usable and accessible?

Task network modeling was used to study crew
member, task, and scenario combinations in order to
examine these questions. Figure 11 shows the top-level
diagram of the task network. Essentially, the crew
members receive and monitor information about the
system and the environment until an event occurs that
pushes them out of the 10000 and 20000 networks into
either a series of planning tasks or a series of eval-
uation, decision, direction, and execution tasks. The
purpose of the planning task is to update tactical bat-
tle plans based on new information received from the
system or the environment. Receipt of new intelli-
gence data about the enemy’s intention or capability is
an example of an event that would cause crew mem-
bers to undertake planning tasks. Similarly, receipt of
information from the system about resource limitations
might trigger the crew members to proceed down the
alternative path (through evaluate to execute). Specifi-
cally, limited resources might cause crew members to
evaiuate whether the engagement is proceeding appro-
priately (30000), decide how to adjust system param-
eters (40000), direct the appropriate response to the
correct level of command (50000), and then execute

Figure 11 Upper-level task network.
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Figure 12 Second-level task network.

the order (60000). Upon completion, crew members
would return to monitoring the system and situation.

Each rectangle in the task network shown in
Figure 11 actually consists of a network of tasks. An
example of the tasks that belong to network 10000
are shown in Figure 12. As described in Figure 7, the
tasks in network 10000 are linked by probabilistic and
tactical decisions. Each of the tasks in the C2 task
network is associated with several items of human
performance data:

o Tusk performance time. These data consist of a
mean, standard deviation, and distribution. The
data were collected from a combination of three
sources: (1) human factors literature (e.g., Fitt’s
law), (2) empirical studies during operator-in-
the-loop simulator exercises, and (3) subject
matter experts.

e Branching logic. Although the task network
indicates a general process flow, this particular
model was designed to respond to scenario
events. Because of that design decision, each
task includes logic to determine the following
task. For example, if the scenario is very intense
and multiple target tracks are available, crew
members would follow a different task flow
than if they were performing routine system
checks.

® Release rules. Logic controlling the number
and types of parallel tasks each crew member
can perform is contained in each task’s release
condition.

Since one purpose of the model was to examine
various task allocation strategies, the model was
designed to incorporate several measures of crew

member workload. The basis of this technique is an
assumption that excessive human workload is not
usually caused by one particular task required of the
operator. Rather, the human having to perform several
tasks simultaneously leads to overload. Since the
factors that cause this type of workload are intricately
linked to these dynamic aspects of the human’s task
requirements, task network modeling provides a good
basis for studying how task allocation and sequencing
can affect operator workload.

However, task network modeling is not inherently
a model of human workload. The only relevant output
common to all task network models is the time
required to perform a set of tasks and the sequence
in which the tasks are performed. Time information
alone would suffice for some workload evaluation
techniques, such as Siegel and Wolf (1969), whereby
workload is estimated by comparing the time available
to perform a group of tasks to the time required to
perform the tasks. Time available is driven by system
performance needs, and time required can be computed
with a task network model. However, it has long
been recognized that this simplistic analysis misses
many aspects of the human’s tasks that influence both
perceived workload and ensuing performance. At the
very least, this approach misses the fact that some pairs
of tasks can be performed in combinations better than
other pairs of tasks.

One of the most promising theories of operator
workload, which is consistent with task network
modeling, is the multiple resource theory proposed by
Wickens (e.g., Wickens et al., 1983). Simply stated,
the multiple resource theory suggests that humans
have several different resources that can be tapped
simultaneously and with varying levels of interresource
conflict and competition. Depending on the nature of
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the information-processing tasks required of a human,
these resources would have to process information
sequentiaily (if different tasks require the same types
of resources) or possibly in parallel (if different
tasks required different types of resources). There
are many versions of this multiple resource theory
in workload literature (e.g., McCracken and Aldrich,
1984; Axcher and Adkins, 1999). In this chapter we
provide a discussion of the underlying methodology
of the basic theory.

Multiple resource workload theory is implemented
in a task model in a fairly straightforward manner.
First, each task in the task network is characterized by
the workload demand required in each human resource,
often referred to as a workload channel. Examples of
commonly used channels include auditory, visual, cog-
nitive, and psychomotor. Particular implementations of
the theory vary in the channels that are included and
the fidelity with which each channel is measured (high,
medium, low vs. 7-point scale). As an example, the
scale for visual demand is presented in Figure 13.

Similar scales have been developed for the auditory,
cognitive, and psychomotor channels. Using this
approach, each operator task can be characterized as
requiring some amount of each of the four types of
resources, as represented by a value between 1 and
7. All operator tasks can be analyzed with respect
to these demands and values assigned accordingly.
In performing a set of tasks pursuant to a common
goal (e.g., engage an enemy target), crew members
frequently must perform several tasks simultaneously,
or at least nearly so. For example, they may be required
to monitor a communication network while visually
searching a display for target track. Given this, the
workload literature indicates that the crew member
may either accept the increased workload (with some

risk of performance degrading) or begin dumping
tasks perceived as less important. To factor these two
issues into task network simulations, two approaches
can be incorporated: (1) evaluate combined operator
workload demands for tasks that are being performed
concurrently, and/or (2) determine when the operator
would begin dumping tasks due to overload.

During a task network simulation, the model of
the crew may indicate that they are required to per-
form several tasks simultaneously. The task network
model evaluates total attentional demands for each
human resource (e.g., visual, auditory, psychomotor,
and cognitive) by combining the attentional demands
across all tasks that are being performed simultane-
ously. This combination leads to an overall workload
demand score for each crew member.

To implement this approach in Micro Saint Sharp,
the task beginning effect can be used to increment
variables that represent the current workload score
in each resource. Then, while the tasks are being
performed, these variables track attentional demands.
When the tasks are completed, the task ending
effects can decrement the values of these variables
accordingly. Therefore, if these workload variables
were recorded and then plotted as the model runs, the
output would lock something as shown in Figure 14.
This result can be used to identify points of high
workload throughout the scenario being modeled. The
human factors practitioner can then review the tasks
that led to the points of high workload and determine
whether they should be reallocated or redesigned in
order to alleviate the peak. This is a common approach
to modeling workload.

Once the task networks were verified with know!-
edgeable crew members, they became part of the
human factors team’s analytical test bed. Figure 15
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Figure 14 Workload output from a task network model.
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Figure 15 Overall method for examining workload in a complex system.

shows the overall method that can be used to examine
aspects of crew member performance across a wide
variety of operational scenarios and crew configura-
tion concepts. The center of this diagram, labeled the
task network, represents the tasks that the crew per-
forms. The network itself, representing the flow of the
tasks, does not change between model runs. Rather,
the model has been parameterized so that an event
scenario stimulates the network. The left side of the

diagram illustrates the types of data that are used to
drive the task network model. In this case, those data
include crew configurations, or allocations of tasks to
different crew members and automation devices, as
well as scenario events. The scenario events represent
an externally generated time-ordered list of the evenis
that trigger the crew members to perform tasks in the
task network. The right side of Figure 15 represents
the types of outputs that can be produced from this
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Figure 16 Model predictions of operator utilization over time.

task network model. One of the primary outputs is a
crew member workload graph, such as that shown in
Figure 14. Another is operator utilization, as shown in
Figure 16.

4.3.3 Extensions to Other Environments

The workload analysis methodology described above
has recently been developed into a stand-alone task
network modeling tool by the Army Research Labora-
tory (ARL) Human Research and Engineering Direc-
torate (HRED) as part of the Improved Performance
Research Integration Tool (IMPRINT) (Archer and
Adkins, 1999). IMPRINT integrates task network mod-
eling software with features that specifically support
the multiple resource theory of workload discussed
above. It provides the human factors practitioner with
an environment that supports the analysis of task
assignment to crew members based on four factors:

1. Workload of crew members. Tasks should be
assigned to minimize the amount of time that
crew members will spend in situations of
excessive workload.

Time performance requirements. Tasks must
be assigned and sequenced so that they are
completed within the available time. This
consideration is essential since time constraints
often will drive the need to perform several
tasks simultaneously.

Likelihood of successful performance and con-
sequences of failure. Tasks must be assigned
and sequenced so that they can be completed
within a specified accuracy measure.

Access to controls and displays. Tasks cannot
be assigned to crew members that do not have
access to the necessary controls and displays.

Of course, there are numerous theoretical ques-
tions regarding this simplistic approach to assessing
workload in an operational environment. However,
even the use of this simple approach has been shown
to provide useful insight during design. For example,
in a study conducted by the Army (Allender, 1995),
a three-man crew design was evaluated using a task
network model. The three-man model was constructed
using data from a prototype four-man system. From
this model-based analysis, the three-man design was
found to be unworkable. Later, human subjects exper-
imentation verified that the model’s workload predic-
tions were sufficiently accurate to point the design
team in a valid direction.

IMPRINT also includes built-in constructs for sim-
ulating workload management strategies that operators
would employ to accommodate points of high oper-
ator workload (Plott, 1995). The ultimate result of
simulating the workload management strategies is that
the operator task network being modeled is dynamic.
In other words, the task sequence, operator assign-
ments, and individual task performance may change
in response to excessive operator workload as the
task network model executes. These changes may
be as simple as one operator handing tasks off to
another operator to reduce workload to an acceptable
level or as complex as the operator beginning to
time-share tasks in order to complete all the tasks
assigned, potentially with associated task performance
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penalties. Ultimately, the tool provides an estimate of
system-level performance as a result of these realis-
tic workload management strategies. This innovation
in modeling provides greater fidelity in efforts that
model human behavior in the context of system per-
formance, particularly in high workload environments
such as complex system control and management.

4.3.4 Extending Research Findings to New
Task Environments

Task network modeling was used by LaVine et al.
(1995) to extend laboratory data and field data col-
lected on one set of human tasks to predicting per-
formance on similar tasks. The problem of extending
laboratory or field human performance data to other
tasks has plagued the human engineering community
for years. We know intuitively that human performance
data can be used to predict performance for similar
tasks. However, it is often the case that the task whose
performance we want to predict is similar in some
ways but different in others. The approach described
below uses a skill taxonomy to quantify task similarity,
and therefore provides a means for determining how
other tasks will be affected when exposed to a com-
mon stressor on human performance. Once functional
relationships are defined between a skill type and a
stressor, task network modeling is used to determine
the effect of the stressor on performance of a complex
task that uses many of these skills simultaneously.
The specific approach below is being used by the
U.S. Army to predict crew performance degradation as
a function of a variety of stressors. It is not intended
to represent a universally acceptable taxonomy for
simulating human response to stress. The selection
of the best taxonomy would depend on the particular
tasks and stressors being studied. What this example is
intended to illustrate is another way that task network
modeling can be used to predict human performance
by making a series of reasonable assumptions that
can be played together in a model for the purpose of
making predictions that would be impossible to make
otherwise. The methodology for predicting human
performance degradation as a function of stressors
consists of three parts: (1) a taxonomy for classifying
tasks according to basic human skills, (2) degradation

functions for each skill type for each stressor, and

(3) task network models for the human-based system
whose performance is being predicted. Conceptually,
either laboratory or field data can be used to develop
links between a human performance stressor (e.g.,
heat, fatigue) and basic human skills. By selecting
a skills taxonomy that is sufficiently discriminating
to make this assumption reasonable, one can assume
that the effects of the stressor on all tasks involving
the skill will be approximately the same. The links
between the level of a stressor (e.g., fatigue) and
resulting skill performance (e.g., the expected task
time increase from fatigue) are defined mathematically
as the degradation function. The task network model
is the means for linking these back to complex
human~system performance.

PERFORMANCE MODELING

Taxonomy The basic premise behind the taxonomy
is that the tasks that humans perform can be broken
down into basic human skills or atomic tasks (Roth,
1992). The taxonomy that was used by Roth consists
of five skill types described by Roth as follows:

1. Attention: the ability to attend actively to
a stimulus complex for extended periods of
time in order to detect specified changes or
classes of changes that indicate the occurrence
of some phenomenon that is critical to task
performance.

2. Perception: the ability to detect and catego-
rize specific stimulus patterns embedded in a
stimulus complex.

3. Psychomotor skill: the ability to maintain one
or more characteristics of a situation within
a set of defined conditions over a period
of time, either by direct manipulation, or by
manipulating controls that cause changes in the
characteristics.

4. Physical skill: the ability to accomplish sus-
tained, effortful muscular work.

5. Cognitive skill: the ability to apply concepts
and rules to information from the environment
and from memory in order to select or generate
a course of action or a plan (includes commu-
nicating the course of action or plan to others).

These five skills covered most of the tasks that
were of interest to the Army for this study and still
provided a manageable number of categories for an
analyst to use.

Degradation Functions The degradation functions
quantitatively link skill performance to the level of a
stressor. The degradation functions can be developed
from any data source, including standard test batteries
or actual human tasks. Through statistical analysis, one
can build skill degradation functions for each taxon.
These functions map the performance decrement
expected on a skill based on the parameters of the
performance-shaping factor (e.g., time since sleep). An
example of these functions is presented in Figure 17.

Incorporating the Degradation Functions into
Task Network Models to Predict Over-
all Human-System Performance Degradation
The key to making this approach useful to predict-
ing complex human performance is the task network
model of the new task. In the task network model
of the human’s activities, all tasks are defined with
respect to the percentage of each skill required from
the taxonomy. For example, the following are ratings
for tasks faced by a console operator responding to
telephone contacts:

Detect ring 50% attention, 50%
perception
Select menu item using a 40% attention, 60%
mouse psychotrotor

Interpret customer’s request  100% cognitive
for information
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Figure 17 Performance degradation functions assoclated with each of the human skills from the taxonomy.

In building the task network model, mathematical
expressions can be developed that degrade a specific
task’s performance through an arithmetic weighting
of skill degradation multipliers that are derived from
the degradation functions. For example, if the fatigue
parameter was “time since sleep” and the value of that
parameter was “36 hours since sleep,” the task time
performance multipliers would be as follows in the
example above:

Attention performance multiplier 0.82

Perception performance multiplier 0.808
Cognition performance multiplier 0.856
Psychomotor performance multiplier  0.784
Physical performance multiplier 0.727

Based on these multipliers and the task weightings
above, the specific task effects would be:

o Detect ring (50% attention, 50% perception)

task multiplier = 0.5 x 0.82 4 0.5 x 0.808
=0.814

o Select menu item using a mouse (40% attention,
60% psychomotor)

task multiplier = 0.4 x 0.82 + 0.6 x 0.784
= 0.7984

e Interpret customer’s request for information
(100% cognitive)

task multiplier = 0.856

In a model of the complex tasks being examined
by LaVine et al. (1995), the task networks consisted of
several dozen or even several hundred tasks. Through
the approach described above, each task in a model
exhibited a unique response to a stressor depending
on the particular skills that it required. The task
network model then provided the means for relating the
individual task performance to overall human-—system
performance as a function of stressor level (e.g., the

time to perform a complex series of tasks involving
decision making and error correction). Through this
type of analysis, LaVine et al. were able to develop
curves such as that shown in Figure 18 relating
human performance to a stressor. These relationships
would have been virtually impossible to develop
experimentally.

Again, there were a number of simplifying assump-
tions that were made in this research. However, by
being willing to accept these assumptions, LaVine
et al. were able to characterize how complex human—
system performance would be affected by a vari-
ety of stressors over a wide range in a relatively
short time. As such, they were able to estimate the
effects of stressors that would have otherwise been
pure guesswork.

4.44 Summary

Once again, the above are intended to serve as
examples, not a catalog of problems or approaches
that are appropriate for task network modeling.
Task network modeling is an approach to extend
task and systems analysis to make predictions of
human—system performance. The creative human
factors and ergonomics practitioner will find many
other useful applications and approaches.

5 FIRST-PRINCIPLE APPROACH: ADAPTIVE
CONTROL OF THOUGHT-RATIONAL
COGNITIVE ARCHITECTURE

The other fundamental approach to modeling human
performance is based on the mechanisms that under-
lie and cause human behavior. Since this approach is
based on fundamental principles of the human and his
or her interaction with the system and environment,
we have designated them as first-principle models.
By integrating these models with models of the sys-
tem and environment, the human factors specialist
can predict the full behavior of large-scale interactive
human~machine systems. The ACT-R cognitive archi-
tecture (Anderson and Lebiere, 1998) is a production
system theory that models the steps of cognition by
a sequence of production rules that fire to coordinate
retrieval of information from the environment and from



984 PERFORMANCE MODELING

0.08
0.07 1
0.06 T
0.05 T

0.03 +

Relative frequency

0.02 1
0.01 +

) R oDt
0 —+ t Y- RpdStesler

0 5 10 15 20 25
Time (sec)

Figure 18 Frequency distribution of expected human performance as a function of time since sleep that was derived

using task network modeling.

memory. It is a cognitive architecture that can be used
to model a wide range of human cognition. It has been
used to model tasks from memory retrieval (Anderson
et al., 1998) to visual search (Anderson et al., 1997).
The range of models developed, from those purely
concerned with internal cognition to those focused on
perception and action, makes ACT-R a plausible candi-
date to mode] complex tasks involving the interaction
of one (or more) human operator with complex systems
with the goal of evaluating the design of those systems.
In all domains, ACT-R is distinguished by the detail
and fidelity with which it models human cognition. It
makes claims about what occurs cognitively every few
hundred milliseconds in performance of a task. ACT-
R is situated at a level of aggregation above those
of basic brain processes (targeted by other modeling
approaches, such as neural networks) but considerably
below such complex tasks as air-traffic control. The
new version of the theory has been designed to be more
relevant to tasks that require deploying significant bod-
ies of knowledge under conditions of time pressure and
high information-processing demand. This is because
of the increased concern with the temporal structure
of cognition and with the coordination of perception,
cognition, and action.

5.1 ACT-R

ACT-R is a unified architecture of cognition developed
over the last 30 years at Carnegie Mellon University.
At a fine-grained scale it has accounted for hundreds
of phenomena from the cognitive psychology and
human factors literature. The most recent version,
ACT-R 5.0 (Anderson et al., in press), is a modular
architecture composed of interacting modules for
declarative memory, perceptual systems such as vision
and audition modules, and motor systems such as
manual and speech modules, all synchronized through
a central production system (see Figure 19). This
modular view of cognition is a reflection both of

functional constraints and of recent advances in
neuroscience concerning the localization of brain
functions. ACT-R is also a hybrid system that
combines a tractable symbolic level that enables the
easy specification of complex cognitive functions,
with a subsymbolic level that tunes itself to the
statistical structure of the environment to provide the
graded characteristics of cognition such as adaptivity,
robustness, and stochasticity.

The central part of the architecture is the production
module. A production can match the contents of any
combination of buffers, including the goal buffer,
which holds the current context and intentions; the
retrieval buffer, which holds the most recent chunk
retrieved from declarative memory; the visual and
auditory buffers, which hold the cumrent sensory
information; and the manual and vocal buffers, which
hold the current state of the motor and speech module.
The highest-rated matching production is selected to
effect a change in one or more buffers, which in
turn trigger an action in the corresponding module(s).
This can be an external action (e.g., movement)
or an internal action (e.g., requesting information
from memory). Retrieval from memory is initiated
by a production specifying a pattern for matching
in declarative memory. Each chunk competes for
retrieval, with the most active chunk being selected
and returned in the retrieval buffer. The activation of
a chunk is a function of its past frequency and recency
of use, the degree to which it matches the pattern
requested, plus stochastic noise. Those factors confer
memory retrievals, and behavior in general, desirable
“soft” properties such as adaptivity to changing
circumstances, generalization to similar situations, and
variability (Anderson and Lebiere, 1998).

The current goal is a central concept in ACT-
R, which as a result provides strong support for
goal-directed behavior. However, the most recent
version of the architecture is less goal-focused than
its predecessors by allowing productions to match
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Figure 19 Modular view of ACT-R cognitive architecture.

to any source of information, including the current
goal, information retrieved from declarative memory,
objects in the focus of attention of the perceptual
modules, and the state-of-the-action modules. The
content of many of those buffers, especially the
perceptual buffers, might have changed not as a
function of an internal request but as a result of an
external event happening, perhaps unexpectedly, in the
outside world. This emphasis on asynchronous pattern
matching of a wide variety of information sources
better enables ACT-R to operate and react efficiently in
a dynamic fast-changing world through flexible goal-
directed behavior which gives equal weight to internal
and external sources of information.

There are three main distinctions in the ACT-R
architecture. First, there is the procedural -declarative
distinction that specifies two types of knowledge struc-
tures: chunks for representing declarative knowledge
and productions for representing procedural knowl-
edge. Second, there is the symbolic level, which con-
tains the declarative and procedural knowledge, and
the subsymbolic level of neural activation processes
that determine the speed and success of access to
chunks and productions. Finally, there is a distinction
between the performance processes by which the sym-
bolic and subsymbolic layers map onto behavior and
the learning processes by which these layers change
with experience.

Human cognition can be characterized as having
two principal components: (1) the knowledge and pro-
cedures codified through specific training within the
domain, and (2) the natural cognitive abilities that
manifest themselves in tasks as diverse as memory,

reasoning, planning, and learning. The fundamental
advantage of an integrated architecture like ACT-
R is that it provides a framework for modeling
basic human cognition and integrating it with specific
symbolic domain knowledge of the type specified by
domain experts (e.g., rules specifying what to doin a
given condition, a type of knowledge particularly well
suited for representation as production rules). How-
ever, performance described by symbolic knowledge
is mediated by parameters at the subsymbolic level
that determine the availability and applicability of sym-
bolic knowledge. Those parameters underlie ACT-R’s
theory of memory, providing effects such as decay,
priming, and strengthening and make cognition adap-
tive, stochastic, and approximate, capable of general-
ization to new situations and robustness in the face of
uncertainty. They also can account for the limitations
of human performance, such as latencies to perform
tasks and errors that can originate from a number of
sources. Finally, they provide a basis for represent-
ing individual differences such as those in working
memory capacity, attentional focus, motivation, and
psychomotor speed as well as the impact of exter-
nal behavior moderators such as fatigue (Lovett et al.,
1999; Taatgen, 2001) through continuous variations of
those subsymbolic architectural parameters that affect
performance in complex tasks.

Because they influence quantitative predictions
of performance so fundamentally, we describe in
some more detail the subsymbolic level in which
continuously varying quantities are processed, often in
parallel, to produce much of the qualitative structure
of human cognition. These subsymbolic quantities
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participate in neural-like activation processes that
determine the speed and success of access to chunks
in declarative memory as well as the conflict resolu-
tion among production rules. ACT-R also has a set
of learning processes that can modify these subsym-
bolic quantities. Formally, activation reflects the log
posterior odds that a chunk is relevant in a particular
situation. The activation A; of a chunk i is computed as
the sum of its base-level activation B; plus its context
activation:
A; = B; +ZWJ'S};
Jj

In determining the context activation, W; desig-
nates the attentional weight given the focus element j.
An element j is in the focus, or in context, if it is part
of the current goal chunk (i.e., the value of one of the
goal chunk’s slots). S;; stands for the strength of asso-
ciation from element j to chunk i. ACT-R assumes that
there is a limited capacity of source activation and that
each goal element emits an equal amount of activation.
Source activation capacity is typically assumed to be 1
(i.e., if there are n source elements in the current focus
each receives a source activation of 1/z). The associa-
tive strength S;; between an activation source j and
a chunk i is a measure of how often i was needed
(i.e., retrieved in a production) when chunk j was in
the context. Associative strengths provide an estimate
of the log likelihood ratio measure of how much the
presence of a cue j in a goal slot increases the prob-
ability that a particular chunk 7 is needed for retrieval
to instantiate a production. The base-level activation
of a chunk is learned by an architectural mechanism
to reflect the past history of use of a chunk i:

nL™4
1-d

n
B = ]11th“d ~ In
i=1

where #; stands for the time elapsed since the jth
reference to chunk i,d is the memory decay rate,
and L denotes the lifetime of a chunk (i.e., the
time since its creation). As Anderson and Schooler
(1991) have shown, this equation produces the power
law of forgetting (Rubin and Wenzel, 1990) as
well as the power law of learning (Newell and
Rosenbloom, 1981). When retrieving a chunk to
instantiate a production, ACT-R selects the chunk with
the highest activation A;. However, some stochasticity
is introduced in the system by adding Gaussian noise
of mean zero and standard deviation o to the activation
A; of each chunk. In order to be retrieved, the
activation of a chunk needs to reach a fixed retrieval
threshold T that limits the accessibility of declarative
elements. If the Gaussian noise is approximated with
a sigmoid distribution, the probability P of chunk i to
be retrieved by a production is

1

P= 1+ G
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where s=«/§s/m The activation of a chunk i
is related directly to the latency of its retrieval
by a production p. Formally, rerrieval time T;, is
an exponentially decreasing function of the chunk’s
activation A;:

Tip = Fe f4

where F is a time scaling factor. In addition to the
latencies for chunk retrieval as given by the retrieval
time equation, the total time of selecting and applying
a production is determined by executing the actions
of a production’s action part, whereby a value of
50 ms is typically assumed for elementary internal
actions. External actions, such as pressing a key,
usually have a longer latency determined by the ACT-
R/PM perceptual-motor module (Byrne and Anderson,
2001). In summary, subsymbolic activation processes
in ACT-R make a chunk active to the degree that past
experience and the present context (as given by the
current goal) indicate that it is useful at this particular
moment.

Just as subsymbolic activation processes control
which chunk is retrieved from declarative memory,
the process of selecting which production to fire
at each cycle, known as conflict resolution, is also
determined by subsymbolic quantities called utility
that are associated with each production. The utility,
or expected gain, E of a production is defined as

E=PG-C

where G is the value of the goal to which the
production applies, and P and C are estimates of the
goal’s probability of being completed successfully and
the expected cost in time until that completion, respec-
tively, after this production fires. Just as for retrieval,
conflict resolution is a stochastic process through the
injection of noise in each production’s utility, leading
to a probability of selecting a production i given by

EE’ /t

pli) = W

where t = +/60/m. Just as for the base-level activation,
a production’s probability of success and cost are
learned to reflect the past history of use of that
production, specifically the past number of times that
that production led to success or failure of the goal to
which it applied, and the subsequent cost that resulied,
as specified by

successes
"~ successes + failures

>~ costs

"~ successes + failures

Costs are defined in terms of the time to lead to a
resolution of the current goal. Thus, the more or less
successful a production is in leading to a solution to
the goal and the more or less efficient that solution




MODELING HUMAN PERFORMANCE IN COMPLEX SYSTEMS 987

is, the more or less likely that the production is to
be selected in the future. Similar computations are at
work in other modules, such as the perceptual-motor
modules. Especially important are the parameters
controlling the time course of processing as one
attempts to execute a complex action or as one shifts
visual attention to encode a new stimulus (Byrne
and Anderson, 2001). ACT-R can predict not only
direct quantitative measures of performance such as
latency and probability of errors, but from the same
mechanistic basis can also arise more global, indirect
measures of performance, such as cognitive workload,
Although ACT-R has traditionally shied away from
such meta-awareness measures and concentrated on
matching directly measurable data such as external
actions, response times, and eye movements, it is by
no means incapable of doing so. For the purpose of
the task described below, Lebiere (2001) proposed a
measure of cognitive workload in ACT-R grounded
in the central concept of unit task (Card et al., 1983).
Workload is defined as the ratio of time spent in critical
unit tasks to the total time spent on task. Critical unit
tasks are defined as tasks that involve actions, such as a
goal to respond to a request for action with a number
of mouse clicks, or tasks that involve some type of
pressure, such as a goal to scan a display result from
the detection of an event onset. The ratio is scaled to
fit the particular measurement scale used in the self-
assessment report. Lebiere (2001) describes possible
elaborations of this basic measure.

5.2 AMBR

In t'his section we describe in some detail the con-
straints and requirements of the process of developing
an ACT-R model for a task of moderate complexity

and the range of quantitative predictions that one can
expect from such a model. The task is a synthetic
air-traffic control simulation that was developed for
the agent-based modeling of behavior representation
(AMBR) comparison (Pew and Gluck, in press) that
arose from a report (Pew and Mavor, 1998) that high-
lighted the need for more robust, realistic human per-
formance models (HPMs) for use in simulations for
training and system acquisition

The AMBR project was designed to advance the
state of the art in cognitive and behavioral modeling,
especially models of integrative performance, requir-
ing the coordination of memory, learning, multitask-
ing, interruption handling, and perceptual and motor
systems in order to scale more effectively to real-
world environments. The program provided a struc-
ture to gather human performance data and evalu-
ate the accuracy and predictiveness of the models.
The AMBR program was organized as a series of
comparisons among alternative modeling approaches
including ACT-R but also the Air Force Research Lab-
oratory’s DCOG (Eggleston et al., 2001), CHI Sys-
tems, Inc.’s COGNET/iGEN (Zachary et al., 2001),
and George Mason University’s EASE (Chong, 2001).

The task designed to elicit the desired behaviors is
a synthetic air-traffic control simulation. This domain
requires a controller to manage one sector of airspace,
especially the transition of aircraft into and out of the
sector. Scenarios can vary the number, speed, altitude,
and type of aircraft requesting access to the sector
and can be complicated by having them arrive from
multiple directions and adjoining sectors. This is a rich
enough infrastructure to create a variety of scenarios
having variable task load Jevels and varying levels of
planning complexity. Figure 20 displays a screen shot

Figure 20 Screen shot of the AMBR simulation.
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of the simulation. The main part of the screen on the
left contains a graphical representation of the entire
airspace, with the part controlled by the human or
model agent contained in the central yellow square.
The rest of the airspace is divided by the yellow
lines in four regions, north, east, south, and west,
each managed by a separate controller. At any point
during the simulation a number of airplanes (the exact
number being a parameter controlling the difficulty of
the task) are present in the airspace, flying through the
central region or entering or exiting it. The task of
the central controller is to exchange messages with the
airplanes (each tagged with its identifying code, e.g.,
UAL344) and neighboring controllers to manage their
traversal of its airspace. Those messages are displayed
in the text windows on the right of the screen, with
each window dedjcated to a specific message category.
The top left window concerns messages sent when a
plane is entering the central controller’s region, while
the top right window concerns messages sent when
a place is exiting the central region. Both windows
include messages exchanged between controllers as
well as messages between the central controller and the
plane itself. The bottom window concerns messages
from and to planes requesting a speed increase, which
should be granted unless that plane is overtaking
another plane, which is the only airspace conflict that
this simplified task allows.

A single event involves a number of messages
being exchanged, all of which are appended to the
relevant text window. For example, in the case of
a plane about to enter the central region, a message
requesting permission to enter will first be sent
to the central controller from the controller of the
neighboring region from which the plane originates.
The central controller must reply to the other controller
in a timely manner to accept the plane, then contact the
plane to welcome it to the airspace. Those two cannot
be performed in immediate succession, but instead,
require waiting for the first party contacted (in this
case the other controller) to reply before taking the
final action. This delay allows for the interleaving
of unit tasks but also requires the maintenance of
the currently incomplete tasks in working memory.
Messages from other tasks can arrive when a task is
being processed, thus requiring some search of the
text window to identify the messages relevant to a
task. A message is composed by clicking a button
above the relevant text window (e.g., accepting AC),
then clicking in the graphical window on the intended
recipient (e.g., another controller) and optionally the
target of the message (i.e., a plane, unless it is the
intended recipient, in which case this is omitted),
then the send button above the graphic window. The
message being composed is displayed at the top left of
the display in a text window.

To measure performance on the task objectively,
penalties were assessed for a variety of failures to act
in a timely manner. To evaluate the impact of system
design, a decision support condition contrasted with
a support condition were implemented to dissociate
two aspects of multitasking behavior. In the standard
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condition, subjects had to parse the messages printed
in the text windows on the right side of the screen to
determine which planes needed attention and which
functions needed to be performed on them. In the
assisted condition, planes that require assistance were
color-coded in the graphical display on the left side
of the screen according to the task that needed to
be performed (green for accept, blue for welcome,
orange for transfer, yellow for contact, magenta for
speed change, and red for holding). This helped the
subjects track visually which tasks needed tc be
attended to and removed any necessity to parse the text
windows on the left, a complex and time-consuming
task. Therefore, it dissociated the maintenance and
updating of the queue of to-be-attended tasks from
the resolution of conflicts between high-priority tasks.
Two sets of scenarios were created: One set was provi-
ded to the developers as a model on which to base
their designs, and another set was reserved to be used
at the time of the competitive validation (i.e., the
fly-off). Human performance data on the first set of
scenarios were provided to the developers to fine-tune
their model. The data from the second set of scenarios
were withheld until after the fly-off for comparison
with the model performance. The range of behavior
requirements of both sets had the same scope, but the
ways in which those behaviors were exercised were
not identical, to test the robustness and predictiveness
of the models.

5.3 Model Development

If it is to justify its structural costs, a cognitive archi-
tecture should facilitate the development of a model
in several ways. It should limit the space of possible
models to those that can be expressed concisely in its
language and work well with its built-in mechanisms.
1t should provide for significant transfer from models
of similar tasks, either directly in the form of code
or more generally in the form of design patterns and
techniques. Finally, it should provide learning mecha-
nisms that allow the modeler to specify in the model
only the structure of the task and let the architec-
ture learn the details of the task in the same way
that human cognition constantly adapts to the struc-
ture of its environment. These architectural advantages
not only reduce the amount of knowledge engineering
required and the number of trial-and-error development
cycles, providing significant savings in time and labor,
but also improve the predictiveness of the final model.
If the “natural” model (derived a priori from the struc-
ture of the task, the constraints of the architecture, and
the guidelines from previous models of related tasks)
provides a good fit to the empirical data, one can be
more confident that it will generalize to unforeseen sce-
narios and circumstances than if it is the result of post
hoc knowledge engineering and data analysis. That is
the approach that we adopted in developing a model
of this task, and indeed more generally, our design and
use of the ACT-R architecture.

Of course, in domains involving a large body of
expertise, it makes sense to encode in the cognitive
model the accepted knowledge of the field. But in syn-
thetic tasks or in tasks involving new system design,
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specific established knowledge is usually inexistent or
inaccessible. Thus, we did not try to reverse-engineer
the subjects” strategies but instead, tried to develop
the simplest and most natural model for the architec-
ture. We organized the model around a few goal types
with their associated productions. Goal types corre~
spond closely to the unit tasks in human-computer
interaction (Card et al., 1983) as well as to the tasks
in task network models (e.g., Allender et al., 1995).
Five goal types, called color-goal, text-goal, scan-text,
scan-screen, and process, were defined, together with a
total of 36 very simple productions. Goals were simple
and would hold just a few elements, such as the aircraft
currently being handled together with related informa-
tion such as its position and the action to be performed,
in accordance with architectural constraints. Overall,
such model development need not take more than a few
days. Two basic modes of human interaction with the
simulation were defined: one in which the operator had
to rely mostly on text messages scrolling in windows
to identify events that required action (the text con-
dition), and one in which aircraft on the radar screen
that required action would turn a color corresponding
to the action (the color condition). The simulation also
had three speeds (low, medium, and high) that con-
trolled how much time the subjects would have (10,
7.5, and 5 minutes, respectively) to perform a given
number of actions.

The goal type color-goal was the top goal for the
color condition. Five productions were defined that
applied to that goal. They scanned the radar screen
continuously, identified an aircraft that had turned
color, mapped the color into the required action by
relying on five simple memory chunks encoding the
instructions that the subjects were given regarding the
color-action mappings, then created a goal to perform
the given action on the aircraft. The goal-type process
executed the sequence of mouse clicks required to
perform the action. Twelve productions were defined to
handle the five possible actions. This required clicking
on a button identifying the action, then on the aircraft,
then perhaps on a neighboring controller, then finally
on the send button.

As expected, the text condition was both more
difficult for the subjects and slightly more complicated
for the model. The goal type text-goal was the top
goal for the text condition. Four productions were
defined to cycle through the three text windows
and the radar screen looking for aircraft requiring
action by creating goals of type scan-text and scan-
screen, respectively. A goal of type scan-text would
handle the scanning of a single text window for
a new message from another controller requesting
action. A production was defined to scan the window
systematically for such a message. If one was found,
another production would attempt to retrieve a memory
of handling such a request. Memories for such requests
would be created automatically by the architecture
when the corresponding goal was completed, but
their availability was subject to their subsymbolic
parameters, which were in turn subject to decay as well
as reinforcement. If no memory could be retrieved,

the window would be scanned for another message,
indicating completion. If none could be found, a
process goal would be created to perform the action
requested. Note that this is the same goal as in the
color condition. A key component of the model was
an additional production that would detect the onset
of a new message in another window and interrupt
the current goal to scan that window instead. This
allowed the model to be sensitive to new events and
handle them promptly. Scanning the radar screen was
accomplished in a similar manner by goals of type
scan-screen and their eight associated productions.

Finally, all the architectural parameters that control
the performance of the simulation were left at their
default values provided by previous models. A key
aspect of our methodology, which is also pervasive
in ACT-R modeling, is the use of Monte Carlo
simulations to reproduce not only the aggregate subject
data (such as the mean performance or response time)
but also the variation that is a fundamental part of
buman cognition. Especially when evaluating system
design, it is essential not only to capture an idealized
usage scenario but as broad a range of performance
as possible. In that view, the model doesn’t represent
an ideal or even average subject, but instead, each
model run is meant to be equivalent to a subject
run, in all its variability and unpredictiveness. For
that to happen, it is essential that the model not be
merely a deterministic symbolic system but be able
to exhibit meaningful nondeterminism. To that end,
randomness is incorporated in every part of ACT-
R’s subsymbolic level, including chunk activations,
which control their probability and latency of retrieval,
production utilities, which control their probability of
selections; and production efforts, which control the
time that they spent executing.

Moreover, as has been found in other ACT-R
models (e.g., Lerch et al., 1999), that randomness is
amplified in the interaction of the model with a
dynamic environment: Even small differences in the
timing of execution might mean missing a critical
deadline, which results in an error condition, which
requires immediate attention, which might cause
another missed deadline, and so on. To model the
variation as well as the mean of subject performance,
the model was always run as many times as there
were subject runs. For that to be a practical strategy of
model development, it is essential that the model run
very fast, ideally significantly faster than real time. Our
model ran up to five times faster than real time on a
desktop PC, making it possible to run a full batch of
48 scenarios in about an hour and a half, enabling a
relatively quick cycle of model development.

5.4 Modeling Results

Because the variability in performance between runs,
even of the same subject, is a fundamental charac-
teristic of this task, we ran as many model runs as
there were subject runs. Figure 21 compares the mean
performance in terms of penalty points for subjects
and model for color (left three bars) and text (right
three bars) condition by increasing workload level. The
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Figure 21 Mean performance as a function of workload and system design.

model matches the data quite well, including the strong
effects of color vs. text condition and of workload for
the unaided (text) condition.

Because ACT-R includes stochasticity in chunk
retrieval, production selection, and perceptual/motor
actions, and because that stochasticity is amplified by
the interaction with a highly dynamic simulation, it
can reproduce a large part of the variability in human
performance, as indicated by Figure 22 which plots
the individual subject and model runs for the two
conditions that generated a significant percentage of
errors (text condition in medium and high workload).
The range of performance in the medium-workload
condition is reproduced almost perfectly other than for
two outliers, and a significant portion of the range in
the high condition is also reproduced, albeit shifted
slightly too upward. It should be noted that each model
run is the result of an identical model that differs from
another only in its run-time stochasticity. The model
neither learns from trial to trial nor is modified to take
into account individual differences.

The model reproduces not only the subject perfor-
mance in terms of total penalty points, but also matches
well to the detailed subject profile in terms of penal-
ties accumulated under eight different error categories,
as plotted in Figure 23. It should be emphasized that
those errors were not engineered in the model, but
instead, resulted directly from the limitations of the
cognitive architecture applied to a demanding, fast-
paced dynamic task.

The model also fits the mean response times (RTs)
for each condition, as shown in Figure 24, which plots
the detailed pattern of latencies to perform a required
action for each condition and number of intervening
events (i.e., number of planes requiring action between
the time of a given plane requiring action and the
time the action is actually performed). The model
predicts very accurately the degradation of RT as more
events compete for attention, including the somewhat
counterintuitive exponential (note that RT is plotted
on a log scale) increase in RT as a function of number
of events rather than a more straightforwardly linear
increase. The differences in RT between conditions
are primarily a function of the time taken by the
perceptual processes of scanning radar screen and
text windows.

Finally, the model reproduces the subjects’ answers
to the self-reporting workload test administered after
each trial. As shown in Figure 25, the simple definition
of workload described in Section 5.3 captures the
main workload effects, specifically effects of display
condition and schedule speed. The latter effect results
from reducing the total time to execute the task
(i.e., the denominator) while keeping the total number
of events (roughly corresponding to the numerator)
constant, thereby increasing the ratio. The former
effect results from adding to the process tasks the
message scanning tasks resulting from onset detection
in the text condition, thus increasing the numerator
while keeping the denominator constant, thereby
increasing the ratio as well. Another quantitative effect
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Figure 23 Penalty points for a variety of error categories.

that is reproduced is the higher rate of impact of
schedule speed in the text condition (and the related
fact that workload in the slowest text condition is
higher than workload in the fastest color condition).
This is primarily a result of task embedding [ie.,

the fact that a process task can be (and often is)
a subgoal of another critical unit task (scanning a
message window following the detection of an onset
in that window)], thus making the time spent in the
inner critical task count twice.
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Lebiere (in press) reports the results of a second
phase of the AMBR comparison in which we model
had to learn how to categorize airplanes properly
based on a simple pass—fail feedback. This model
is similar to the one described here but leverages
even more extensively the subsymbolic aspects of
the architecture, especially the learning equations

described in the ACT-R introductory section, t0
perform the learning task as a constrained component
of the entire task. In summary, the advantages of
this model are that it is relatively simple, required
almost no parameter tuning or knowledge engineering,
provides a close fit to both the mean and variance of
a wide range of subject performance measures as well
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as workload estimates, and suggests a straightforward
account of multitasking behavior within the existing
constraints of the ACT-R architecture.

6 INTEGRATION OF THE APPROACHES

Because ACT-R and IMPRINT were targeted at dif-
ferent behavioral levels, they complement each other
perfectly. IMPRINT is focused on the task level, how
high-level functions break down into smaller-scale
tasks, and the logic by which those tasks follow each
other to accomplish those functions. ACT-R is tar-
geted at the “atomic” level of thought, the individual
cognitive, perceptual, and motor acts that take place
at the subsecond level. As shown in Figure 19 and
in the previous example, the cumrent goal is a cen-
tral concept in ACT-R which corresponds directly to
the concept of unit task. At each cycle, a production
will be chosen that best applies to the goal, knowl-
edge might be retrieved from declarative memory and
perceptual and motor actions taken. Those cycles will
repeat until the current goal is solved, at which point
it is popped and another one is selected. The ACT-R
theory specifies in detail the performance and learn-
ing that takes place at each cycle within a specific
goal, but has comparatively little to say about the
selection of those goals. Since goals in ACT-R cor-
respond closely to tasks in IMPRINT, that weakness
maiches IMPRINT’s strength perfectly. Conversely,
since IMPRINT requires the characteristics of each
task to be specified as part of the model, ACT-R can be
used to generate those detailed characteristics in a psy-
chologically plausible way without requiring extensive
data collection. Thus, an integrated ACT-R/IMPRINT
is structured along as pictured in Figure 26.

An IMPRINT model specifies the network of tasks
used to accomplish the functions targeted by the

model (e.g., landing a plane and taxiing safely to
the gate). The network specifies how higher-order
functions are decomposed into tasks and the logic by
which these tasks are composed together. As input,
it takes the distribution of times to complete the task
and the accuracy with which the task is completed.
It can also take as input the workload generated by
each task. Additional inputs include events generated
by the simulation environment. Finally, a number
of additional general parameters, such as personnel
characteristics, level of training, and familiarity and
environmental stressors can be specified. IMPRINT
specifies the performance function by which these
parameters modulate human performance. The outputs
include mission performance data such as time and
accuracy, as well as aggregate workload data.

An ACT-R model specifies the knowledge struc-
tures, such as declarative chunks and production rules,
that constitute the user knowledge relevant to the tasks
targeted by the model. It also specifies the goal struc-
tures reflecting the task structure and the architectural
and prior knowledge parameters that modulate the
model’s performance. For each goal on which ACT-R
is focused (i.e., made the current goal), it generates a
series of subsecond cognitive, perceptual, and motor
actions. The result of those actions is the total time
to accomplish the goal, as well as how the goal was
accomplished, including any error that might result.
Errors in ACT-R originate from a broad range of
sources. They include memory failures, including the
failure to retrieve a needed piece of information or
the retrieval of the wrong piece of information; choice
failures, including the selection of the wrong produc-
tion rule; and attentional failures, such as the failure
to detect the salient piece of information by the per-
ceptual modules. Although those errors could arise

IMPRINT PROCESS MODEL

Aircraft variables
and commands
External events

i

Currenttime -
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Figure 26 Integrated ACT-R/IMPRINT model.
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because of faulty symbolic knowledge (either declara-
tive or procedural), it is often not the case, especially in
domains that involve highly trained crews. More often,
those errors occur because the subsymbolic parameters
associated with chunks or productions do not allow the
model to access them reliably or quickly enough to be
deployed in the proper situation.

Moreover, because those parameters vary stochas-
tically and their effect is amplified by the interaction
with a dynamic environment, those times and errors
will not be deterministic but will vary with each exe-
cution, as is the case for human operators. Thus, the
ACT-R model for a particular goal can be run when-
ever IMPRINT selects the corresponding task to gen-
erate the time and error distribution for that task in a
manner that reflects the myriad cognitive, perceptual,
and motor factors that enter into the actual performance
of the task. As seen in the previous example, ACT-R
can also generate workload estimates for each goal
that refiect the cognitive demands of the actions taken
to perform that particular subtask, then pass those esti-
mates to IMPRINT, which can then combine them into
global workload estimates for the entire task.

6.1 Sample Applications

As a practical application of the IMPRINT and ACT-R
integration, a complex and dynamic task was selected
for a modeling effort. Researchers with the National
Acronautics and Space Administration (NASA) were
interested in developing models of pilot navigation
while taxiing from a runway to a gate. Research on
pilot surface operations had shown that pilots can com-
mit numerous errors during taxi procedures (Hooey
and Foyle, 2001). NASA was hoping to reduce
the number and scope of pilot error during surface
operations by using information displays that would
improve the pilots’ overall situation awareness.

NASA researchers provided the IMPRINT and
ACT-R modeling teams with data describing pilot pro-
cedures during prelanding and surface taxi operations.
These data included videotapes of pilots in the NASA
Ames Advanced Concept Flight Simulator (ACFS),
which is a simulated cockpit capable of duplicating
pilot taxiing operations. A detailed, scaled map of
Chicago’s O’Hare airport was also provided, which
included runway signage. Other types of documenta-
tion were provided to give the IMPRINT and ACT-R
modeling team the information necessary to duplicate
runway taxiing behavior by pilots.

The IMPRINT and ACT-R modeling teams used
the scaled map of Chicago’s O’Hare airport to estimate
the time between runway taxi turns. IMPRINT handled
the higher-level, task-oriented parts of the taxiing
and landing operations (i.e., turning, talking on radio,
looking at instrumentation), while ACT-R handled the
more cognitive and decision-making parts of the task
(i-e., remembering where to turn, remembering the taxi
route). By using the scaled map of the airport, the
IMPRINT and ACT-R teams were able to determine
the amount of time between each taxi turn (based on
an estimated plane speed that was correlated with the
simulated speeds from the videotape data) and then
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use those data to estimate the decay rate for the list o
memory elements (i.e., ranway names) that the Pilgy
would have to remember.

Using this integrated architecture allowed the teay,
to represent a complex, dynamic task and by exploitip,
each architecture’s strengths, the modeling procegg
was enhanced and streamlined. The resulting modgl
could account for a broad range of possible taxiip,
errors within a constrained first-principle framewory
as was the case for the stand-alone AMBR mode)’
but in addition benefited by integration with the tagj
network model, which provided a convenient tagk.
based organizing framework to minimize the anthorip,
requirements for the cognitive model as well g
to provide a high-productivity tool to simulate the
environment and aircraft with which the cognitive
model interacts.

Craig et al. (2002) performed a similar integratiop,
of ACT-R into the combat automation requirementg
tool (CART)* model (Brett et al., 2002), a task net.
work model used in the acquisition process of the
joint strike fighter. The task to be performed was tar-
get acquisition, more specifically, management of the
shoot list, which allows a pilot to select potential tar-
gets to be identified by high-resolution radar. Using 5
methodology similar to that described above, specific
subtasks were identified for which additional cogni-
tive fidelity was required and reimplemented in the
form of ACT-R goals and associated production rules,
ACT-R then interacted with the CART model, pro-
viding plausible performance for cognitive subtasks
such as prioritizing targets and recalling items iden-
tified previously.

7 SUMMARY

In this chapter we have reviewed the need for simu-
lating performance of complex human-based systems
as an integral part of system design, development,
testing, and life-cycle support. We have also defined
two fundamentally different approaches to modeling
human performance, a reductionist approach and a
first-principle approach. Additionally, we have pro-
vided detailed examples of two modeling environments
that typify these two approaches along with represen-
tative case studies. Finally, we described an integrated
tool that attempts to leverage the advantages of both
approaches into an efficient and principled modeling
package.

As we have stated and demonstrated repeatedly
throughout this chapter, the technology for modeling
human performance in systems is evolving rapidly.
Furthermore, the breadth of questions being addressed
by models is expanding constantly. Necessity being the
mother of invention, we encourage the human factors
practitioner to consider how computer simulation can
provide a better and more cost-effective basis for
human factors analysis and in turn stimulate further
developments in modeling and simulation tools 0
better serve their needs.

*The reader should note that the CART model capabilities
are now subsumed into the IMPRINT tool.
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