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Summary: We describe a computational model of multiple task performance 
used to predict task interference and subsequent decrements in performance, 
based on the resource demands of a particular task (i.e., the difficulty) as well as 
the competition between tasks over limited and overlapping resources. We 
describe the model components, the computational aspects, and further validate it 
with data from a simulated driving study.   
 

Successful multiple resource models predict the amount of interference that will occur between 
two or more tasks that are performed concurrently. That is, they predict the degradation in 
performance in one or multiple tasks when they are performed at the same time compared to 
their relative performance when performed alone (single-task conditions). Designers would like 
to be able to predict such interference in advance of time-consuming driver-in-the-loop 
simulations in order to assess, for example, whether a particular in-vehicle technology (IVT) will 
excessively interfere with safe driving.  
 
 Theories of multiple resources (Navon & Gopher, 1979; Wickens, 2002) posit the 
existence of separate resources, which are both limited in capacity and allocatable amongst 
different tasks. In keeping with their ‘multiple’ nature, these resources are defined along four 
dimensions: the information processing stage (perception / cognition vs. response), the 
processing code (verbal vs. spatial), the input modality (visual vs. auditory), and the visual 
channel (within the visual modality; focal vs. ambient). Resource competition is derived from 
interference at each of these levels. In general, theories of multiple resources predict greater task 
interference decrements when multiple tasks compete for limited and overlapping resources and 
when task difficulty is increased, as opposed to conditions that are easy in nature or combine 
tasks that draw on non-overlapping resource structures. Task prioritization strategies will 
determine the nature of the performance decrement across multiple tasks. 
 

Here we describe and test a computational model of multiple task performance in driving, 
based on the difficulty (or the resources demanded) of each task and the extent to which two 
concurrent tasks compete for common resources.  
 
INTERFERENCE MODEL 
 
Our computational model of task interference (Wickens, 2002) involves a number of steps, 
including the development of a demand vector and conflict matrix, followed by the calculation of 
the total task interference:  
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 (1) Each task is coded in terms of its dependence on a given resource (following the 
dimensions noted above) on an ordinal scale, depending on task characteristics and overall 
difficulty. That is, we assume that a value of 0 indicates that a given task does not involve a 
particular resource, whereas a value of 1 implies that some resources are demanded. As the task 
becomes more complex or difficult, this demand value may increase to 2, 3 or beyond. As a 
simple example, the task of keeping one’s vehicle in its respective lane may involve resources at 
the perceptual (e.g., localizing the lane markers), cognitive (e.g., determining the relative 
position of the vehicle within the lane), and response (e.g., turning the steering wheel) levels. 
The relatively easy task of driving on a straight, uncluttered freeway may involve a resource 
demand vector of 1-1-1 along each of these dimensions, respectively. In contrast, driving at night 
on the same road may yield a demand vector of 2-1-1 along the same dimensions. A demand 
vector of 2-1-0 may characterize an in-vehicle task, such as perceiving and understanding a 
navigation display. The distribution of zero and non-zero values in the demand vector becomes 
an important consideration when we discuss the conflict matrix, below.  
 
 (2) The degree of task difficulty is assessed using a demand scalar, which is simply the 
additive combination of values in the demand vector. In the previous examples, the respective 
driving tasks would have demand scalars of 3, 4, and 3. When two tasks are performed 
concurrently, we derive the total demand score by summing the demand scalars for each task. 
For example, concurrent performance of the IVT task and the easy driving task would yield a 
total demand score of (3 + 3 =) 6. In our model, we transform these scores for a given set of task 
combinations such that scores range from 0 (easiest combination) to 1 (most challenging).  
 
 (3) The extent to which a set of tasks shares overlapping resources is characterized along 
the four dimensions of the model. That is, we determine whether there is competition over 
visual-spatial resources, over visual-verbal resources, and so on. We then establish how much 
interference is present within a given resource, based on the summed conflict values for the 
specified task set. As shown in Table 1, a conflict matrix is a convenient means of illustrating the 
conflict values for different resource competitions. We assume that if two tasks cannot be time-
shared by a given resource, they will receive the maximum conflict value of 1 (e.g., two tasks 
requiring simultaneous delivery of a vocal response). In contrast, two tasks that can time-share 
the resource perfectly will receive a conflict value of 0—we, however, assume a default conflict 
value of 0.2 (e.g., a fundamental cost of concurrence). In this way, the conflict value in a 
particular cell increments as more resources are shared between the task vectors, defined by its 
rows and columns—thus leading to greater interference for identical resources (i.e., along the 
negative diagonal; see Wickens, 2002)1. 
 
 Using the values in the conflict matrix, we determine the resource-conflict score by 
transposing the demand vector for each task along the rows and columns of the table (i.e., the 
bold-faced vectors in Table 1). Whenever a cell in the matrix is occupied by non-zero demands 
from both tasks, it will contribute to the resource-conflict score by an amount equal to the cell 
value. For example, the IVT and driving tasks both demand focal-visual resources (1 and 2, 
respectively). As such, the cell conflict value of 0.8 is added to the resource-conflict score. In  
                                                 
1 Although the complete version of the multiple resource model nests the focal-ambient distinction within the visual 
perceptual resources, for the present analysis we have made the following simplification: because ambient vision is 
essentially spatial vision, and focal vision encompasses the recognition of both objects and symbols (digits/letters), 
the current model defines a single dichotomy of ambient-spatial versus focal-object-symbol. 



PROCEEDINGS of the Second International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design 

   Driving Task 
   Perceptual Cognitive Response 
   Vf Va As Av Cs Cv Rs Rv 
  Ex. 1 1 0 0 1 0 1 0 

Vf 2 0.8 0.6 0.6 0.4 0.7 0.5 0.4 0.2 
Va 0  0.8 0.4 0.6 0.5 0.7 0.2 0.4 
As 0   0.8 0.4 0.7 0.5 0.4 0.2 
Av 0    0.8 0.5 0.7 0.2 0.4 
Cs 0     0.8 0.6 0.6 0.4 
Cv 1      0.8 0.4 0.6 
Rs 0       0.8 0.6 

In-Vehicle 
Task 

Rv 1        1.0 
Table 1. Adapted conflict matrix, based on dimensions of the multiple resource model, including 
perceptual, cognitive, and response (based on Wickens, 2002). V = Visual, A = Auditory, C = Cognitive, 
R = Response, f = Focal, a = Ambient, s = Spatial, v = Verbal. The bold-faced numbers represent demand 
vectors (Ex.) for the sample IVT (vertical) and easy driving tasks (horizontal; described previously). 

 
contrast, there is no competition for spatial response resources (1 and 0); therefore there would 
be no additional conflict along this dimension. Again, in our model we transform the total 
resource-conflict scores for a set of task combinations. 
 
 (4) The total interference score is represented by the sum of the total demand score and 
the resource-conflict score. As such, this total interference value is sensitive to structural 
interference from resource competition (and does not discriminate the source of the interference 
across the two tasks) as well as to the overall task difficulty. The predicted total interference can 
then be apportioned to either or both of the competing tasks, depending on the extent to which 
one or the other is treated as “primary” or “secondary”.  
 
VALIDATION STUDY 
 
Using data from a simulated driving study, we evaluated the task demands and interference for 
nine different combinations of driving conditions (primary task difficulty) and in-vehicle 
technology (IVT) interfaces (secondary task). Results from this study are presented elsewhere 
(Horrey & Wickens, 2002). Here we present a brief overview of the methodology and limit our 
discussion to the performance decrements in dual-task (relative to single-task) conditions.  
 

Twenty-five drivers in a fixed-base wrap-around simulator drove urban and rural routes 
of varying complexity while engaging in a secondary phone number read-back task presented by 
different displays. Priority was given to safe vehicle control and avoidance of road hazards. The 
secondary task was presented in one of two modalities: either in a visual display located in a 
head-up display (HUD; 7° below the horizon line) or on a head-down display (HDD; located 38° 
offset from the forward horizon, near the mid-console), or auditorily through the car speakers. 
When the phone numbers were seen or heard, drivers were asked to read back the digits as 
quickly and accurately as possible. Digit strings were 4, 7, or 10 digits in length. Driver 
performance measures of lane keeping and speed control were recorded. IVT task performance 
was measured by response time to the digits, response duration, and the response accuracy. 
Additionally, we measured response times to discrete road hazard events that occurred 
periodically throughout the experimental trials.  
 

In following the model, we established demand vectors for the three different types of 
driving complexity, as well as for the different IVT display configurations. These demand 
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Demand Vector 
Perceptual Cognition Response Task 

Vf Va As Av Cs Cv Rs Rv 

Demand 
Scalar 

(A) City Driving 2 1 0 0 2 0 1 0 6 
(B) Rural Straight Driving 1 1 0 0 1 0 1 0 4 
(C) Rural Curved Driving 1 2 0 0 1 0 2 0 6 
(D) IVT HUD Adjacent 1 0 0 0 0 1 0 1 3 
(E) IVT HDD Console 2 0 0 0 0 1 0 1 4 
(F) IVT Auditory 0 0 0 2 0 2 0 2 6 

Table 2. Demand vectors for the driving and IVT tasks in Horrey & Wickens (2002). 
 
vectors are shown in Table 2. For example, city environments demanded more visual-focal 
resources than did straight rural roads; visual IVT displays required some degree of focal 
resources, whereas none were required in the auditory IVT condition. 
 
 As described in the previous section, the demand scalars from Table 2 were summed 
across each different concurrent task combination (e.g., (a) city driving with (d) IVT HUD, (e) 
IVT HDD, and with (f) IVT auditory side tasks) and transformed, such that values were bounded 
on a ratio scale between 0 and 1. The demand vectors for concurrent tasks were then used to 
determine the overlapping cells within the conflict matrix shown in Table 1. The transformed set 
of resource-conflict scores for the nine task combinations was then added to the respective 
demand scores to yield the model-predicted interference scores. 
 
 We then compared these predicted interference scores with actual scores for a subset of 
measures, including lane keeping (i.e., vehicle control), response times to the IVT task, and 
response times to the critical traffic hazards. We selected these measures as representative of the 
required (concurrent) tasks. To obtain the actual interference score, we compared performance of 
the relevant task in dual-task conditions (i.e., driving plus IVT) with performance in single-task 
conditions (e.g., driving alone). Thus, interference was expressed as a performance decrement.  
 
  Finally, we plotted the obtained interference values as a function of the predicted values 
for each of the different measures and followed with a model-fitting exercise. As shown in 
Figure 1, the regression analysis of obtained on predicted interference revealed varying degrees 
of fit across the different performance measures. We were able to predict 85% of the variance in 
performance decrements in secondary task latency and 98% of the variance in response times to 
critical road hazards (a focal-visual task). (Only three data points were used in the latter case 
because of the rarity of these events; these were averaged over road type.) The resource model, 
however, did not predict variance in the task of lane keeping (R2 = 0.02), suggesting that drivers 
were optimal in their resource allocation by protecting the continuous aspects of vehicle control 
from the differential resource competition offered by the different conditions. Rather, 
interference was manifested in degraded IVT side-task performance and in hazard detection. 
 
DISCUSSION 
 
We have shown that this computational model can be used to predict performance decrements in 
different combinations of dual-task conditions. Even in those cases where the model does not 
predict significant levels of variance (i.e., for lane keeping), we can extrapolate important 
information—specifically, that drivers were prioritizing this task, such that all variance in the 
performance decrements would be borne by the IVT task (as was shown). However, this 
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Figure 1. Obtained interference as a function of model-predicted interference for the (a) lane keeping 
(driving) task, (b) response times to the IVT task, and (c) hazard RTs. The HUD condition is represented by 
white markers, the HDD condition by light gray, and the auditory by black markers. Diamonds represent 
the straight rural roads, circles represent curved rural roads, and squares indicate straight urban roads. 

 
protection was not generalizable to all aspects of the driving task, as there were performance 
decrements in the important task of hazard detection and response. 
 
 The current model is advantageous because it is relatively simple in computation, is 
relatively robust (in terms of demand coding for various tasks), is theory-based, is flexible in its 
application, and (as shown) can make adequate performance predictions. Unfortunately, it does 
suffer from a few shortcomings as well; some expertise is required to establish conflict values 
and demand vectors. Also, the model does not output a direct measure of predicted performance 
losses in different dual-task conditions; rather it provides only a relative assessment of task 
interference between various task combinations. However, as shown in the current application, 
these relative interference predictions may be useful for assessing the impact of various IVTs in 
future automobiles and, in turn, may help validate the theoretical notions of multiple resources.   
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