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The Workload Curve: Subjective Mental Workload

Steven Estes, The MITRE Corporation, McLean, Virginia

Obijective: In this paper | begin looking for evi-
dence of a subjective workload curve.

Background: Results from subjective mental
workload assessments are often interpreted linearly.
However, | hypothesized that ratings of subjective
mental workload increase nonlinearly with unitary
increases in working memory load.

Method: Two studies were conducted. In the first,
the participant provided ratings of the mental difficulty
of a series of digit span recall tasks. In the second study,
participants provided ratings of mental difficulty associ-
ated with recall of visual patterns. The results of the
second study were then examined using a mathematical
model of working memory.

Results: An S curve, predicted a priori, was found
in the results of both the digit span and visual pat-
tern studies. A mathematical model showed a tight fit
between workload ratings and levels of working mem-
ory activation.

Conclusion: This effort provides good initial evi-
dence for the existence of a workload curve. The
results support further study in applied settings and
other facets of workload (e.g., temporal workload).

Application: Measures of subjective workload are
used across a wide variety of domains and applications.
These results bear on their interpretation, particularly
as they relate to workload thresholds.
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INTRODUCTION

I find—and perhaps this is your experience
as well—that an easily managed mental task
can become, with just the slightest amount more
mental demand, decidedly unmanageable. The
relationship between unitary increases in cogni-
tive load and the subjective experience of men-
tal demand seem nonlinear; perceived mental
workload is hardly affected at all by increases
in demand under low cognitive load but rises
quickly and disproportionally as the limits of the
cognitive system are approached. In the context
of subjective rating scales, it would appear that
sometimes 5 is closer to 6 than to 4. That is, the
cognitive load required to move a subjective
workload rating from 5 to 6 is less than that
required to move the rating from 4 to 5. This
relationship, which is the basis of my central
hypothesis, should take the shape of an s or sig-
moid curve, as notionally depicted in Figure 1.

The hypothesized asymptote at the top of this
S curve is the predictable result of using a finite
scale (subjective mental workload) to evaluate a
conceivably infinite quantity (mental load). Once
workload is rated a 10 on a 1-to-10 scale, it does
not matter whether task load proceeds to double
or triple or quadruple. In each instance, subjec-
tive workload shares the basic quality of being
“too much” and is therefore a 10. At the lower
end of the scale, however, there is a finite begin-
ning to the scale and the workload. There, the
relationship between perceived and actual load
could be linear, a power function, exponential,
and so on. I propose that, as seen in Figure 1,
where subjective ratings of workload are low or
moderate, something resembling a power func-
tion will be observed. With very low subjective
workload, unitary increases in cognitive load
will result in modest increases in subjective rat-
ings. As subjective workload increases, however,
the rater will become more sensitive to his or her
diminishing resources, and unitary increases in
cognitive load will result in increasingly large
jumps in subjective ratings. Throughout the
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Figure 1. The subjective workload curve.

paper [ will refer to my hypothesized relationship
between cognitive load and subjective ratings of
mental workload as the workload curve.

The hypothesized workload curve is unique
within the literature. It is commonly assumed
that equal intervals in ratings equate to equal
intervals of imposed workload (Reid & Nygren,
1988; Young, Brookhuis, Wickens, & Hancock,
2015). If one is of a mind to find them, there are
examples of curves in studies of mental work-
load (Berka et al., 2007; Eggemeier, Crabtree, &
Reid, 1982), but they uniformly go uncom-
mented upon and are never the topic of study.
There is no mention of a curve in subjective rat-
ings of workload in the seminal references for
the most common subjective workload rating
tools (Hart & Staveland, 1988; Wierwille &
Casali, 1983). Hart and Staveland (1988)
acknowledge the possibility of a proportionality
between observed ratings and the magnitude of
the rated phenomena, though they make no
hypothesis as to how that might impact ratings
or whether a curve may result. Yet, a curve in
subjective ratings of mental workload would
have a significant impact on the interpretation
and perception of a subjective workload rating.

In this paper I review the evidence for a curve
in the most commonly used subjective measures
of mental workload and present the results from
two studies. Those results are then evaluated in a
mathematical model of working memory activa-
tion decay (subjective ratings of mental work-
load are strongly influenced by working mem-
ory). I begin with a brief review of mental work-
load and the impacts of working memory on
subjective workload ratings.

Subjective Mental Workload

Workload, to oversimplify, is complex. It is
multidimensional and its magnitude is the result
of interactions between the human, the task, and
the environment (Hart & Staveland, 1988; Simon,
1969; Wickens, 2008). Ultimately, documentation
of the workload curve must take into account all
of these variables. But I require a starting point,
and the evaluation of the mental dimension of
workload is a reasonable place to begin if for no
other reason than it is difficult to quantify, and
there is some appeal in dealing with the most dif-
ficult elements of a problem first.

A universally accepted definition of mental
workload has been elusive. For this paper, mental
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workload is defined in the strictest sense: the work
done by the mental system. Somewhat less recur-
sively, mental workload is the cognitive and per-
ceptual processing expended in the course of com-
pleting a task (Eggemeier & Wilson, 1991), where
processing includes the storage, maintenance,
manipulation, and retrieval of information within
working memory and long-term memory as
accomplished through control of the locus of
attention.

The measurement of workload has been a
topic of interest in the applied community since
at least the 1950s. By the late 1960s, workload
had become an area of significant research, with
a variety of techniques being developed to mea-
sure it. Wierwille and Williges (1978) classified
these techniques into three categories: perfor-
mance measures, psychophysiological mea-
sures, and subjective assessment. Those catego-
ries still accurately classify the vast majority of
mental workload assessment techniques used
today (Gawron, 2008).

Of the many dozens of methods within
those categories proposed for measurement of
workload—including dual-task tests, performance
measures, heart rate, respiration, pupil dilation,
functional magnetic resonance imaging, and infra-
red spectrometry—subjective workload measures
have assuredly been the most widely used, which
is likely attributable to their usability and face
validity. As Moray et al. (1979) put it, “if the per-
son feels loaded and effortful, he is loaded and
effortful whatever the behavioral and performance
measures may show” (p. 105).

Representative subjective workload measure-
ment techniques, such as NASA Task Load Index
(NASA-TLX; Hart & Staveland, 1988), subjec-
tive workload assessment technique (SWAT;
Reid & Nygren, 1988), and Cooper-Harper
(Cooper & Harper, 1969), all produce a scalar
rating of workload. Cooper-Harper’s scale is
ordinal, and NASA-TLX and SWAT are continu-
ous. Several studies have shown strongly corre-
lated ratings across these and other subjective
workload measures (Hess, 1971; Rubio, Diaz,
Martin, & Puente, 2004; Vidulich & Tsang,
1985). Many measures, like NASA-TLX and
SWAT, are multidimensional and make allow-
ances for distinguishing between different
sources of workload, including mental workload.

Although there are numerous subjective tech-
niques, including open-ended scales, there is a
very limited set that sees consistent, applied use.
The most popular, if the frequency of study is
any indicator, is by far NASA-TLX. In her retro-
spective on its use, Hart (2006) found over 550
studies of NASA-TLX. To be clear, this number
reflects not just studies that made use of NASA-
TLX but 550 studies of NASA-TLX. Because
of their overwhelming popularity, closed, bipo-
lar rating scales for mental workload are of par-
ticular interest for this paper.

Consciousness, Working Memory, and
Subjective Mental Workload

When mental workload is being measured
subjectively, one may reasonably ask, “What is
it that is being measured?” It does not seem, for
example, that individuals sense the workload
involved in visual perception; it is not effortful
to see, although an incredible amount of neural
processing is required. Instead, one’s perception
of workload is influenced almost solely by pro-
cesses of which one has some conscious aware-
ness (Vidulich, 1988; Yeh & Wickens, 1988).

In cognitive psychology, consciousness is
thought to reside in working memory (Baddeley,
2007; Hassin, Bargh, Engell, & McCulluch,
2009). As the location of consciousness in the
cognitive system, working memory has been
attributed a central role in subjective ratings of
mental workload (Gopher & Braune, 1984; Eric-
sson & Simon, 1980).

Yeh and Wickens (1988) found that the major-
ity of variables found to affect subjective work-
load are related to working memory demands.
Those variables include capacity (Hauser, Chil-
dress, & Hart, 1982), presentation rate (Daryanian,
1980), processing rate (Tulga & Sheridan, 1980),
attention allocation, and decision alternatives.

Judgment of Mental Workload

The variables catalogued by Yeh and Wick-
ens (1988) are a product of the capacity and
durability limitations of working memory. One
prevalent theory as to why those limitations
exist is decay theory. According to decay theory,
the strength of a memory, determined by its level
of activation, fades over time (Baddeley, 1975;
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Brown, 1958). Further, the pool of activation is
limited and must be spread across all chunks in
working memory (Just & Carpenter, 1992). In
order to be recalled, a chunk’s activation must
exceed a threshold (Barrouillet, Bernardin, &
Camos, 2004), and therefore the initial strength
of the memory trace and resultant decay are
critical to determining the probability of recall.

Although decay is a critical element of work-
ing memory, it seems unlikely that, in generating
an estimate of mental workload, one directly
measures decay of memory activation. More
probable is the hypothesis that someone asked to
rate his or her mental workload, lacking a direct
measure of working memory activation, bases
his or her rating on the effects of working mem-
ory activation and decay.

One could theorize many mechanisms by
which activation influences judgments of men-
tal demand. For instance, metamemory and
learning research has documented the ability to
estimate remaining working memory capacity
and rates of forgetting as determined by activa-
tion (Amichetti, Stanley, White, & Wingfield,
2013; Bunnell, Baken, & Richards-Ward, 1999;
Halamish, McGillivray, & Castel, 2011; Kor-
nell, Rhodes, Castel, & Tauber, 2011). It may be
that the accuracy of judgments about available
capacity increases as available working mem-
ory capacity decreases and that this process in turn
gives rise to the workload curve. Whatever the pre-
cise process, it is my contention that these judg-
ments are based on the effects of working memory
activation. Evidence for this hypothesis is dis-
cussed later in the modeling section of the paper. It
is worth noting both that judgments in ratings of
workload more have been discussed before in the
literature (Hart & Staveland, 1988) and that they
are thought to be relative to prior experience rather
than absolute (Sheridan & Simpson, 1979).

In summary, I hypothesize that effects of
working memory activation decay are critical to
the assessment of mental workload:

e When subjective mental workload rated is plotted
as a function of a measure of the imposed work-
load, the result is curvilinear.

e The relationship between subjective and imposed
workload takes the shape of an S curve (the work-
load curve).

e The workload curve results from judgment of the
effects of working memory activation decay.

STUDY 1

To test these hypotheses, I performed two
web-based recall studies and one modeling
exercise. Study 1 required serial recall of a
digit span in order of presentation. After each
trial, participants were asked to rate the mental
demand of the recall task.

Participants

Study 1 included 102 participants. All par-
ticipants were employees of the MITRE Corpo-
ration and participated voluntarily and anony-
mously. The study was deemed exempt by
MITRE s institutional review board (IRB) under
the provisions of 45 CFR 46. Participants were
recruited via an internal newsletter. MITRE is
a technical company, reflected in the demo-
graphic information provided by participants,
52% of whom described their job as some form
of engineering. Other job descriptions included
computer scientists (7%), managers (6%), infor-
mation technology (IT) professionals (5%), and
administrators (4%). No further demographic
information was collected as additional details,
like age and gender, would in some cases allow
identification of the participant.

Procedure

Participants accessed an internal website to
complete the study. On the welcome page, they
were given a high-level description of the task.
Participants then completed two practice prob-
lems representing the easiest and most difficult
recall spans. After the practice problems, par-
ticipants completed 24 digit span recall trials.

In each trial, the participant was presented
with a digit span of varying length. Presentation
time was determined by multiplying the span
length by 500 ms. Once the presentation time
elapsed, the span was removed and the partici-
pant was provided an open text field for entering
the digit span as he or she recalled it. There was
no time limit on recall.

After entering each span, the participant was
asked to rate the mental difficulty of the task
on a scale of 1 to 10. Not unlike NASA-TLX,
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Figure 2. Chunks versus digit spans.

mental difficulty was described as a rating of the
mental effort required to complete the task. Dec-
imal ratings were allowed. The scale was bipolar
with adjectival labels of low and high at each
end. Once all trials were completed, participants
were asked to provide some information on
recall strategies used during the study.

Manipulations

A repeated-measures design, the study was
block ordered and included a “no-chunks” and
a “chunks” condition, each with 12 levels of
digit span to be recalled (resulting in a total of
24 trials). In the no-chunks condition, each digit
span level corresponded with the number of
digits actually presented to the participant (e.g.,
at Level 10, the participant was presented with
10 digits to recall). A random-number generator
was used to create the digit spans. Each span
was then inspected manually to ensure that no
obvious patterns were included. Commonly
chunked digits, such as local area codes or ZIP
codes, were replaced. When possible (Levels 1
to 9), an integer was used only once. Integers
appeared, at most, twice in the span. Although
care was used to ensure no obvious chunks were
included, this precaution did not preclude the
participants from developing a chunking strat-
egy based on nonobvious, personal information.

The second condition is referred to as the
chunks condition. As with the no-chunks condi-
tion, participants were presented a digit span,
recalled that span, and provided a rating of mental
difficulty. However, as part of the chunks condi-
tion, one digit in the string was replaced with a
five-digit chunk based on an obvious pattern
(either 12345 or 54321) such that a condition span
of six would contain five digits followed by a five-
digit chunk. Participants were told to expect these
patterns in some spans. To ensure participants rec-
ognized them as chunks, those digits, otherwise
black, were colored blue. I have hypothesized that

working memory decay, and therefore chunk acti-
vation, plays a central role in ratings of mental
workload. This condition is therefore included to
verify that workload ratings were based on the
number of chunks in the span rather than the num-
ber of digits or apparent length of the span. For my
hypothesis to be supported, a 10-digit number
composed of six chunks (as in the center of Figure
2) should be rated more like the six-digit number
containing no chunks on the right of Figure 3 than
the 10-digit number containing no chunks on the
left.

The spans used for all 20 trials are provided
in Table 1.

Results

The primary concern was the shape of subjec-
tive mental workload: Will an S curve be pro-
duced when plotting workload ratings as a func-
tion of the number of chunks in the span? Quali-
tatively, as seen in Figure 3, the answer is yes. The
shape was confirmed quantitatively when the data
was fit to a four-parameter logistic (4PL) model
(Baud, 1993), which produced an R* value of .99
(root mean square error [RMSE] = 0.16).

On the secondary question of equivalence, I
found a largely favorable result. A repeated-
measures ANOVA showed, as would be
expected, no statistically significant difference
between the two chunk conditions, F(1, 101) =
2.9, p = .09. Likewise, eta squared showed
chunk condition accounted for none of the total
variance (n? = .00). Testing for equivalence
using inferential confidence intervals (Tryon,
2001) with a criterion of a 0.75 scale degree,
seven of the 12 span lengths were shown to be
statistically equivalent (p < .05) when compared
across chunk conditions (Table 2).

Discussion

Study 1 showed that, indeed, participants’
judgment of mental workload took the shape of
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Figure 3. Ratings as a function of chunks in digit span with confidence intervals.
TABLE 1: Study 1 Digit Spans
Length No Chunks Chunks
1 5 12345
2 73 6 54321
3 185 94 12345
4 4967 296 54321
5 43795 3172 12345
6 154859 21531 54321
7 5439156 981564 12345
8 15362084 2451386 54321
9 945132708 73016829 12345
10 1594862730 953472680 54321
11 38170649527 5203147968 12345
12 715039428603 16428530920 54321

an S curve, as nonlinear increases in ratings of
workload occurred with unitary increases in the
number of chunks in the span. And with regard
to the number of chunks in the span, the data, in
both practical interpretation and statistical test-
ing, favor the conclusion that mental difficulty
was judged by the number of chunks rather than
the number of digits in the span. This latter point
will be important in the modeling section of the
paper, but for now, I turn to a second test of the
hypothesized workload curve. In this second
study, a different type of demand will be placed
on working memory to see if the sigmoid shape
remains.

STUDY 2

The digit span study relied on working
memory in the central executive and articula-
tory rehearsal loop (Kahana, 2012). Capacity
and durability in the rehearsal loop, however,
differs from that of the visuospatial sketchpad
(Card, Moran, & Newell, 1983). To determine
if the S curve persists when processing load is
placed on the visuospatial sketchpad subsystem,
a visual pattern was used for the second study.
For this study, I hypothesized that the S-shaped
workload curve seen in the digit span would
be retained though steeper due to the higher
demands placed on working memory.
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TABLE 2: Inferential Confidence Intervals (ICls)

Span 1 2 3 4 5 7 8 9 10 11 12
ICI 0.33 055 059 061 048 056 119 1.01 090 0.89 0.65
Participants

Thirty volunteers participated in Study 2. As
with the first study, all participants were employ-
ees of the MITRE Corporation and completed
the study voluntarily. Limited demographic infor-
mation was collected to ensure anonymity. The
study was deemed exempt by MITRE’s IRB
under the provisions of 45 CFR 46. Participants
were recruited via an internal newsletter. Fifty-
four percent of participants described their job
as engineering. Other job descriptions included
IT professionals (6%), computer scientists (5%),
managers (3%), and administrators (3%).

Procedure

Participants accessed an internal website to
complete the study. The welcome page provided
a high-level description of the task. This descrip-
tion was immediately followed by training
for the first of three sets of trials. The training
included instructions on how the trials should
be completed, example problems with solutions,
and three practice problems. Each participant
completed all levels of every condition. Condi-
tions were presented in blocks and block order
was varied. Prior to each block, participants
were given instructions on how to proceed and
then completed three practice trials. The three
practice trials represented the easiest, moderate,
and most difficult levels of the condition.

The visual pattern was shown to the partici-
pant using a wheel consisting of six colored but-
tons (example in Figure 4). In each trial, buttons
were highlighted for 1 s in a predetermined pat-
tern. The pattern was repeated back by the par-
ticipant by pressing the buttons on the color
wheel. The entire pattern was shown only once.
Response time was unlimited and after each trial,
the participant was asked to rate the mental dif-
ficulty of the task with the same bipolar scale
used in the first study. In addition to collecting
the scale rating, correctness of the response and
the total response time were calculated. Upon
completion of the study, participants completed a
brief exit survey. This procedure was modeled

Figure 4. Visual pattern study button wheel.

after the electronic game Simon, variants of
which have been widely used to test visual mem-
ory span (Cleary, Pisoni, & Geers, 2001; Gendle
& Ransom, 2006; Humes & Floyd, 2005).

Manipulations

Instructions for a set of trials and the length of
the visual span were manipulated. Trial instruc-
tion conditions included “as seen,” “reverse,”
and “offset.” In the as-seen condition, the par-
ticipant repeated the pattern back in the order it
was presented. The reverse condition required
the participant to repeat pattern back in the
opposite order, beginning by pressing the but-
ton highlighted last, first. This condition neces-
sitated manipulation of information in working
memory but not the creation of new chunks
for storage. The offset condition required both
manipulation and the creation of new working
memory chunks. In this condition, the partici-
pant repeated the pattern back in the order pre-
sented but with a one-position-clockwise offset
as illustrated in Figure 5. Span length varied
from one item in the visual pattern to 10 items.

Results

As expected, the workload curves found in
Study 2 were even more pronounced than those
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AS SEEN ’ ‘ ’ ‘
Press the buttons in the order of
presentation

REVERSE ’ ‘ ‘ ’
Press the buttons in reverse order of
presention

ROTATE

> * g

Press the buttons in order of presentation,
but with a one position offset

Figure 5. Visual pattern study instructions by condition.
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Figure 6. Visual span subjective ratings as function of span length with confidence intervals.

seen in the digit span (Figure 6). Using the as-
seen curve as an example, ratings at the bottom
of the curve increased less than half a point
between spans, jumped to nearly two full points
between spans in the middle of the curve, and
then subsided back to increases of half a point
or less near the top. Although the increases hap-
pened more quickly in the other conditions, the
basic pattern remained. Using 4PL functions, the

as-seen (R* = .99, RMSE = 0.24), reverse (R* =
.98, RMSE = 0.24), and offset (R* = .99, RMSE
= 0.08) showed strong fits as sigmoid curves.
When sigmoid model curves were applied to
individual data, the RMSEs increased across
the board but were, nonetheless, within one scale
degree of the observed value (as seen, RMSE =
0.75; reverse, RMSE = 0.49; offset, RMSE =
0.98).
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The ordering of the results was also as
expected, with the as-seen condition rated the
easiest and offset the most difficult. A repeated-
measures ANOVA showed those differences to
be significant, F(2, 28) = 63.7, p < .05. There
was a significant main effect for span, F(6, 24) =
181.6, p < .05, as well. According to Cohen’s
(1988) guidelines for interpretation of the eta-
squared test, the effect sizes for the instruction
condition and span were both large (n? = .34 and
n? = .80, respectively).

Discussion

Once again, distinct S curves are seen. With
small visual spans, unitary increases in workload
correspond to modest increases in workload rat-
ings. These modest increases are followed by
noticeable jumps in ratings as the participant
becomes more sensitive to diminishing work-
ing memory resources and asymptotes as those
resources become overwhelmed. Although these
results need to be tested further in ecologically
valid environments, they provide a strong initial
argument for the workload curve and rethinking
how one interprets subjective workload ratings
collected via popular methods, like NASA-TLX.

The results also uncover an unfortunate, if logi-
cal, interaction between people’s limited working
memory capacity—estimates range from seven
chunks (Miller, 1956) to as low as three or four
chunks (Cowan, 2001)—and perceived mental
workload. In most situations, larger jumps in
subjective ratings with unitary increases in load
would be preferred—particularly if boredom is of
concern—when working memory demand is low.
Smaller jumps would be preferred when working
memory is moderate and people begin to approach
the limits of their capacity. However, the workload
curve shows the opposite to be true. Given that the
practitioner is often trying to manage user work-
load, knowledge of the curve is valuable as it gives
guidance on the magnitude of mental demands
necessary to increase a user’s engagement and
emphasizes how carefully workload must be man-
aged passing the midpoint of the subjective rating
scale.

A MODEL OF THE SUBJECTIVE
MENTAL WORKLOAD CURVE
In the section on judgment, I hypothesized
that the subjective workload curve arises from

judgments about the availability of information
in working memory, which is not to say that
other parts of the cognitive system do not impact
subjective ratings of mental workload. Rather, I
am hypothesizing that availability plays the cen-
tral role in these judgments and that knowledge
of availability alone is sufficient to replicate
the workload curve. If this hypothesis is true,
then a model of working memory availability
(i.e., activation decay) should predict ratings of
mental difficulty in conditions when pure recall
plays a lesser role (the offset condition of the
visual span study) just as accurately as it does
ratings in near-pure recall conditions (the as-
seen condition).

Activation-Based Model

In his famous paper, “You Can’t Play 20
Questions With Nature and Win,” Allen New-
ell (1973) argued that experimental psychol-
ogy, although adept at answering binary ques-
tions about psychological phenomena, was not
advancing cognitive psychology toward a uni-
fied understanding of the mind. Newell believed
that a unified theory required the develop-
ment of cognitive architectures: software that
implemented human cognitive capacities and
constraints such that they could be used to test
a theory’s plausibility within the broader cogni-
tive system.

One of the many cognitive architectures that
arose as a response to Newell’s challenge is
adaptive control of thought-rational (ACT-R;
Anderson, 2007). Relevant to the work at hand,
research on memory using the ACT-R software
and formulations has been extensive, with hun-
dreds of published papers on the topics of mem-
ory activation, decay, or interference (ACT-R-
related research is archived at http://act-r.psy.
cmu.edu/). For this particular paper, my objec-
tive was to provide plausible support for the
hypothesis that the workload curve demon-
strated in the first two studies arises from judg-
ments based on the effects of working memory
activation and decay. As such, I relied on mem-
ory activation and decay functions that have
been well established within the ACT-R commu-
nity (Altmann & Schunn, 2002; Altmann &
Trafton, 2002; Anderson, Reder, & Lebiere,
1996; Bohm & Mehlhorn, 2009; Pape & Urbas,
2008; Sohn, Anderson, Reder, & Goode, 2004).
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First, the activation of a memory trace was cal-
culated using the following equation taken from
the literature (Altmann & Trafton, 2002):
a=In(—=), ()
T
where a is activation, » is the number of times
that chunk is rehearsed, and T is the total time
the trace is held in memory (and the determinate
of decay). Next, in order to mimic the division of
activation across all working memory chunks, I
reduced the activation as a function of the num-
ber of chunks in the problem span:

d=a+2-1, @)
c

where d is the divided activation, a is activation,
and c is the number of chunks the activation
must be divided among. The idea of limited acti-
vation source pools and their distribution among
all the chunks held in working memory has been
previously documented in the literature (Ander-
son et al., 1996).

These two basic equations allowed me to
model a relationship between the number of
chunks to be memorized (visual pattern span),
decay over time, and a subjective rating of men-
tal demand. The first equation requires a reason-
able estimate of the number of times each chunk
is rehearsed between storage and final recall. In
order for the model to have explanatory power, I
should set free parameters, like rehearsal, once
and use those settings for modeling the results of
all three visual pattern conditions. The model
could not be applied to the digit span study as
response time—required to set 7—was not col-
lected. For this model, rehearsal () was set to
three retrievals of the chunk (a plausible level of
rehearsal that provided the best overall fit).

With the parameters set, an activation value
was calculated for each participant response using
the condition to determine number of chunks and
response time for the decay period. The data were
then collapsed across all three visual pattern con-
ditions and an average activation generated for
each degree of the subjective rating scale. It was
necessary to round each raw subjective rating to
the nearest whole number in order to ensure a suf-
ficient number of observations at each point in the
rating scale. A logarithmic curve, seen in Figure 7,

was then fit to the data from Study 2 (the model
curve). This step allowed evaluation of the fit of
averaged data for each condition to the model
curve. The best trend and magnitude of fit (Schunn
& Wallach, 2005) were found for the as-seen con-
dition (R* = .99, RMSE = 0.27). This finding
makes intuitive sense as this condition was closest
to what may be called a pure working memory test
(i.e., place information in working memory and
repeat it back verbatim).

The reverse condition equaled the trend of the
as-seen condition but showed a slightly larger
error value (R* = .99, RMSE = 0.35). The values
for the offset condition, although lower still,
were not noticeably worse (R*> = .97, RMSE =
0.47), and the estimated subjective workload
ratings were, on average, within half a point of
the observed workload ratings. So, although
increasing recruitment of differing cognitive
resources does seem to impact the accuracy of
the model, in these tests, working memory acti-
vation levels alone were able to provide a very
good prediction of the observed subjective rat-
ings of mental difficulty and, more to the point
at hand, account for the subjective workload
curve.

CONCLUSIONS

With hindsight, it makes sense that when it
comes to mental workload, 5 is sometimes closer
to 6 than to 4. In psychology, many, if not most,
well-established effects exhibit curvilinear rela-
tionships. Fitts’s law (Fitts, 1954), Hick’s law
(Hick, 1952), the Yerkes-Dodson law (Yerkes &
Dodson, 1908), Stevens’s power law (Stevens,
1957), subitization (Jevons, 1871), and the
power law of practice (Newell & Rosenbloom,
1981) are all curvilinear processes, as is activa-
tion decay (Anderson, 2007; Byme & Bovair,
1997; Oberauer, Lewandowsky, Farrell, Jarrold,
& Greaves, 2012) and the probability of mem-
ory recall over time (Bachelder, 2000; Mueller
& Krawitz, 2009; Taatgen, 2000). Those curves
exist for a variety of reasons. Cognitive process-
ing, for example, is thought to happen along a
curve for expediency; it is unnecessary and inef-
ficient to process sensory input linearly (Burns,
2014). In the case of workload, the modeling
exercise conducted in this paper supported the
idea that the mental workload curve may bend
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Figure 7. Model fit for problem rating as function of activation by condition.

as a result of the subject’s reflecting on the dif-
ficulty he or she has maintaining information in
working memory (i.e., availability).

Although perhaps intuitive, the existence of a
subjective workload curve has, until now, never
been formally documented. And although this
research needs to be replicated with ecologically
valid tasks, it acts as a starting point for refactor-
ing the interpretation of subjective ratings of
workload. The activation model gives credence
to the theory proposed here that the judgments
that give rise to the workload curve are based on
the effects of activation and decay. This theory
suggests that practitioners who wish to manage
the mental workload imposed by a tool must
manage not only the total amount of information
the user must hold in working memory but how
long it must be held there.

When subjective measures are used to compare
workload under differing conditions, the workload
curve indicates that the true magnitude of the dif-
ference is dependent on where on the scale the rat-
ings lie. The position of the rating on the scale may
likewise tell something about the stability of the
rating, as ratings in both studies became more sen-
sitive under increasing loads.

With regard to the impact of the workload
curve, consider how widespread the use of

subjective workload ratings are in safety-critical
domains, like aviation. The Journal of Aviation
Psychology, for example, publishes applied
research related to aviation safety. Using its
online search capabilities, I found that of 566
articles, approximately 25% included measures
of subjective workload. One in 10 included
NASA-TLX specifically. For these practitioners
who so commonly use subjective workload rat-
ings to ensure system safety, a more thorough
understanding of subjective workload ratings is
always of value.

Moving forward, several questions need to be
answered. First, can the workload curve be
found in more complex mental work? Ecologi-
cally valid tests will be required to answer this
question, but they will be difficult as they require
formulating and modeling working memory
processing in complex environments. To that
end, the formulations found in the modeling sec-
tion here will be integrated into the Cogulator
cognitive modeling tool (http://cogulator.io).

Second, does the curve seen in subjective rat-
ings of mental workload exist in other dimen-
sions of workload? Some evidence of a temporal
workload curve can be found in existing studies
(e.g., Dijksterhuis, de Waard, Brookhuis, Mulder,
& de Jong, 2013), and temporal workload will
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likely be the next dimension of workload I inves-
tigate. Until those studies take place, I hope that
others find the workload curve useful in their
applied work and add to it with their own research.
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KEY POINTS

e Evidence was found for the existence of a work-
load curve.

e S curves characterize the relationship between
working memory load and subjective ratings of
workload.

e Thypothesize subjective mental workload is driven
by the availability of working memory traces
(activation), and models support that hypothesis
as a plausible theory.
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