
Objective: In this paper I begin looking for evi-
dence of a subjective workload curve.

Background: Results from subjective mental 
workload assessments are often interpreted linearly. 
However, I hypothesized that ratings of subjective 
mental workload increase nonlinearly with unitary 
increases in working memory load.

Method: Two studies were conducted. In the first, 
the participant provided ratings of the mental difficulty 
of a series of digit span recall tasks. In the second study, 
participants provided ratings of mental difficulty associ-
ated with recall of visual patterns. The results of the 
second study were then examined using a mathematical 
model of working memory.

Results: An S curve, predicted a priori, was found 
in the results of both the digit span and visual pat-
tern studies. A mathematical model showed a tight fit 
between workload ratings and levels of working mem-
ory activation.

Conclusion: This effort provides good initial evi-
dence for the existence of a workload curve. The 
results support further study in applied settings and 
other facets of workload (e.g., temporal workload).

Application: Measures of subjective workload are 
used across a wide variety of domains and applications. 
These results bear on their interpretation, particularly 
as they relate to workload thresholds.

Keywords: mental workload, working memory, math-
ematical models

Introduction
I find—and perhaps this is your experience 

as well—that an easily managed mental task 
can become, with just the slightest amount more 
mental demand, decidedly unmanageable. The 
relationship between unitary increases in cogni-
tive load and the subjective experience of men-
tal demand seem nonlinear; perceived mental 
workload is hardly affected at all by increases 
in demand under low cognitive load but rises 
quickly and disproportionally as the limits of the 
cognitive system are approached. In the context 
of subjective rating scales, it would appear that 
sometimes 5 is closer to 6 than to 4. That is, the 
cognitive load required to move a subjective 
workload rating from 5 to 6 is less than that 
required to move the rating from 4 to 5. This 
relationship, which is the basis of my central 
hypothesis, should take the shape of an s or sig-
moid curve, as notionally depicted in Figure 1.

The hypothesized asymptote at the top of this 
S curve is the predictable result of using a finite 
scale (subjective mental workload) to evaluate a 
conceivably infinite quantity (mental load). Once 
workload is rated a 10 on a 1-to-10 scale, it does 
not matter whether task load proceeds to double 
or triple or quadruple. In each instance, subjec-
tive workload shares the basic quality of being 
“too much” and is therefore a 10. At the lower 
end of the scale, however, there is a finite begin-
ning to the scale and the workload. There, the 
relationship between perceived and actual load 
could be linear, a power function, exponential, 
and so on. I propose that, as seen in Figure 1, 
where subjective ratings of workload are low or 
moderate, something resembling a power func-
tion will be observed. With very low subjective 
workload, unitary increases in cognitive load 
will result in modest increases in subjective rat-
ings. As subjective workload increases, however, 
the rater will become more sensitive to his or her 
diminishing resources, and unitary increases in 
cognitive load will result in increasingly large 
jumps in subjective ratings. Throughout the 
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paper I will refer to my hypothesized relationship 
between cognitive load and subjective ratings of 
mental workload as the workload curve.

The hypothesized workload curve is unique 
within the literature. It is commonly assumed 
that equal intervals in ratings equate to equal 
intervals of imposed workload (Reid & Nygren, 
1988; Young, Brookhuis, Wickens, & Hancock, 
2015). If one is of a mind to find them, there are 
examples of curves in studies of mental work-
load (Berka et al., 2007; Eggemeier, Crabtree, & 
Reid, 1982), but they uniformly go uncom-
mented upon and are never the topic of study. 
There is no mention of a curve in subjective rat-
ings of workload in the seminal references for 
the most common subjective workload rating 
tools (Hart & Staveland, 1988; Wierwille & 
Casali, 1983). Hart and Staveland (1988) 
acknowledge the possibility of a proportionality 
between observed ratings and the magnitude of 
the rated phenomena, though they make no 
hypothesis as to how that might impact ratings 
or whether a curve may result. Yet, a curve in 
subjective ratings of mental workload would 
have a significant impact on the interpretation 
and perception of a subjective workload rating.

In this paper I review the evidence for a curve 
in the most commonly used subjective measures 
of mental workload and present the results from 
two studies. Those results are then evaluated in a 
mathematical model of working memory activa-
tion decay (subjective ratings of mental work-
load are strongly influenced by working mem-
ory). I begin with a brief review of mental work-
load and the impacts of working memory on 
subjective workload ratings.

Subjective Mental Workload
Workload, to oversimplify, is complex. It is 

multidimensional and its magnitude is the result 
of interactions between the human, the task, and 
the environment (Hart & Staveland, 1988; Simon, 
1969; Wickens, 2008). Ultimately, documentation 
of the workload curve must take into account all 
of these variables. But I require a starting point, 
and the evaluation of the mental dimension of 
workload is a reasonable place to begin if for no 
other reason than it is difficult to quantify, and 
there is some appeal in dealing with the most dif-
ficult elements of a problem first.

A universally accepted definition of mental 
workload has been elusive. For this paper, mental 

Increasing Subjective Rating

Maximum Workload Rating

Increasing Workload

Figure 1. The subjective workload curve.
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workload is defined in the strictest sense: the work 
done by the mental system. Somewhat less recur-
sively, mental workload is the cognitive and per-
ceptual processing expended in the course of com-
pleting a task (Eggemeier & Wilson, 1991), where 
processing includes the storage, maintenance, 
manipulation, and retrieval of information within 
working memory and long-term memory as 
accomplished through control of the locus of 
attention.

The measurement of workload has been a 
topic of interest in the applied community since 
at least the 1950s. By the late 1960s, workload 
had become an area of significant research, with 
a variety of techniques being developed to mea-
sure it. Wierwille and Williges (1978) classified 
these techniques into three categories: perfor-
mance measures, psychophysiological mea-
sures, and subjective assessment. Those catego-
ries still accurately classify the vast majority of 
mental workload assessment techniques used 
today (Gawron, 2008).

Of the many dozens of methods within  
those categories proposed for measurement of 
workload—including dual-task tests, performance 
measures, heart rate, respiration, pupil dilation, 
functional magnetic resonance imaging, and infra-
red spectrometry—subjective workload measures 
have assuredly been the most widely used, which 
is likely attributable to their usability and face 
validity. As Moray et al. (1979) put it, “if the per-
son feels loaded and effortful, he is loaded and 
effortful whatever the behavioral and performance 
measures may show” (p. 105).

Representative subjective workload measure-
ment techniques, such as NASA Task Load Index 
(NASA-TLX; Hart & Staveland, 1988), subjec-
tive workload assessment technique (SWAT; 
Reid & Nygren, 1988), and Cooper-Harper 
(Cooper & Harper, 1969), all produce a scalar 
rating of workload. Cooper-Harper’s scale is 
ordinal, and NASA-TLX and SWAT are continu-
ous. Several studies have shown strongly corre-
lated ratings across these and other subjective 
workload measures (Hess, 1971; Rubio, Diaz, 
Martin, & Puente, 2004; Vidulich & Tsang, 
1985). Many measures, like NASA-TLX and 
SWAT, are multidimensional and make allow-
ances for distinguishing between different 
sources of workload, including mental workload.

Although there are numerous subjective tech-
niques, including open-ended scales, there is a 
very limited set that sees consistent, applied use. 
The most popular, if the frequency of study is 
any indicator, is by far NASA-TLX. In her retro-
spective on its use, Hart (2006) found over 550 
studies of NASA-TLX. To be clear, this number 
reflects not just studies that made use of NASA-
TLX but 550 studies of  NASA-TLX. Because 
of their overwhelming popularity, closed, bipo-
lar rating scales for mental workload are of par-
ticular interest for this paper.

Consciousness, Working Memory, and 
Subjective Mental Workload

When mental workload is being measured 
subjectively, one may reasonably ask, “What is 
it that is being measured?” It does not seem, for 
example, that individuals sense the workload 
involved in visual perception; it is not effortful 
to see, although an incredible amount of neural 
processing is required. Instead, one’s perception 
of workload is influenced almost solely by pro-
cesses of which one has some conscious aware-
ness (Vidulich, 1988; Yeh & Wickens, 1988).

In cognitive psychology, consciousness is 
thought to reside in working memory (Baddeley, 
2007; Hassin, Bargh, Engell, & McCulluch, 
2009). As the location of consciousness in the 
cognitive system, working memory has been 
attributed a central role in subjective ratings of 
mental workload (Gopher & Braune, 1984; Eric-
sson & Simon, 1980).

Yeh and Wickens (1988) found that the major-
ity of variables found to affect subjective work-
load are related to working memory demands. 
Those variables include capacity (Hauser, Chil-
dress, & Hart, 1982), presentation rate (Daryanian, 
1980), processing rate (Tulga & Sheridan, 1980), 
attention allocation, and decision alternatives.

Judgment of Mental Workload
The variables catalogued by Yeh and Wick-

ens (1988) are a product of the capacity and 
durability limitations of working memory. One 
prevalent theory as to why those limitations 
exist is decay theory. According to decay theory, 
the strength of a memory, determined by its level 
of activation, fades over time (Baddeley, 1975; 
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Brown, 1958). Further, the pool of activation is 
limited and must be spread across all chunks in 
working memory (Just & Carpenter, 1992). In 
order to be recalled, a chunk’s activation must 
exceed a threshold (Barrouillet, Bernardin, & 
Camos, 2004), and therefore the initial strength 
of the memory trace and resultant decay are 
critical to determining the probability of recall.

Although decay is a critical element of work-
ing memory, it seems unlikely that, in generating 
an estimate of mental workload, one directly 
measures decay of memory activation. More 
probable is the hypothesis that someone asked to 
rate his or her mental workload, lacking a direct 
measure of working memory activation, bases 
his or her rating on the effects of working mem-
ory activation and decay.

One could theorize many mechanisms by 
which activation influences judgments of men-
tal demand. For instance, metamemory and 
learning research has documented the ability to 
estimate remaining working memory capacity 
and rates of forgetting as determined by activa-
tion (Amichetti, Stanley, White, & Wingfield, 
2013; Bunnell, Baken, & Richards-Ward, 1999; 
Halamish, McGillivray, & Castel, 2011; Kor-
nell, Rhodes, Castel, & Tauber, 2011). It may be 
that the accuracy of judgments about available 
capacity increases as available working mem-
ory capacity decreases and that this process in turn 
gives rise to the workload curve. Whatever the pre-
cise process, it is my contention that these judg-
ments are based on the effects of working memory 
activation. Evidence for this hypothesis is dis-
cussed later in the modeling section of the paper. It 
is worth noting both that judgments in ratings of 
workload more have been discussed before in the 
literature (Hart & Staveland, 1988) and that they 
are thought to be relative to prior experience rather 
than absolute (Sheridan & Simpson, 1979).

In summary, I hypothesize that effects of 
working memory activation decay are critical to 
the assessment of mental workload:

•• When subjective mental workload rated is plotted 
as a function of a measure of the imposed work-
load, the result is curvilinear.

•• The relationship between subjective and imposed 
workload takes the shape of an S curve (the work-
load curve).

•• The workload curve results from judgment of the 
effects of working memory activation decay.

Study 1
To test these hypotheses, I performed two 

web-based recall studies and one modeling 
exercise. Study 1 required serial recall of a 
digit span in order of presentation. After each 
trial, participants were asked to rate the mental 
demand of the recall task.

Participants
Study 1 included 102 participants. All par-

ticipants were employees of the MITRE Corpo-
ration and participated voluntarily and anony-
mously. The study was deemed exempt by 
MITRE’s institutional review board (IRB) under 
the provisions of 45 CFR 46. Participants were 
recruited via an internal newsletter. MITRE is 
a technical company, reflected in the demo-
graphic information provided by participants, 
52% of whom described their job as some form 
of engineering. Other job descriptions included 
computer scientists (7%), managers (6%), infor-
mation technology (IT) professionals (5%), and 
administrators (4%). No further demographic 
information was collected as additional details, 
like age and gender, would in some cases allow 
identification of the participant.

Procedure
Participants accessed an internal website to 

complete the study. On the welcome page, they 
were given a high-level description of the task. 
Participants then completed two practice prob-
lems representing the easiest and most difficult 
recall spans. After the practice problems, par-
ticipants completed 24 digit span recall trials.

In each trial, the participant was presented 
with a digit span of varying length. Presentation 
time was determined by multiplying the span 
length by 500 ms. Once the presentation time 
elapsed, the span was removed and the partici-
pant was provided an open text field for entering 
the digit span as he or she recalled it. There was 
no time limit on recall.

After entering each span, the participant was 
asked to rate the mental difficulty of the task  
on a scale of 1 to 10. Not unlike NASA-TLX, 
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mental difficulty was described as a rating of the 
mental effort required to complete the task. Dec-
imal ratings were allowed. The scale was bipolar 
with adjectival labels of low and high at each 
end. Once all trials were completed, participants 
were asked to provide some information on 
recall strategies used during the study.

Manipulations
A repeated-measures design, the study was 

block ordered and included a “no-chunks” and 
a “chunks” condition, each with 12 levels of 
digit span to be recalled (resulting in a total of 
24 trials). In the no-chunks condition, each digit 
span level corresponded with the number of 
digits actually presented to the participant (e.g., 
at Level 10, the participant was presented with 
10 digits to recall). A random-number generator 
was used to create the digit spans. Each span 
was then inspected manually to ensure that no 
obvious patterns were included. Commonly 
chunked digits, such as local area codes or ZIP 
codes, were replaced. When possible (Levels 1 
to 9), an integer was used only once. Integers 
appeared, at most, twice in the span. Although 
care was used to ensure no obvious chunks were 
included, this precaution did not preclude the 
participants from developing a chunking strat-
egy based on nonobvious, personal information.

The second condition is referred to as the 
chunks condition. As with the no-chunks condi-
tion, participants were presented a digit span, 
recalled that span, and provided a rating of mental 
difficulty. However, as part of the chunks condi-
tion, one digit in the string was replaced with a 
five-digit chunk based on an obvious pattern 
(either 12345 or 54321) such that a condition span 
of six would contain five digits followed by a five-
digit chunk. Participants were told to expect these 
patterns in some spans. To ensure participants rec-
ognized them as chunks, those digits, otherwise 
black, were colored blue. I have hypothesized that 

working memory decay, and therefore chunk acti-
vation, plays a central role in ratings of mental 
workload. This condition is therefore included to 
verify that workload ratings were based on the 
number of chunks in the span rather than the num-
ber of digits or apparent length of the span. For my 
hypothesis to be supported, a 10-digit number 
composed of six chunks (as in the center of Figure 
2) should be rated more like the six-digit number 
containing no chunks on the right of Figure 3 than 
the 10-digit number containing no chunks on the 
left.

The spans used for all 20 trials are provided 
in Table 1.

Results
The primary concern was the shape of subjec-

tive mental workload: Will an S curve be pro-
duced when plotting workload ratings as a func-
tion of the number of chunks in the span? Quali-
tatively, as seen in Figure 3, the answer is yes. The 
shape was confirmed quantitatively when the data 
was fit to a four-parameter logistic (4PL) model 
(Baud, 1993), which produced an R2 value of .99 
(root mean square error [RMSE] = 0.16).

On the secondary question of equivalence, I 
found a largely favorable result. A repeated-
measures ANOVA showed, as would be 
expected, no statistically significant difference 
between the two chunk conditions, F(1, 101) = 
2.9, p = .09. Likewise, eta squared showed 
chunk condition accounted for none of the total 
variance (η² = .00). Testing for equivalence 
using inferential confidence intervals (Tryon, 
2001) with a criterion of a 0.75 scale degree, 
seven of the 12 span lengths were shown to be 
statistically equivalent (p < .05) when compared 
across chunk conditions (Table 2).

Discussion
Study 1 showed that, indeed, participants’ 

judgment of mental workload took the shape of 

3796315482 731542
10 digits/10 chunks 10 digits/6 chunks 6 digits/6 chunks

8156412345
1 chunk

Figure 2. Chunks versus digit spans.
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an S curve, as nonlinear increases in ratings of 
workload occurred with unitary increases in the 
number of chunks in the span. And with regard 
to the number of chunks in the span, the data, in 
both practical interpretation and statistical test-
ing, favor the conclusion that mental difficulty 
was judged by the number of chunks rather than 
the number of digits in the span. This latter point 
will be important in the modeling section of the 
paper, but for now, I turn to a second test of the 
hypothesized workload curve. In this second 
study, a different type of demand will be placed 
on working memory to see if the sigmoid shape 
remains.

Study 2
The digit span study relied on working 

memory in the central executive and articula-
tory rehearsal loop (Kahana, 2012). Capacity 
and durability in the rehearsal loop, however, 
differs from that of the visuospatial sketchpad 
(Card, Moran, & Newell, 1983). To determine 
if the S curve persists when processing load is 
placed on the visuospatial sketchpad subsystem, 
a visual pattern was used for the second study. 
For this study, I hypothesized that the S-shaped 
workload curve seen in the digit span would 
be retained though steeper due to the higher 
demands placed on working memory.

1     2 3 4 5 6 7 8 9 10 11 120

Number of Chunks in Span

Rating

3

4

5

6

7

8

9

10

2

1

No Chunks
Chunks

Figure 3. Ratings as a function of chunks in digit span with confidence intervals.

Table 1: Study 1 Digit Spans

Length No Chunks Chunks

  1 5 12345
  2 73 6 54321
  3 185 94 12345
  4 4967 296 54321
  5 43795 3172 12345
  6 154859 21531 54321
  7 5439156 981564 12345
  8 15362084 2451386 54321
  9 945132708 73016829 12345
10 1594862730 953472680 54321
11 38170649527 5203147968 12345
12 715039428603 16428530920 54321
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Participants
Thirty volunteers participated in Study 2. As 

with the first study, all participants were employ-
ees of the MITRE Corporation and completed 
the study voluntarily. Limited demographic infor-
mation was collected to ensure anonymity. The 
study was deemed exempt by MITRE’s IRB 
under the provisions of 45 CFR 46. Participants 
were recruited via an internal newsletter. Fifty-
four percent of participants described their job 
as engineering. Other job descriptions included 
IT professionals (6%), computer scientists (5%), 
managers (3%), and administrators (3%).

Procedure
Participants accessed an internal website to 

complete the study. The welcome page provided 
a high-level description of the task. This descrip-
tion was immediately followed by training 
for the first of three sets of trials. The training 
included instructions on how the trials should 
be completed, example problems with solutions, 
and three practice problems. Each participant 
completed all levels of every condition. Condi-
tions were presented in blocks and block order 
was varied. Prior to each block, participants 
were given instructions on how to proceed and 
then completed three practice trials. The three 
practice trials represented the easiest, moderate, 
and most difficult levels of the condition.

The visual pattern was shown to the partici-
pant using a wheel consisting of six colored but-
tons (example in Figure 4). In each trial, buttons 
were highlighted for 1 s in a predetermined pat-
tern. The pattern was repeated back by the par-
ticipant by pressing the buttons on the color 
wheel. The entire pattern was shown only once. 
Response time was unlimited and after each trial, 
the participant was asked to rate the mental dif-
ficulty of the task with the same bipolar scale 
used in the first study. In addition to collecting 
the scale rating, correctness of the response and 
the total response time were calculated. Upon 
completion of the study, participants completed a 
brief exit survey. This procedure was modeled 

after the electronic game Simon, variants of 
which have been widely used to test visual mem-
ory span (Cleary, Pisoni, & Geers, 2001; Gendle 
& Ransom, 2006; Humes & Floyd, 2005).

Manipulations
Instructions for a set of trials and the length of 

the visual span were manipulated. Trial instruc-
tion conditions included “as seen,” “reverse,” 
and “offset.” In the as-seen condition, the par-
ticipant repeated the pattern back in the order it 
was presented. The reverse condition required 
the participant to repeat pattern back in the 
opposite order, beginning by pressing the but-
ton highlighted last, first. This condition neces-
sitated manipulation of information in working 
memory but not the creation of new chunks 
for storage. The offset condition required both 
manipulation and the creation of new working 
memory chunks. In this condition, the partici-
pant repeated the pattern back in the order pre-
sented but with a one-position-clockwise offset 
as illustrated in Figure 5. Span length varied 
from one item in the visual pattern to 10 items.

Results
As expected, the workload curves found in 

Study 2 were even more pronounced than those 

Table 2: Inferential Confidence Intervals (ICIs)

Span 1 2 3 4 5 6 7 8 9 10 11 12

ICI 0.33 0.55 0.59 0.61 0.48 1.35 0.56 1.19 1.01 0.90 0.89 0.65

Figure 4. Visual pattern study button wheel.
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seen in the digit span (Figure 6). Using the as-
seen curve as an example, ratings at the bottom 
of the curve increased less than half a point 
between spans, jumped to nearly two full points 
between spans in the middle of the curve, and 
then subsided back to increases of half a point 
or less near the top. Although the increases hap-
pened more quickly in the other conditions, the 
basic pattern remained. Using 4PL functions, the 

as-seen (R2 = .99, RMSE = 0.24), reverse (R2 = 
.98, RMSE = 0.24), and offset (R2 = .99, RMSE 
= 0.08) showed strong fits as sigmoid curves. 
When sigmoid model curves were applied to 
individual data, the RMSEs increased across  
the board but were, nonetheless, within one scale 
degree of the observed value (as seen, RMSE = 
0.75; reverse, RMSE = 0.49; offset, RMSE = 
0.98).

Figure 5. Visual pattern study instructions by condition.

1.0

2.0

3.0
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5.0

6.0
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9.0

10.0

11.0

1 2 3 4 5 6 7 8 9 10

Rating

Problem Span

offset
as seenreverse

4PLcurve fit

Figure 6. Visual span subjective ratings as function of span length with confidence intervals.
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The ordering of the results was also as 
expected, with the as-seen condition rated the 
easiest and offset the most difficult. A repeated-
measures ANOVA showed those differences to 
be significant, F(2, 28) = 63.7, p < .05. There 
was a significant main effect for span, F(6, 24) = 
181.6, p < .05, as well. According to Cohen’s 
(1988) guidelines for interpretation of the eta-
squared test, the effect sizes for the instruction 
condition and span were both large (η² = .34 and 
η² = .80, respectively).

Discussion
Once again, distinct S curves are seen. With 

small visual spans, unitary increases in workload 
correspond to modest increases in workload rat-
ings. These modest increases are followed by 
noticeable jumps in ratings as the participant 
becomes more sensitive to diminishing work-
ing memory resources and asymptotes as those 
resources become overwhelmed. Although these 
results need to be tested further in ecologically 
valid environments, they provide a strong initial 
argument for the workload curve and rethinking 
how one interprets subjective workload ratings 
collected via popular methods, like NASA-TLX.

The results also uncover an unfortunate, if logi-
cal, interaction between people’s limited working 
memory capacity—estimates range from seven 
chunks (Miller, 1956) to as low as three or four 
chunks (Cowan, 2001)—and perceived mental 
workload. In most situations, larger jumps in  
subjective ratings with unitary increases in load 
would be preferred—particularly if boredom is of 
concern—when working memory demand is low. 
Smaller jumps would be preferred when working 
memory is moderate and people begin to approach 
the limits of their capacity. However, the workload 
curve shows the opposite to be true. Given that the 
practitioner is often trying to manage user work-
load, knowledge of the curve is valuable as it gives 
guidance on the magnitude of mental demands 
necessary to increase a user’s engagement and 
emphasizes how carefully workload must be man-
aged passing the midpoint of the subjective rating 
scale.

A Model of the Subjective  
Mental Workload Curve

In the section on judgment, I hypothesized 
that the subjective workload curve arises from 

judgments about the availability of information 
in working memory, which is not to say that 
other parts of the cognitive system do not impact 
subjective ratings of mental workload. Rather, I 
am hypothesizing that availability plays the cen-
tral role in these judgments and that knowledge 
of availability alone is sufficient to replicate 
the workload curve. If this hypothesis is true, 
then a model of working memory availability 
(i.e., activation decay) should predict ratings of 
mental difficulty in conditions when pure recall 
plays a lesser role (the offset condition of the 
visual span study) just as accurately as it does 
ratings in near-pure recall conditions (the as-
seen condition).

Activation-Based Model
In his famous paper, “You Can’t Play 20 

Questions With Nature and Win,” Allen New-
ell (1973) argued that experimental psychol-
ogy, although adept at answering binary ques-
tions about psychological phenomena, was not 
advancing cognitive psychology toward a uni-
fied understanding of the mind. Newell believed 
that a unified theory required the develop-
ment of cognitive architectures: software that 
implemented human cognitive capacities and 
constraints such that they could be used to test 
a theory’s plausibility within the broader cogni-
tive system.

One of the many cognitive architectures that 
arose as a response to Newell’s challenge is 
adaptive control of thought–rational (ACT-R; 
Anderson, 2007). Relevant to the work at hand, 
research on memory using the ACT-R software 
and formulations has been extensive, with hun-
dreds of published papers on the topics of mem-
ory activation, decay, or interference (ACT-R-
related research is archived at http://act-r.psy.
cmu.edu/). For this particular paper, my objec-
tive was to provide plausible support for the 
hypothesis that the workload curve demon-
strated in the first two studies arises from judg-
ments based on the effects of working memory 
activation and decay. As such, I relied on mem-
ory activation and decay functions that have 
been well established within the ACT-R commu-
nity (Altmann & Schunn, 2002; Altmann & 
Trafton, 2002; Anderson, Reder, & Lebiere, 
1996; Böhm & Mehlhorn, 2009; Pape & Urbas, 
2008; Sohn, Anderson, Reder, & Goode, 2004). 
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First, the activation of a memory trace was cal-
culated using the following equation taken from 
the literature (Altmann & Trafton, 2002):

a
n

T
= ln ( ),

where a is activation, n is the number of times 
that chunk is rehearsed, and T is the total time 
the trace is held in memory (and the determinate 
of decay). Next, in order to mimic the division of 
activation across all working memory chunks, I 
reduced the activation as a function of the num-
ber of chunks in the problem span:

d a
c

= + −
1
1,

where d is the divided activation, a is activation, 
and c is the number of chunks the activation 
must be divided among. The idea of limited acti-
vation source pools and their distribution among 
all the chunks held in working memory has been 
previously documented in the literature (Ander-
son et al., 1996).

These two basic equations allowed me to 
model a relationship between the number of 
chunks to be memorized (visual pattern span), 
decay over time, and a subjective rating of men-
tal demand. The first equation requires a reason-
able estimate of the number of times each chunk 
is rehearsed between storage and final recall. In 
order for the model to have explanatory power, I 
should set free parameters, like rehearsal, once 
and use those settings for modeling the results of 
all three visual pattern conditions. The model 
could not be applied to the digit span study as 
response time—required to set T—was not col-
lected. For this model, rehearsal (n) was set to 
three retrievals of the chunk (a plausible level of 
rehearsal that provided the best overall fit).

With the parameters set, an activation value 
was calculated for each participant response using 
the condition to determine number of chunks and 
response time for the decay period. The data were 
then collapsed across all three visual pattern con-
ditions and an average activation generated for 
each degree of the subjective rating scale. It was 
necessary to round each raw subjective rating to 
the nearest whole number in order to ensure a suf-
ficient number of observations at each point in the 
rating scale. A logarithmic curve, seen in Figure 7, 

was then fit to the data from Study 2 (the model 
curve). This step allowed evaluation of the fit of 
averaged data for each condition to the model 
curve. The best trend and magnitude of fit (Schunn 
& Wallach, 2005) were found for the as-seen con-
dition (R2 = .99, RMSE = 0.27). This finding 
makes intuitive sense as this condition was closest 
to what may be called a pure working memory test 
(i.e., place information in working memory and 
repeat it back verbatim).

The reverse condition equaled the trend of the 
as-seen condition but showed a slightly larger 
error value (R2 = .99, RMSE = 0.35). The values 
for the offset condition, although lower still, 
were not noticeably worse (R2 = .97, RMSE = 
0.47), and the estimated subjective workload 
ratings were, on average, within half a point of 
the observed workload ratings. So, although 
increasing recruitment of differing cognitive 
resources does seem to impact the accuracy of 
the model, in these tests, working memory acti-
vation levels alone were able to provide a very 
good prediction of the observed subjective rat-
ings of mental difficulty and, more to the point 
at hand, account for the subjective workload 
curve.

Conclusions
With hindsight, it makes sense that when it 

comes to mental workload, 5 is sometimes closer 
to 6 than to 4. In psychology, many, if not most, 
well-established effects exhibit curvilinear rela-
tionships. Fitts’s law (Fitts, 1954), Hick’s law 
(Hick, 1952), the Yerkes-Dodson law (Yerkes & 
Dodson, 1908), Stevens’s power law (Stevens, 
1957), subitization (Jevons, 1871), and the 
power law of practice (Newell & Rosenbloom, 
1981) are all curvilinear processes, as is activa-
tion decay (Anderson, 2007; Byrne & Bovair, 
1997; Oberauer, Lewandowsky, Farrell, Jarrold, 
& Greaves, 2012) and the probability of mem-
ory recall over time (Bachelder, 2000; Mueller 
& Krawitz, 2009; Taatgen, 2000). Those curves 
exist for a variety of reasons. Cognitive process-
ing, for example, is thought to happen along a 
curve for expediency; it is unnecessary and inef-
ficient to process sensory input linearly (Burns, 
2014). In the case of workload, the modeling 
exercise conducted in this paper supported the 
idea that the mental workload curve may bend 

(1)

(2)
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as a result of the subject’s reflecting on the dif-
ficulty he or she has maintaining information in 
working memory (i.e., availability).

Although perhaps intuitive, the existence of a 
subjective workload curve has, until now, never 
been formally documented. And although this 
research needs to be replicated with ecologically 
valid tasks, it acts as a starting point for refactor-
ing the interpretation of subjective ratings of 
workload. The activation model gives credence 
to the theory proposed here that the judgments 
that give rise to the workload curve are based on 
the effects of activation and decay. This theory 
suggests that practitioners who wish to manage 
the mental workload imposed by a tool must 
manage not only the total amount of information 
the user must hold in working memory but how 
long it must be held there.

When subjective measures are used to compare 
workload under differing conditions, the workload 
curve indicates that the true magnitude of the dif-
ference is dependent on where on the scale the rat-
ings lie. The position of the rating on the scale may 
likewise tell something about the stability of the 
rating, as ratings in both studies became more sen-
sitive under increasing loads.

With regard to the impact of the workload 
curve, consider how widespread the use of  

subjective workload ratings are in safety-critical 
domains, like aviation. The Journal of Aviation 
Psychology, for example, publishes applied 
research related to aviation safety. Using its 
online search capabilities, I found that of 566 
articles, approximately 25% included measures 
of subjective workload. One in 10 included 
NASA-TLX specifically. For these practitioners 
who so commonly use subjective workload rat-
ings to ensure system safety, a more thorough 
understanding of subjective workload ratings is 
always of value.

Moving forward, several questions need to be 
answered. First, can the workload curve be 
found in more complex mental work? Ecologi-
cally valid tests will be required to answer this 
question, but they will be difficult as they require 
formulating and modeling working memory 
processing in complex environments. To that 
end, the formulations found in the modeling sec-
tion here will be integrated into the Cogulator 
cognitive modeling tool (http://cogulator.io).

Second, does the curve seen in subjective rat-
ings of mental workload exist in other dimen-
sions of workload? Some evidence of a temporal 
workload curve can be found in existing studies 
(e.g., Dijksterhuis, de Waard, Brookhuis, Mulder, 
& de Jong, 2013), and temporal workload will 

Model Curve, y = -3.78ln(x) + 2.479
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Figure 7. Model fit for problem rating as function of activation by condition.
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likely be the next dimension of workload I inves-
tigate. Until those studies take place, I hope that 
others find the workload curve useful in their 
applied work and add to it with their own research.
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Key Points
•• Evidence was found for the existence of a work-

load curve.
•• S curves characterize the relationship between 

working memory load and subjective ratings of 
workload.

•• I hypothesize subjective mental workload is driven 
by the availability of working memory traces 
(activation), and models support that hypothesis 
as a plausible theory.
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