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1 | INTRODUCTION
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Abstract

Cognitive workload (CWL) is a fundamental concept in the assessment and mon-
itoring of human performance during cognitive tasks. Numerous studies have
attempted to objectively and continuously measure the CWL using neuroimag-
ing techniques. Although the electroencephalogram (EEG) is a widely used tech-
nique, the impact of CWL on the spectral power of brain frequencies has shown
inconsistent results. The present review aimed to synthesize the results of the
literature and quantitatively assess which brain frequency is the most sensitive to
CWL. A systematic literature search following PRISMA recommendations high-
lighted three main frequency bands used to measure CWL: theta (4-8 Hz), alpha
(8-12 Hz), and beta (12-30 Hz). Three meta-analyses were conducted to quanti-
tatively examine the effect of CWL on these frequencies. A total of 45 effect sizes
from 24 studies involving 723 participants were computed. CWL was associated
with significant effects on theta (g = 0.68, CI [0.41, 0.95]), alpha (g = —0.25, CI
[—0.45, 0.04]), and beta (g = 0.50, CI [0.21, 0.79]) power. Our results suggests that
theta, especially the frontal theta, is the best index of CWL. Alpha and beta power
were also significantly impacted by CWL; however, their association seemed less
straightforward. These results are critically analyzed considering the literature on
cerebral oscillations. We conclude by emphasizing the need to investigate the in-
teraction between CWL and other factors that may influence spectral power (e.g.,
emotional load), and to combine this measure with other methods of analysis of
the central and peripheral nervous system (e.g., functional connectivity, heart

rate).
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and can lead to errors and accidents (Zoer et al., 2011).

In our modern, highly connected societies, work environ-
ments impose increasingly high demands on our cognitive
and cerebral resources that allow us to process informa-
tion. Such a high demand on cognitive resources exposes
individuals to situations of cognitive overload, which
can be dangerous for their health (Klonowicz, 1995)

Electroencephalogram (EEG) is one of the main tech-
niques for measuring the brain resources corresponding
to cognitive workload (CWL). So far, several brain frequen-
cies (mainly theta and alpha) have been candidates to
reflect the mental state of an individual exposed to high
CWL. Despite a growing number of studies, results do not
always converge. One recent meta-analysis focused on
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the link between CWL and Event-Related Potential (ERP,
Ghani et al., 2020), while two systematic reviews examined
the main sensors usually used to measure CWL (Charles &
Nixon, 2019; Tao et al., 2019). However, no meta-analysis
specifically examined the relationships between CWL and
EEG spectral power. The present quantitative review thus
aims to synthesize the results of the literature, in order to
evaluate whether brain frequency spectral power is a use-
ful method for measuring CWL.

1.1 | Cognitive workload (CWL) concept

CWL is a fundamental concept in the study of human
performance that emerged from the observation that our
cognitive system has limited capacities to perform a cog-
nitive task (Broadbent, 1971). This upper limit of our pro-
cessing capacity led authors to postulate the existence of
a finite quantity of resources, which must be used to per-
form a cognitive operation (Kahneman, 1973; Norman
& Bobrow, 1975; Wickens, 2002). The limited amount
of these resources implies that the more resources are
needed for a processing operation, the less resources are
available for other cognitive operations. Although the
concept of mental resources has only a limited explana-
tory capacity (see Dehais et al., 2020, for a review on this
issue with a neuroergonomic approach), it remains useful
for studying and predicting human performance in cogni-
tively demanding situations (e.g., multi-tasking). During a
cognitive task, these attentional and neural resources are
engaged, among other things, in processes of maintaining
and manipulating relevant information, generally mod-
eled by the concept of working memory (Baddeley, 2012;
Cowan, 2016). Although it has been used and exten-
sively studied since the 1960s, the concept of CWL has
no single, consensual definition (Moray, 1979; Young
et al., 2015). Nevertheless, it is commonly accepted that
CWL is multidimensional in nature and can interact with
many factors such as expertise, work environment, age,
and other psychosocial factors (Hart & Wickens, 1990;
Xie & Salvendy, 2000). In the present review, CWL will
be defined as the amount of brain resources required for
an individual to complete a task (i.e., cognitive activities
requiring the achievement of a particular goal). Thus,
CWL emerges from the interaction between the task to be
performed and the individual, who has limited resources
(Young et al., 2015). When the demand of the task leaves
sufficient mental resources available to the individual, re-
source models consider that the individual should be able
to maintain a high level of performance (e.g., in terms of
speed or accuracy; Wickens, 2008). Cognitive overload oc-
curs when the demand of the task exceeds the resources
available to the individual, who is then no longer able

to correctly process the relevant information or produce
an adapted response. This state reduces efficiency and
drastically increases the probability of making mistakes.
Detecting and preventing situations of cognitive overload
is crucial when applied to the study of operators whose
errors can cause serious harm, as is the case in the in-
dustrial (nuclear), transportation (maritime, car, avia-
tion), military and medical fields (McFadden et al., 2004;
Senders & Moray, 2020). Valid and sensitive methods for
measuring CWL continuously and in real time are thus
indispensable.

1.2 | Measuring CWL

Historically, the first method used to infer an individual’s
mental state was to analyze their performance (e.g., re-
sponse time, accuracy, error rates) on a task, which may
be single or accompanied by a secondary task. This sec-
ond task has generally no interest other than adding in-
formation to be processed in order to observe the effect
of this additional task on the performance of the main
task (Wickens, 1991). However, this method is not com-
pletely satisfactory. Indeed, the level of performance does
not necessarily reflect the quantity of brain resources used
by the individual: An increase in the demand of the task
can lead to a strong increase in the cognitive resources
invested to maintain an equivalent level of performance
(Young et al., 2015). Having to wait for errors to appear
makes the use of this method ineffective in operational
environments where errors can be costly financially or
humanly.

The second group of methods are subjective measures,
which refer to the use of rating scales, self-reported by
the individual after completing the task to be assessed.
Two scales are usually used to assess subjective CWL:
the National Aeronautics and Space Administration Task
Load Index (NASA-TLX) scale (Hart & Staveland, 1988),
and the Subjective Work-load Assessment Technique
(SWAT) scale (Reid & Nygren, 1988). Besides the fact that
the assessment cannot be done “online” (i.e., when the
task is performed), many biases can also interfere with the
validity of these measurements, such as the participant’s
understanding of the concept being assessed, the interac-
tion between task performance and subjective assessment
(e.g., poor performance will increase the subjective assess-
ment of difficulty; Moray, 1982), social desirability, inter-
individual differences in the capacity for introspection
and consciousness, memory bias (e.g., peak-end effects;
Peterson & Kozhokar, 2017).

More recently, technical development has enabled the
development of physiological measurements for assess-
ing CWL. While the previous measures allow an indirect
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measurement of the individual’s mental state, physiolog-
ical sensors, by measuring certain characteristics of the
central nervous system (e.g., brain) and peripheral ner-
vous system (e.g., heart rate), give us physiological cues
of the individual’s mental state. Technological progress
has enabled many laboratories to equip themselves with
physiological sensors at lower prices, for increasingly pre-
cise measurements (Marini et al., 2019). Several studies
have demonstrated the sensitivity of EEG as an index
of CWL (e.g., Gevins et al., 1998; Lei & Roetting, 2011),
particularly in the field of adaptive automation systems
where brain activity is used as input to the system (Arico
etal., 2016; Parasuraman, 1990). Some studies suggest that
EEG is more sensitive than other physiological measures
(Brookings et al., 1996; Taylor et al., 2010), while others
show that EEG can measure unique processes that are
not detected by other physiological measures (Hankins &
Wilson, 1998; Matthews et al., 2015). To select a relevant
instrument for CWL measurement, it is necessary to con-
sider the sensitivity of the measurement but also the con-
ditions under which this technique can be used effectively.
Brouwer et al. (2014) found that pupil size measurement
was a more sensitive marker of cognitive effort than EEG.
However, its use is limited to contexts where brightness is
stable and flicker-free, which is very difficult to obtain in
real-life situations. On the other hand, the use of EEG in
real life is made possible by the refinement of algorithms
for processing artifacts (Onikura et al., 2015). For instance,
advances in algorithms have made it possible to effectively
remove noise from the EEG signal, even when the signal
is obtained during walking or running (Gwin et al., 2010).

1.3 | EEG technique and
frequency power

The signal obtained by EEG comes from the post-synaptic
excitatory (or inhibitory) potentials produced by the ac-
tion potentials moving through the dendrites of pyrami-
dal neurons in the outer layers of the cortex (Dickter &
Kieffaber, 2013; Sanei & Chambers, 2013). The transition
from the activity of dipole sources located in the brain
(i.e., neurons) to a measurable electric field on the scalp
is achieved by the geometry of the neurons (i.e., pyrami-
dal) and the volume conduction properties of the differ-
ent layers of the head (hair, scalp, skull, brain). These
different layers attenuate and distort the electric field,
making it impossible to measure small groups of neurons
and making it difficult to locate the dipoles. However, the
synchronized activity of several thousands of synapses
and the summation of these electric fields via propaga-
tion through the tissues allows a weak, but measurable
signal to be obtained at the surface on the scalp. This
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signal is measured by electrodes (less than 3 mm in di-
ameter), whose surface is usually composed of silver and
silver chloride (Ag/AgCl). The signal recorded by the
sensors is then amplified and converted via an analog-to-
digital converter. Due to the weakness of the measured
signal, it is commonly accepted that the electrode im-
pedance must be less than 5 kQ to avoid increasing the
noise level, which would result in a lower signal-to-noise
ratio (Kappenman & Luck, 2010). Electrode placement
is generally standardized according to the recommen-
dations of the International Federation of Societies of
Electroencephalography and Clinical Neurophysiology,
known as 10-20 placement (Jasper, 1958). This technique
is characterized by an excellent temporal resolution (mil-
liseconds), making it possible to examine the temporal
course of cognitive, perceptive, and sensory processes
with great precision (Cohen, 2011). Compared to other
neurophysiological recording techniques such as positron
emission tomography and functional magnetic resonance
imaging (fMRI), EEG recording device are small (e.g., pos-
sibly mobile), easier to set up (e.g., with dry electrodes),
and less expensive to acquire and maintain. These advan-
tages have made EEG an ideal tool for studying brain re-
source allocation in laboratories or in the field.

The EEG signal can be decomposed into several fre-
quency ranges (usually by a Fourier transform), whose
power is determined by power spectral analysis. Although
there are no standardized frequency ranges and the
boundaries may change slightly depending on the au-
thor, the frequency ranges are classically defined as fol-
lows: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (12-30 Hz), and gamma (30-50 Hz). Alpha and
beta frequencies are sometimes decomposed into sub-
bands whose functional differences have been observed
(Klimesch, 1999; Staufenbiel et al., 2014): low alpha (8-10
Hz), high alpha (10-12 Hz), or betal (12-20 Hz) and beta2
(20-30 Hz). Numerous studies have focused on theta and
alpha frequencies, which have long been associated with
cognitive processes (Gevins et al., 1997; Klimesch, 1999,
2012; Onton et al., 2005; Roux & Uhlhaas, 2014). Roughly
speaking, the theta frequency in the frontal cortex is pos-
itively correlated with increasing CWL, while conversely,
the alpha frequency of the parietal cortex decreases as
CWL increases (Gevins et al., 1997; Lei & Roetting, 2011).
This dissociation has not always been demonstrated in the
literature (e.g., Borghini et al., 2014). An increase in theta,
particularly frontal theta, is often associated with an in-
crease in working memory load (Deiber et al., 2007; Jensen
& Tesche, 2002; Onton et al., 2005), but some studies show
adecrease in theta power associated with a high load (e.g.,
Brzezicka et al., 2019). Alpha, on the other hand, yielded
much more inconsistent results, with some studies show-
ing an increase in alpha in association with increased
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workload (Jensen et al., 2002; Klimesch, 2012), while
other studies showed the opposite (Michels et al., 2010;
Palva & Palva, 2007). The studies examining the beta band
also show diverging results, with increases in load lead-
ing to a power increase (Chen & Huang, 2016; Kornblith
et al., 2016) or decrease (Proskovec et al., 2019).

The primary aim of this quantitative review is, there-
fore to synthesize and combine the results of the liter-
ature, in order to clarify the relationship between the
different brain oscillations spectral power and an increase
in CWL. Indeed, extant reviews that focused on the major
physiological measures of CWL (Charles & Nixon, 2019;
Lean & Shan, 2012; Tao et al., 2019) did not quantitatively
address this issue.

To deepen the analysis, several moderators were se-
lected a priori based on the literature. Concerning brain
oscillations, we were interested in the specific frequency
bands measured across the different EEG component
when they contain several sub-bands that may have differ-
ent functional roles (i.e., low & high alpha, betal & beta2,
Fink et al., 2005; Klimesch, 1999). In order to study the
spatial specificities of the measured oscillations, the brain
region of interest was also used as a moderator variable.
Regarding individual characteristics, we controlled for the
gender of the individuals involved in the studies, as sev-
eral studies have shown that gender can have an impact
on CWL (de Moura et al., 2017; Hancock et al., 1992) as
well as on brain oscillations (Giintekin & Basar, 2007). We
also examined the effect of expertise, which may generate
variability in the measurement of CWL, since with equal
task load, experts process information more efficiently
than novices (Ward et al., 2019). This processing effi-
ciency is accompanied by changes in brain activity, with
a reduction in the activity of the prefrontal and parietal
cortex (Bilali¢ & Campitelli, 2018). Moreover, the recent
development of low-cost mobile EEG systems (Ayaz &
Dehais, 2018) that accompanied the emergence of neu-
roergonomics, has made the study of brain activity in
ecological conditions (i.e., similar to a real-world setting)
easier. As this type of system naturally attracts research-
ers looking to evaluate CWL online and will certainly
be increasingly developed in the future, we additionally
wanted to compare the EEG measurements obtained ac-
cording to the type of system used (i.e., mobile EEG or not).
We also coded for the number of tasks to be performed by
the participant (i.e., single or multiple), in order to exam-
ine the impact of a multitasking situation on brain oscilla-
tions. Performing several tasks “at the same time” implies
managing the prioritization of these tasks according to
different criteria (e.g., priority, interest, difficulty; Wickens
& Gutzwiller, 2017). This task management thus induces
an additional demand on cognitive resources compared to
the execution of a single task (i.e., management load; Xie

& Salvendy, 2000), and can, therefore generate a greater
CWL. Finally, we considered mental fatigue, which is an
intrinsically related concept to CWL and is also associated
with decreased performance (Bendak & Rashid, 2020) and
can cause impairment in theta and alpha spectral power
(Borghini et al., 2014). To investigate this factor, we esti-
mated the time-on-task (i.e., duration of required mental
effort) during which participants’ EEG activity was re-
corded. When the total duration was not explicitly given
in the article, an estimate was computed.

2 | Method

2.1 | Inclusion and exclusion criteria

Only studies that were published in a peer-reviewed
journal were eligible. Moreover, they had to meet the fol-
lowing criteria: (a) contain at least one quantitative EEG
measure of the usual frequency bands (i.e., delta, theta,
alpha, beta, and gamma) with spectral power analysis;
(b) introduce a manipulation of the CWL in order to op-
pose low and high load; (c) use a within-subject design or
compare independent groups; (d) present sufficient sta-
tistical information to calculate an effect size (e.g., mean,
standard deviation, and sample size); (¢) focus on healthy
young adults; (f) present original data; (g) be written in
English. Reviews, conference papers, book chapters,
and studies using overlapping data were excluded. To
restrict the scope of this study and to allow comparison
between the effect sizes, we did not included studies
that uses alternative types of EEG analyses (e.g., time-
frequency analysis, ERP, brain networks connectivity)
nor those that compared classification algorithms (Lotte
et al., 2007).

2.2 | Information sources

We conducted a systematic search of the literature, in ac-
cordance with the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (Moher
et al., 2009). The search covered a period up to September
2019 in the following databases: arXiv (19), Cochrane
Library (48), Embase (925), IEEE Xplore (425), PsycINFO
(643), PubPsych (190), PubMed (684), Science Direct
(3759), SpringerLink (4302), Taylor & Francis Online
(783), Web of Science (1220). A combination of the follow-
ing keywords was used: “EEG or electroencephalogra*”
and “cognitive load”; “EEG or electroencephalogra*” and
“cognitive workload”; “EEG or electroencephalogra*”
and “mental load”, “EEG or electroencephalogra*” and
“mental workload”. Moreover, we manually performed
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a search in the major reviews of the field (Borghini
et al., 2014; Charles & Nixon, 2019; Kramer, 1991; Lean
& Shan, 2012; Tao et al., 2019; Young et al., 2015) and in
the reference lists of included articles (K = 23). For studies
that met the inclusion criteria but in which information
was missing, we contacted the corresponding author of
the paper (K = 7, only one author responded, for whom
the data were no longer accessible). References were man-
aged using Excel spreadsheets.

2.3 | Study selection

Eligibility assessment was performed by two authors. After
having removed the duplicates, studies were screened by
their title, following the flowchart sequence (Figure 1).
Then, abstracts were screened and studies that did not
meet the inclusion criteria were excluded. When the ab-
stract did not provide enough information (e.g., type of
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EEG analysis), the study was eligible for full-text screen-
ing. Finally, full texts were screened and studies meeting
all inclusion criteria were included for the meta-analysis
(K = 24).

2.4 | Data collection

When reported, we extracted the following information
from each study: (1) sample size, (2) mean age (and stand-
ard deviation) and gender of participants, (3) research do-
main, (4) study design (within- or between-participants),
(5) frequency band(s), (6) electrode position, (7) number
of tasks and method used to increase the CWL, (8) time
on task, (9) method used to estimate spectral power, and
(10) statistical data used to calculate effect sizes. Datafiles
and the R script for the meta-analysis can be found on the
Open Science Framework (OSF) through the following
link: https://osf.io/xrb4z/.

FIGURE 1 PRISMA flow diagram of the systematic search
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c (n=12991) (n=23)
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b= \ 4 \ 4
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2.5 | Summary measures

Statistical analyses were conducted in RStudio (RStudio
Team, 2020, version 1.3.1093) using R (R Core Team, 2013,
version 4.0.1). We used the esc package in order to compute
the effect sizes (Liidecke, 2018), and the meta (Schwarzer,
2007), metafor (Viechtbauer, 2010), and dmetar (Harrer
et al., 2019) packages to conduct the meta-analyses and
meta-regression.

We computed a Hedges’s g statistic for the standardized
mean difference in bandwidth power between high and
low workload conditions. If the experimental compari-
son involved more than two load levels, the standardized
mean difference was between the harder and the easier
condition. Since most studies evaluated this difference in
the same individual (within-subject design), we calculated
repeated-measures effect sizes. Hedges’s g statistic was pre-
ferred to Cohen’s d because it adjusts for the small sample
bias (Hedges, 1981). A positive effect size indicates an in-
crease in average bandwidth power in the high workload
condition.

Effect sizes were calculated based on the means and
standard deviations, following Morris and DeShon’s
correction for within-subject designs (Morris &
DeShon, 2002). As none of the studies reported the cor-
relation values between the low and high load measure,
we used a correlation value of r = 0.50 (which is consid-
ered as relatively conservative; Balk et al., 2012). Studies
that reported F, ¢t or Cohen’s d values were converted to
g (Lakens, 2013).

Knowing that all effect sizes should be indepen-
dent in a meta-analysis—to avoid under-estimated
standard errors of the average effects—we conducted
three separate meta-analyses on the three main fre-
quency bands measured in the included studies (i.e.,
theta, alpha, and beta). Studies measuring other bands
were too few to be meta-analyzed (e.g., delta, gamma,
theta/alpha ratio). When a study provided different
measurements of the same frequency within the same
participant (e.g., one measure of theta per electrode),
data were averaged together to compute one effect
size (Cooper et al., 2019). An exception was made for
alpha and beta spectral power analyses, for which
some studies (alpha: K = 3; beta: K = 2) reported low
and high alpha and betal and beta2 measurements,
respectively. Although this lack of independence may
lead to an underestimation of the standard error,
the small number of studies concerned precludes
the use of multivariate or three-level meta-analyses
(Cheung, 2019). On the other hand, this small number
of studies reduces the risk of obtaining Type I error
rates (Song et al., 2020).

2.6 | Synthesis of results

Given the diversity of protocols included, we expected
high heterogeneity between the studies, and therefore
applied a random effects model to combine and weight
effect sizes across studies using inverse variance meth-
ods. We also included an analysis of the data by a fixed
effects model (see Supplementary data), since there
is a risk of overestimating effect sizes when a ran-
dom effects model is used in the presence of strong
publication bias (Cooper et al., 2019). We quantified
heterogeneity using the effect sizes’ percentage of
variability (i.e., the I? statistic). A value of 75% and
above indicates high heterogeneity, a value of 50% in-
dicates moderate heterogeneity, a value of 25% indi-
cates low heterogeneity and a value of 0% indicates no
heterogeneity (Higgins et al., 2019). Despite its ease
of interpretation, the I* statistic depends on the sam-
pling error and number of studies included. To have
an indicator independent of the number of studies, we
also calculated the between-study-variance estimator
7%, using the Hartung-Knapp-Sidik-Jonkman method
(IntHout et al., 2014). Although the DerSimonian and
Laird method is widely used for random effects meta-
analysis, this method has been shown to be biased to-
ward type 1 error, producing false positives (IntHout
et al., 2014). It has been recently established that this
method is outperformed by the Hartung-Knapp-
Sidik-Jonkman method, especially when the number
of studies is small (IntHout et al., 2014). Heterogeneity
was also statistically assessed by the Chi-square test
(Cochran’s Q-statistic). Since Cochran’s Q test may be
under-powered when few studies have been included
(West et al., 2010), it is recommended to choose a p
value higher than the classical threshold of signifi-
cance (i.e., p < .05). We, therefore set the significance
threshold at p < .10.

A sensitivity analysis was performed when heteroge-
neity was significant and greater than 50%. We used the
“leave-one-out” function to assess the influence of each
study on the results and heterogeneity. This method
consists in removing one study at a time from the meta-
analysis and repeating the operation until each study had
been removed once to verify that our conclusions were
not influenced by a single study (Viechtbauer, 2010).
Influence analyses were then carried out by visual inspec-
tion of Baujat et al. (2002) and Viechtbauer and Cheung
graphs (Viechtbauer & Cheung, 2010). Lastly, studies for
which the 95% confidence interval was outside the 95%
confidence interval of the pooled studies were considered
outliers (Viechtbauer & Cheung, 2010) and were excluded
from the meta-analysis and meta-regression.
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Sensitivity analyses were pre-specified to assess the impact
of our subgroups on the overall effect size. Subgroup analy-
ses were performed on categorical moderator variables using
a mixed-effects model (i.e., random effects within and fixed
effects between, Borenstein & Higgins, 2013). The purpose
of the subgroup analyses was twofold: to conduct sensitivity
analyses to explain the presence of heterogeneity, and to inves-
tigate relevant theoretical points related to the coded categor-
ical moderator variables, following the recommendations of
Richardson et al. (2019). Subgroups with less than three stud-
ies were not reported (Higgins et al., 2019). Meta-regression
was used for continuous moderator variables to test whether
those variables had a significant impact on the average effect
size (time-on-task, year of publication, and sample size).

Potential publication bias was investigated by visual in-
spection of contour-enhanced funnel plots and tested sta-
tistically by Egger’s linear regression (Egger et al., 1997).
The contour-enhanced funnel plot is an improved version
of the funnel plot, which has often been criticized because
of its subjective interpretation (Peters et al., 2008). Contour
lines that are superimposed on the funnel correspond
to perceived “milestones” of statistical significance (p =
.01, .025, .05). These different contours help to distinguish
an asymmetry caused by the nonreporting of nonsignifi-
cant studies (publication bias) from an asymmetry caused
by other factors (e.g., poor methodological quality, linguis-
tic bias, chance; Egger et al., 1997). An asymmetry caused
by the absence of studies with a statistically non-significant
effect size is an indication of publication bias. Conversely,
if the asymmetry is caused by studies that should have had
statistically significant effect sizes, factors other than pub-
lication bias should be considered (Higgins et al., 2019).
When the distribution was significantly asymmetrical ac-
cording to Egger’s regression, suggesting a publication bias,
we used the trim-and-fill method (Duval & Tweedie, 2000)
to compute a bias-corrected estimate of the average effect.

3 | Results

3.1 | Study selection

After duplicates had been removed, 5 716 unique records
were identified in searches through the database and ref-
erence list. 4 916 records were then excluded from the
preliminary screening of titles. Among the remaining 800
records, 570 were excluded after screening of abstracts be-
cause they did not manipulate CWL (69), they did not in-
clude any EEG measure with spectral power analysis (74),
they were a book chapter (89), conference paper (205),
review article (39), dissertation (7), inaccessible (4), tech-
nical report or article using classification algorithms (67),
not in English (10) or focused on a clinical population (6).

IPSYGHOPHYSIULOGY -

Two hundred and thirty reports were retrieved for de-
tailed evaluation of the full-text and a total of 24 records
met the inclusion criteria and were included in the quan-
titative review (see Figure 1).

3.2 | Study characteristics

The included studies, published between 1984 and 2019
(mean: 2014, median: 2017), involved a total of 723 partici-
pants (mean age of 24.4 + 3.42, 33.3% female) for which 45
effect sizes were computed. Of these effect sizes, 16 were
from a difference in the mean power of the theta band, 17
from the alpha band and 12 from the beta band. Four stud-
ies examined expertise (k = 7, Fallahi et al., 2016; Jaquess
et al., 2017; Morales et al., 2019; Orlandi & Brooks, 2018),
five studies used a portable EEG system (k = 9, Castro-
Meneses et al.,, 2020; Fallahi et al., 2016; Matthews
et al., 2015; Morales et al., 2019; Orlandi & Brooks, 2018).
Four studies used multiple tasks to induce CWL (k = 9,
Fallahi et al., 2016; Gong et al., 2019; Matthews et al., 2015;
Puma et al., 2018) and the N-Back task was the most fre-
quently used method for increasing CWL (k = 12, Brouwer
etal., 2014; Grissmann etal., 2017; Hsu et al., 2015; Murata,
2005; Pergher et al., 2019; Rietschel et al., 2012). Twelve
studies used Fast-Fourier Transformation (k = 26, Fallahi
et al., 2016; Gentili et al., 2018; Hsu et al., 2015; Jaquess
et al., 2017; Kakizaki, 1984; Matthews et al., 2015; Morales
etal., 2019; Murata et al. 2005; Pavlov & Kotchoubey, 2017;
Pergheretal., 2019; Puma et al., 2018; Sammer et al., 2007),
two studies used Short-Time Fourier Transformation
(k = 3, Dasari et al., 2017; Zhang et al., 2016), one study
used Continuous-Fourier Transformation (k = 1, Hsu
et al., 2017), three studies used Welch’s method (k = 5,
Gong et al., 2019; Grissmann et al., 2017; Zakrzewska &
Brzezicka, 2014), and six studies did not report the method
used to estimate the EEG spectral power (k = 10, Brouwer
etal., 2014; Castro-Meneses et al., 2020; Lee, 2014; Orlandi
& Brooks, 2018; Rietschel et al., 2012; Shaw et al., 2018).
The individual studies, sample characteristics, encoded
moderator variables, and effect sizes with standard er-
rors are presented in Table 1. Method used to manipulate
CWL, estimate spectral power, electrode placement, and
the estimation of time-on-task are presented in Table S1.

3.3 | Meta-analysis of outcome measures

3.3.1 | Theta

Individual study (k = 16) and aggregate effect size for stud-
ies measuring the theta band are presented in Figure 2 (see
Figure S1 for the fixed effects model). Overall, CWL had
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Study TE seTE
Brouwer et al., 2014 0.15 0.2394
Castro-Meneses et al., 2020  0.27 0.2402
Dasari et al., 2017 1.02 0.3949
Fallahi et al., 2016 0.40 0.2259
Gentili et al., 2018 0.99 0.3429
Gong et al., 2019 0.50 0.3712
Grissmann et al., 2017 1.18 0.4449
Hsu et al., 2015 0.18 0.2588
Kakizaki, 1984 1.01 0.2991
Matthews et al., 2015 0.15 0.1156
Murata, 2005 0.88 0.5266
Pergher et al., 2019 0.88 0.3317
Puma et al., 2018 0.51 0.3215
Sammer et al., 2007 1.09 0.4690
Zakrzewska & Brzezicka, 2014 0.70 0.2482
Zhang et al., 2016 2.28 0.4587

Random effects model
Prediction interval

Standardised Mean

Difference SMD 95%-Cl Weight

—— 0.15 [-0.32;0.62] 7.4%

0.27 [-0.20;0.74] 7.4%

—— 1.02 [0.24;1.79] 5.3%

et 0.40 [-0.04;0.84] 7.6%

——— 0.99 [0.32;1.66] 6.0%

= 0.50 [-0.22;1.23] 5.6%

—_— 1.18 [0.31;2.05] 4.8%

—— 0.18 [-0.33;0.68] 7.2%

—— 1.01 [0.43;1.60] 6.6%

ol 0.15 [-0.08;0.37] 9.0%

T 0.88 [-0.15;1.92] 4.0%

—— 0.88 [0.23;1.53] 6.2%

T 0.51 [-0.12;1.14]  6.3%

— 1.09 [0.17;2.01 4.5%

— 0.70 [0.21;1.19] 7.3%

i —=—— 228 [1.38;3.18] 4.6%

- 0.68 [ 0.41; 0.95] 100.0%
T [-0.30; 1.66]

Heterogeneity: /12 = 64%, t2=0.1938, p <0.01 !
-3

I
-2

10 1 2 3

FIGURE 2 Forest plot of standardized effect sizes (g) of theta power in high versus low workload conditions. Total standardized mean

difference with 95% confidence and prediction interval, weight, and heterogeneity are reported

a large effect on the theta band, g = 0.68, 95% CI [0.41-
0.95], p < .01, indicating that theta power during high
workload tasks was significantly greater than theta power
in low workload conditions. Nevertheless, heterogeneity
was pronounced and highly significant, Q = 42, df = 15,
p < .01, tau® = 0.19, I* = 64.3%.

3.3.1.1 | Sensitivity analyses

An influence analysis by the leave-one-out method and
identification of the studies whose 95% confidence inter-
val was outside the 95% confidence interval of the pooled
studies revealed that two studies could be considered as
outliers (Matthews et al., 2015; Zhang et al., 2016). After
removing these studies (k = 14), the overall effect size
remained stable and heterogeneity was no longer sig-
nificant, g = 0.62, 95% CI [0.41-0.83], p < .01, Q = 17.14,
df =13, p > .10, tau® = 0.07, I* = 24.2%.

3.3.1.2 | Subgroup analysis of categorical moderator
variables (Table S2)

The test for subgroup differences between EEG systems
suggested that there was a statistically significant sub-
group effect (p < .001), meaning that the effect of CWL
on the theta band was significantly different depending on
the EEG system used. The effect of CWL on the theta band
was greater for the non-portable EEG system subgroup (g
= 0.81, p < .01) than for the portable EEG system sub-
group (g = 0.22, p < .01). However, there is an insufficient
number of studies in the portable EEG subgroup (k = 3)
and a substantial unexplained heterogeneity between the
studies within the non-portable subgroup (I = 55%), thus

the validity of the CWL effect estimates for each subgroup
is uncertain. The test for subgroup differences between
single and multiple tasks indicated that there was a sta-
tistically significant subgroup effect (p < .05), suggesting
that the theta band was more impacted by CWL during
single task (g = 0.81, p < .01) than during multiple tasks
(g = 0.28, p < .01). However, a smaller number of studies
and participants contributed to the multi-task subgroup
(k = 4, N = 225) than to the single-task subgroup (k = 12,
N = 306), meaning that the covariate distribution is prob-
lematic for this subgroup analysis. There is substantial
unexplained heterogeneity between the trials within the
single-task subgroup (I* = 62%). Therefore, the validity of
the CWL effect estimates for each subgroup is uncertain.
The test for subgroup differences between brain regions
indicated that there was a statistically significant sub-
group effect (p = .04), suggesting that the brain regions
measured were affected differently by the effect of CWL
on the theta band. The pooled effect estimate for the fron-
tal region was large and significant (g = 0.66, p < .01).
Central, occipital, and multiple region subgroups were
not reported because of an insufficient number of studies
(k < 3). Subgroup meta-analyses using gender and exper-
tise as predictor variables were not done because of the
insufficient number of studies per subgroup (k = 1 within
expert and female subgroup).

3313 |
variables
Meta-regression analysis did not reveal any effect of year
of publication, sample size, nor time-on-task.

Meta-regression of continuous moderator



CHIKHI ET AL.

11 of 24

3.3.1.4 | Publication bias

Visual inspection of the funnel plot asymmetry (Figure 3)
and Egger’s linear regression revealed a publication bias,
B = 3.13, 95% CI [1.87-4.39], p < .05. The trim-and-fill
procedure suggested that seven studies could be added
(k = 23), resulting in a decrease in the effect size (g =
0.35, 95% CI [0.01-0.69], p < .05) and an increase in
heterogeneity (Q = 87.45, df = 22, p < .01, tau® = 0.52,
I = 74.8%).

o
S A
0 p<.05
- 0 p<.025
5 e ° 0 p<.01
g Y
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§ ° ° i oo
h o< © o
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0.0 0.5 1.0 1.5 2.0
Hedges' g

FIGURE 3 Contour-enhanced funnel plot of studies measuring
theta band activity. Some studies are missing on the left-hand side
of the plot, where results would be in the area of non-significance
(i.e., the white area where p > .05) and for which non-reporting
bias is a plausible explanation

IPSYGHUPHYSIOI.OGY -
Alpha

3.3.2 |

A random effects model applied to the studies which
measured the alpha band (k = 17) resulted in a significant
effect size with moderate heterogeneity, g = —0.25, 95%
CI [—0.45 - —0.04], p < .05, Q = 29.76, df = 16, p < .01,
tau® = 0.11, I? = 46.2%, indicating that alpha power dur-
ing high workload tasks was significantly lower than
alpha power during low workload conditions (Figure 4,
see Figure S2 for the fixed effects model).

3.3.2.1 | Sensitivity analyses

An influence analysis by the leave-one-out method and
identification of the studies whose 95% confidence inter-
val was outside the 95% confidence interval of the pooled
studies revealed that one study could be considered as an
outlier (Kakizaki, 1984). Withdrawing this study resulted
in an increase in the mean effect size and a decrease in
heterogeneity, g = —0.30, 95% CI [—0.47 - —0.12], p < .01,
Q =22.11,df =15, p > .10, tau® = 0.08, I = 32.1%.

3.3.3.2 | Subgroup analysis of categorical moderator
variables (Table S2)

The test for subgroup differences between alpha frequency
bands indicated a statistically significant subgroup effect
(p < .01), suggesting that alpha frequency sub-bands were
influenced differently by CWL. The effect of CWL on the
alpha power was significantly larger for the high alpha
(10-12 Hz) subgroup (g = —0.39, p < .01), while the effect

Standardised Mean

Study TE seTE Difference SMD 95%-Cl Weight
Brouwer et al., 2014 -0.11 0.2392 ——— -0.11 [-0.58; 0.36] 7.1%
Dasari et al., 2017 -1.26 04900 ——+— -1.26 [-2.22;-0.30] 3.4%
Fallahi et al., 2016 -0.70 0.2304 — -0.70 [-1.15;-0.25] 7.3%
Gentili et al., 2018 -0.45 0.1532 - -0.45 [-0.75;-0.14] 8.9%
Grissmann et al., 2017 -0.81 0.4258 -0.81 [-1.64; 0.02] 4.1%
Hsu et al., 2015 -0.04 0.2582 — -0.04 [-0.54; 0.47] 6.8%
Jaquess et al., 2017ha -0.38 0.1139 - -0.38 [-0.60;-0.15] 9.7%
Jaquess et al., 2017la  -0.21 0.0713 -0.21 [-0.35;-0.07] 10.4%
Kakizaki, 1984 0.58 0.2949 —— 0.58 [0.00; 1.16] 6.1%
Matthews et al., 2015  -0.01 0.1100 T -0.01 [-0.23; 0.21] 9.8%
Murata, 2005 0.68 0.5158 ; 0.68 [-0.33; 1.69] 3.2%
Pergher et al., 2019 -0.31 0.3181 — -0.31 [-0.93; 0.32] 5.7%
Puma et al., 2018 -0.32 0.3184 —&1 -0.32 [-0.95; 0.30] 5.7%
Rietschel et al., 2012la  -0.27 0.4081 —_— -0.27 [-1.07; 0.53] 4.3%
Rietschel et al., 2012ha -0.28 0.4182 —_— -0.28 [-1.10; 0.54] 4.2%
Shaw et al., 2018ha -0.25 0.8609 -0.25 [-1.94; 1.44] 1.4%
Shaw et al., 2018la -0.22 0.7085 -0.22 [-1.61; 1.17]  2.0%
Random effects model <> -0.25 [-0.45; -0.04] 100.0%
Prediction interval —— [-0.98; 0.49]
Heterogeneity: /* = 46%, 12 = 0.1107, p = 0.02 ' ' '
-2 -1 0 1 2

FIGURE 4 Forest plot of standardized effect sizes (g) of alpha power in high versus low workload conditions. Total standardized mean
difference with 95% confidence and prediction interval, weight, and heterogeneity are reported
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was smaller for the low alpha (8-10 Hz) subgroup (g =
—0.21, p < .01) and no longer significant for the broad-
band subgroup (g = —0.21, p = .22). However, a smaller
number of trials and participants contributed to the high
and low alpha subgroups (high alpha: k = 4, N = 67; low
alpha: k = 3, N = 50) than to the broad-band subgroup
(k =10, N = 359), meaning that the uneven covariate dis-
tribution may not be able to produce valid results.

The test for subgroup differences between brain re-
gion suggested that there was a statistically significant
subgroup effect (p < .01), meaning that the effect of CWL
on the alpha band was significantly different depending
on the brain region measured. The effect of CWL on the
alpha band was larger for the parietal region (g = —0.29,
p < .01) than for the multiple region subgroup (g = —0.23,
p = .12). A sufficient number of studies and participants
(parietal: k = 6, N = 153; multiple: k = 6, N = 79) were
included in each subgroup, so the covariate distribution
was not problematic for this subgroup analysis. Frontal,
central, and occipital electrode location groups were not
reported because of the insufficient number of studies
(k < 3). Results of subgroup meta-analyses for the gender
and multi-tasking moderators did not show any significant
effects. Subgroup meta-analyses using expertise and type
of EEG system as predictor variables were not reported be-
cause of the insufficient number of studies (k < 3).

3323 |
variables
Meta-regression analysis revealed a significant effect of
publication year (B = —0.03, p < .01) and no effect of sam-
ple size and time-on-task.

Meta-regression of continuous moderator

3.3.2.4 | Publication bias

Visual inspection of the funnel plot asymmetry (Figure 5)
and Egger’s linear regression test revealed a potential publi-
cation bias, B = —1.42, 95% CI [—2.06 - —0.24], p < .05. The
trim-and-fill procedure suggested that four studies could be
added (k = 20), resulting in a decrease in the effect size (g =
—0.15,95% CI[—0.69-0.38], p = .55), and high heterogeneity
(Q=104.28,df =19, p < .01, tau* = 1.19, I* = 81.8%).

3.3.3 | Beta

3.3.3.1 | Sensitivity analyses

The aggregated effect sizes for the 12 studies measuring
beta band activity are presented in Figure 6 (see Figure S1
for the fixed effects model). Overall, CWL had a moder-
ate effect on the beta band, g = 0.50, 95% CI [0.21-0.79],
p < .01, indicating that beta power during a high work-
load task was significantly greater than beta power in the
low workload condition. However, heterogeneity was

Q]
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5 ©
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2 34 e
o & ;
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© _| i
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20 -15 -10 -05 0.0 0.5 1.0 1.5

Hedges' g

FIGURE 5 Contour-enhanced funnel plot of studies measuring
the alpha band. Some studies are missing on the right-hand side

of the plot, where results would be in the area of non-significance
(i.e., the white area where p > .05) and for which non-reporting
bias is a plausible explanation

substantial and significant, Q = 23.23, df = 11, p < .01,
tau® = 0.15, I* = 52.6%. Sensitivity analyses did not iden-
tify any potential outlier.

3.3.3.2 | Subgroup analysis of categorical moderator
variables (Table S2)

The test for subgroup differences between beta frequency
bands suggested that was a statistically significant sub-
group effect (p < .01), meaning that the effect of CWL on
the beta band was significantly different depending on the
beta sub-band measured. The effect of CWL was signifi-
cant and large for the betal (13-20 Hz, g = 0.93, p < .01)
and beta2 band (20-30 Hz, g = 0.74, p < .01), while the
effect was no longer significant when the broad-band fre-
quency (13-30 Hz) was used (g = 0.28, p = .07). However,
there is an insufficient number of studies in the betal (k
= 2, N = 34) and beta2 subgroups (k = 3, N = 99), so the
covariate distribution is problematic. Therefore, the va-
lidity of the CWL effect estimates for each subgroup is
uncertain. The test for subgroup differences between beta
region suggested that there was a statistically significant
subgroup effect (p < .10), meaning that the effect of CWL
on the beta band was significantly different depending
on the brain region measured. The effect of CWL on the
beta band was higher for the multiple region (g = 0.59,
p < .05) than for the frontal region (g = 0.33, p > .05).
There is a substantial unexplained heterogeneity between
the studies within the frontal region subgroup (I* = 43%).
Therefore, the validity of the CWL effect estimates for
each subgroup is uncertain. The occipital electrode lo-
cation subgroup was not reported because of the insuf-
ficient number of studies (k < 3). The test for subgroup
differences for expertise highlighted a statistically signif-
icant subgroup effect (p < .01), meaning that the effect
of CWL on beta band activity was significantly different
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Standardised Mean

Study TE seTE
Gong et al., 2019 0.99 0.8810
Hsu et al., 2015 0.19 0.2584
Hsu et al., 2017 0.32 0.3560
Kakizaki, 1984b1 0.88 0.3029
Kakizaki, 1984b2 0.79 0.2999
Lee, 2014 0.22 0.0855
Matthews et al., 2015 -0.01 0.1155
Morales, 2019 1.78 0.8734
Murata, 2005 0.27 0.5026
Orlandi & Brooks, 2018b1 1.15 0.6934
Orlandi & Brooks, 2018b2 1.50 0.7329

Pavlov & Kotchoubey, 2017 0.54 0.2112

Random effects model
Prediction interval

Heterogeneity: /> = 53%, t2=0.1491, p =0.02 !

-3 -2

Difference SMD 95%-Cl Weight

—f=——— 099 [0.74;2.72] 26%

—== 0.19 [-0.32;0.69] 11.0%

— 0.32 [-0.37;1.02] 8.6%

e 0.88 [0.29;1.48] 9.9%

—— 0.79 [0.20;1.37] 10.0%

|- 0.22 [0.05;0.39] 15.2%

: -0.01 [-0.24;0.21] 14.7%

——— 1.78 [0.07;3.49] 2.6%

— 0.27 [-0.71;1.26] 5.9%

4 115 [-0.21;2.51] 3.8%

——=—— 150 [0.06;2.93] 3.5%

- 0.54 [0.13;0.96] 12.3%

<> 0.50 [ 0.21; 0.78] 100.0%
T [-0.41; 1.40]

I
-1 0 1 2 3

FIGURE 6 Forest plot of standardized effect sizes (g) of beta power in high versus low workload conditions. Total standardized mean
difference (SMD) with 95% confidence and prediction interval, weight, and heterogeneity are reported

depending on the participant’s expertise. The effect of
CWL on the beta band was larger for the expert subgroup
(g = 1.43, p < .01) than for the non-expert subgroup (g
= 0.36, p < .01). The smaller number of studies and par-
ticipants in the expert subgroup (k = 3, N = 28) and the
substantial unexplained heterogeneity between the stud-
ies within the non-expert subgroup (I* = 49%) may reduce
the validity of this effect. The results of subgroup meta-
analyses for gender and EEG portability did not show any
significant result. Subgroup meta-analysis using multi-
tasking as predictor variable was not reported because of
the insufficient number of studies per subgroup (k < 3).

3.333 |
variables
Meta-regression analysis revealed a significant effect of
time-on-task (p < .05, R* = 45.54%) and sample size (B =
—0.01, p < .05) and no effect of publication year.

Meta-regression of continuous moderator

3.3.3.4 | Publication bias

The funnel plot asymmetry (Figure 7) could have been
caused by publication bias. Egger’s linear regression test
revealed a publication bias, B = 1.61, 95% CI [0.7-2.53],
p < .01. The trim-and-fill procedure suggested that six
studies could be added, resulting in a decrease in the ef-
fect size (g = 0.21, 95% CI [—0.17-0.59], p > .05) and an
increase in heterogeneity (Q = 43.61, df = 17, p < .01,
tau® = 0.47, I> = 61%).

4 | Discussion

CWL is an important concept in many fields (e.g., system
design, adaptive automation). Although it has been the
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FIGURE 7 Contour-enhanced funnel plot of studies measuring
the beta band. Some studies are missing on the left-hand side of the

plot, where results would be in the area of non-significance (i.e.,

the white area where p > .05) and for which non-reporting bias is a

plausible explanation

focus of research for more than fifty years, the methods
used to evaluate it are still of interest. EEG, as one of the
most accessible brain imaging methods, has often been a
favorite candidate.

In the current study, we reviewed articles that inves-
tigated EEG spectral band power differences during low
and high workload tasks. Our meta-analysis is the first to
quantitatively examined the impact of CWL on the three
bands most often used in the literature: theta (k = 16),
alpha (k = 17), and beta (k = 12). We found significant evi-
dence for the influence of CWL on the three power bands.
The standardized mean difference of band power between
high and low workload was 0.68 with a 95% confidence
interval of 0.41 to 0.95 for theta, —0.25 with a 95% confi-
dence interval of —0.45 to —0.04 for alpha, and 0.50 with
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a 95% confidence interval of 0.21 to 0.79 for beta. We will
begin by discussing these results and the accompanying
subgroup analyses to investigate the effect of our selected
moderators, then we will consider the limitations of this
review as well as future perspectives for the measurement
of CWL by EEG.

4.1 | Theta
The theta frequency power is the most sensitive to the in-
crease in CWL due to an increase in the task demands:
theta power was greater in high versus low cognitive load
conditions. Moreover, this effect is specifically observed
for the frontal region, as indicated by our subgroup analy-
sis. The theta of the frontal cortex is a frequency that has
been associated with the processes of working memory
and executive functions. The increase in theta power has
often been related, in a proportional way, to the amount of
information to be retained in memory (Gértner et al., 2015;
Howard et al., 2003; Jensen & Tesche, 2002; Maurer
et al., 2015; Onton et al., 2005; Roux & Uhlhaas, 2014;
Wisniewski et al., 2015) as well as information manipu-
lation (Griesmayr et al., 2010; Griesmayr et al., 2014).
Studies showing that an increase in theta power predicted
performance in working memory tasks have suggested
the functional role of this frequency in this type of process
(Womelsdorf et al., 2010; Zakrzewska & Brzezicka, 2014).
At the neuroanatomical level, studies coupling EEG and
fMRI (Meltzer et al., 2007; Michels et al., 2010; Scheeringa
et al., 2009; Tsujimoto et al., 2010) as well as studies by
magnetoencephalography (Gevins et al., 1997; Meltzer
et al., 2007; Onton et al., 2005) have associated this fre-
quency with the activation of two regions: the anterior
cingulate cortex (ACC) and the medial prefrontal cortex
(mPFC). The activation of these two regions has been as-
sociated with executive control and working memory pro-
cesses (Bush et al., 2000; Niendam et al., 2012; Shenhav
et al., 2013). More than simply being involved in memory
processes, the theta could allow the allocation of different
cortical resources according to the task (Onton et al., 2005;
Sauseng et al., 2007; Shenhav et al., 2013). Thus, theta may
underpin cognitive control and the distribution, efficient
or not, of cognitive resources (Cavanagh & Frank, 2014).
Surprisingly, our subgroup analysis results showed
a smaller average effect size in multi-tasking situations
compared to single-tasking situations. This result, incon-
sistent with what is generally observed in the literature
(Borghini et al., 2014), is also in contradiction with the
hypothetical role of theta power in cognitive control,
which should be strongly solicited during multitasking.
For example, a study that trained elderly people via video
games showed an increase in frontal-midline theta power

associated with the training gains of the multi-task train-
ing (Anguera et al., 2013). This inconsistent result may
be due to the insufficient number of studies (K = 4) that
used multi-tasking. Three of these 4 studies had a rela-
tively high standardized effect size (Fallahi et al., 2016:
g = 0.40; Gong et al., 2019: g = 0.50; Puma et al., 2018: g
= 0.51), compared to the study by Matthews et al. (2015);
g = 0.15). In the latter study, which was detected as an
outlier in our analyses, the comparison between low and
high CWL was operationalized by asking participants
to perform two separate tasks at the same time: a threat
detection task, in which participants were instructed to
identify potentially dangerous individuals in a 3D visual
scene, and a change detection task, where participants
were instructed to detect the simultaneous appearance,
disappearance or movement of two icons on a map. These
tasks, which are specific to military operations, are cog-
nitively demanding and may, therefore, require signif-
icant neural recruitment even when performed alone.
Performing these two tasks concurrently might not be as-
sociated to an increase in theta power because the theta
power may already be high in the “low load,” single-task
condition and may not have increased considerably in
the dual-task condition (i.e., ceiling effect). However,
the unequal distribution of studies between subgroups
prevents any categorical conclusions and further work
is needed to investigate the impact of multi-tasking on
theta power. The second outlier detected by our analy-
ses (Zhang et al., 2016) had a very large effect size (g =
2.28). The authors studied the impact of a single visual
working memory task with parametric variation of load
(1 to 6) on the theta power in the frontal midline region
(Fz). Moreover, the authors extracted the theta power
during stimulus retention times, the periods in which the
most resources are committed (Jensen & Tesche, 2002).
Focusing on the critical period undoubtedly enabled such
a large effect size to be obtained.

Some studies have shown that theta power was modu-
lated by the increase in task demand only for individuals
having higher working memory capacities (Zakrzewska
& Brzezicka, 2014) or presenting higher performance in
multitasking situations (Puma et al., 2018). In these stud-
ies, groups with low performances showed high theta
power throughout the experiment, regardless of the level
of difficulty. The neural efficiency hypothesis—that is, at
equal performance, a higher neural activation is a sign of
less efficient neural processing (Neubauer & Fink, 2009)—
could explain this phenomenon. The hypothesis surmises
that a high theta power for low performers in a low-
demand condition reflects a greater recruitment in neural
resources and therefore, less efficient neural processing.
High performers, on the other hand, demonstrate neural
efficiency to meet the demands of the simplest tasks with
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fewer neural resources (i.e., lower theta power). Increased
difficulty then requires greater neural resources, matching
the increase in theta power. This increase then reaches a
plateau when the demands of the task require all the avail-
able neural resources (Puma et al., 2018; Zakrzewska &
Brzezicka, 2014; Zhang et al., 2016). By indexing the level
of effort required for a certain type of task, the theta could
be an indicator of the level of neural efficiency of the par-
ticipants. This hypothesis, although speculative, could
partly explain the inconsistency of the results evaluating
theta and CWL (e.g., Brouwer et al., 2014; Hsu et al., 2015).

4.2 | Alpha

Alpha spectral power appears to be negatively impacted
by the increase in CWL: an increase in CWL leads to a de-
crease in alpha power. The presence of the alpha frequency
has long been considered as indexing a “wakefulness”
state of the brain, due to its desynchronization during cog-
nitive tasks (the “cortical idling hypothesis,” Pfurtscheller
et al., 1996). Several studies have indeed observed a de-
crease in alpha power associated with an increase in
task demands (Fairclough & Venables, 2006; Fallahi
et al., 2016; Fink et al., 2005; Klimesch, 1999; Pergher
et al., 2019; Sterman et al., 1994). Klimesch et al. (2007)
hypothesized that alpha synchronization may correspond
to an active process of inhibiting information that is not
relevant to the task (the “inhibition-timing hypothesis”):
The hypothesis postulates that when faced with a cogni-
tive demand, the cortical areas involved in the processing
of the task experience a desynchronization of alpha power
(i.e., uninhibited), while the areas that are not necessary
to the task or that could interfere with it are inhibited
by alpha synchronization, particularly in the occipito-
parietal areas (Jensen et al., 2002; Klimesch et al., 2007;
Rihs et al., 2007). This may explain why an increase in
alpha power has also been observed during the processing
of cognitive tasks (Jensen et al., 2002; Palva et al., 2005;
Tuladhar et al., 2007). The alpha rhythm could thus act
as an information inhibiter which optimizes the signal-
to-noise ratio for the benefit of the neurons involved in
the processing of relevant information (Klimesch, 2012).
This functional role of alpha has been supported in nu-
merous studies of visual attention that have shown that
the allocation of attention in one direction is accompanied
by a suppression of alpha in the contralateral visual cor-
tex and an increase in alpha in the ipsilateral visual cortex
(Clayton et al., 2019; Wildegger et al., 2017). In a recent
study that used rhythmic transcranial magnetic stimula-
tion (rTMS) during a visuospatial working memory task
(Riddle et al., 2020), 10 Hz magnetic pulses at the poste-
rior parietal cortex contralateral to the non-cued hemifield
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(where distractors are presented), increased visual work-
ing memory performance compared to arrhythmic TMS.
This study suggests the involvement of parietal alpha in
the inhibition processes. Our subgroup analyses are con-
sistent with those results, showing a greater decrease in
alpha power in the parietal area following an increase in
CWL.

However, a controversy remains because some stud-
ies observed an increase in alpha power in areas involved
in cognitive processing (e.g., Jensen et al., 2002). An ex-
planation for this discrepancy has been advanced by van
Ede (2018), who argue that the posterior alpha power
increases during the encoding of verbal material (even
when the stimuli are encoded visually), whereas it de-
creases during the encoding of visual material (van Ede
et al., 2017). However, this explanation based on the na-
ture of the stimuli (i.e., visual or verbal) does not account
for some of our results. Kakizaki’s study (Kakizaki, 1984,
considered as an outlier by our analyses), measured the
cerebral activity of the occipital cortex (Oz) during an
increase in CWL imposed by mental arithmetic tasks.
Results revealed an increase in the spectral power of all
frequencies, including alpha, with the increase in CWL.
Calculation involves many cortical networks (e.g., prefron-
tal, premotor, parietal; Zago et al., 2001), including the oc-
cipital cortex. Indeed, it has been shown that injury of the
occipital cortex impairs the calculation process when the
digits to be manipulated are presented visually (Dehaene
& Cohen, 1997). The involvement of this region during
the task should, therefore have resulted in a decrease in
alpha power. Moreover, in Murata’s study (Murata, 2005),
participants were asked to determine whether the stimu-
lus (letter) presented on the screen matched the stimulus
presented one, two or three trials previously, in terms of
letter and location. Alpha power measured in Fz, Cz, and
Pz also increased with the difficulty of the task. Further
studies evaluating the modulation of alpha according to
the type of stimuli must be conducted in order to test the
hypothesis of alpha specificity. Concerning the power
of alpha sub-bands, results from the literature showed
that high alpha interacts with visual cognitive tasks and
semantic memory demands, while low alpha reflects
a general attentional demand, not specific to the task
(Klimesch, 1999). The results of our subgroup analyses,
although based on a small number of studies, provides
support to the literature. Among the studies that mea-
sured both sub-bands, the difference in sensitivity to CWL
between lower and upper alpha was minor when mea-
sured during an N-back (Rietschel et al., 2012) or stimulus
detection task (Shaw et al., 2018), but larger in the case of
amore visually rich flight simulator environment (Jaquess
et al., 2017). The difference between these two sub-bands
thus appears to be quantitative rather than qualitative,
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with the upper alpha slightly more sensitive to CWL than
the lower alpha. Overall, the inverse relationship between
alpha and CWL seems well established, as indicated by
the very similar estimated effect sizes from the random
and fixed effects models used in the present meta-analysis.

4.3 | Beta

The results regarding the beta frequency range revealed
a moderate positive effect of CWL on this frequency.
Numerous studies have established the involvement
of the beta frequency in a variety of cognitive processes
such as working memory (Chen & Huang, 2016; Deiber
et al., 2007), language processing (Weiss & Mueller, 2012),
long-term memory (Hanslmayr et al., 2014), and deci-
sion making and reward processing (Marco-Pallarés
et al.,, 2015). However, the functional role of this fre-
quency is debated. Some researchers consider that the
beta frequency plays a role in maintaining cognitive rep-
resentations and motor commands (the “status quo hy-
pothesis,” Engel & Fries, 2010), while others argue that
this frequency allows network-level communication
and endogenous (re)activation of information (Spitzer
& Haegens, 2017). Moreover, some authors suggest that
there are functional distinctions between betal and beta2,
and that these sub-bands have functional roles similar to
their neighboring frequencies (i.e., alpha and gamma).
Thus, betal is thought to have an inhibitory role and
could contribute to the protection of WM representations
(Hanslmayr et al., 2009; Kornblith et al., 2016; Pereira &
Wang, 2015), while beta2 is thought to be more involved
in top-down information processing processes (Kornblith
etal., 2016; Marco-Pallarés et al., 2015). Our meta-analysis
by subgroup analyses indicate that betal (g = 0.93, k = 2;
Kakizaki, 1984; Orlandi & Brooks, 2018) and beta2 (g =
0.74, k = 3; Kakizaki, 1984; Orlandi & Brooks, 2018; Pavlov
& Kotchoubey, 2017) were much more sensitive to CWL
than broad-band beta (g = 0.28, k = 7). The insufficient
number of studies in these subgroups and a redundancy
of these studies across subgroups could explain these un-
expected results. Another subgroup analysis revealed that
expert participants (g = 1.43, k = 3; Morales et al., 2019;
Orlandi & Brooks, 2018) showed a greater increase in beta
power with an increase in CWL than non-expert partic-
ipants (g = 0.36, k = 9). Here, we must note that some
of the studies had characteristics that could explain the
aforementioned subgroup analysis results. Orlandi and
Brooks’ study (Orlandi & Brooks, 2018) took place in the
Maritime Safety Queensland Simulator, in which par-
ticipants were asked to complete several berthing tasks
that lasted one to two hours depending on the difficulty.
Morales et al. (2019) measured the activity of four pairs

of surgeons during a surgical exercise on domestic pigs.
The surgeons performed eight surgical exercises, with an
average duration of approximately 20 minutes. The first
study had a total time-on-task comprised between 360 and
480 min, while the second had a time-on-task of about 172
min, which is much larger than the average time-on-task
of the other studies (M = 42.73 min). Such heavy and time-
consuming protocols might explain the very large increase
in beta power observed by the estimated effect sizes.

Our results seem to indicate that the beta frequency is
positively associated with CWL. However, the numerous
mechanisms that underlie this frequency and their speci-
ficities still need to be specifically investigated for a better
understanding. Studies specifically aimed at distinguish-
ing the functional roles of beta according to its location
(e.g., prefrontal, parietal) and frequency (i.e., betal &
beta2) under high CWL are thus still needed.

Taken together, our results support the use of the theta
power spectral as a neurophysiological index of CWL. The
theta frequency of the frontal cortex, although it cannot
be associated with a unique cognitive process, appears to
be most strongly associated with CWL. While the alpha
and beta frequencies are believed to reflect inhibition and
engagement processes of brain resources, the frontal cor-
tex theta frequency seems to have a more straightforward
relationship with cognitive engagement.

4.4 | Limitations
At the methodological level, several factors limit the re-
sults of this quantitative review.

First, our meta-analyses did not include all studies
that are relevant to the topic and cannot claim to be
exhaustive. Inclusion is determined by the statistical
indices provided by the studies and estimating a mean
effect size, therefore requires being more restrictive
in including studies than in a systematic review. Also,
several publications that matched the inclusion criteria
were not included, because the authors did not answer
and we, therefore lacked the necessary information to
calculate an effect size. In addition, by restricting the
studies included in the analysis to those published in
peer-reviewed journals, it is possible that some data
available in the literature (e.g., gray literature, non-
English sources) were not included. Restricting our
selection to studies published in peer-reviewed jour-
nals could in part explain the asymmetry observed on
the different funnel plots; an asymmetry that shows a
bias in favor of studies with large standard errors and
large positive ES, symptomatic of the “file drawer prob-
lem” (Rosenthal, 1979). The trim-and-fill method aims
to identify asymmetries caused by publication bias and
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to correct them, by virtually integrating missing studies.
After estimating and integrating the number of missing
studies, this method makes it possible to recalculate a
meta-analysis considering the newly integrated studies.
This resulted, for each of the three frequencies investi-
gated, in a decrease in the estimated effect sizes. It is,
therefore, possible that the effects initially observed in
our analyses were overestimated due to publication bias.
However, the “trim-and-fill” method does not consider
other factors that can influence a funnel plot asymmetry
(e.g., Egger et al., 1997). Moreover, in the presence of
strong intergroup heterogeneity, this method is known
to produce biased estimates (Terrin et al., 2003). The in-
tergroup heterogeneity observed in our meta-analyses
can be explained by the methodological diversity of
the included studies, such as the tasks used to generate
CWL, the type of EEG system used (e.g., headset, wire-
less EEG) and the location of the electrodes (e.g., one
at Fz, two at F3, F4). This heterogeneity was expected
due to the wide variety of protocols that have attempted
to measure CWL and reflects the interest of CWL mea-
surement in many areas. This review, which is not in-
tended to be limited to a specific field, therefore reflects
this diversity. As discussed above, it is important to keep
in mind that different tasks were used to modulate cog-
nitive load (see Table S1). Some of the included studies
compared EEG spectral power between a 0-back and a
1-back condition on the N-Back test, while other studies
compare 1-back and 3-back conditions. This difference
in mental effort is expected to be an important moder-
ator of the computed effect size but is difficult to assess
quantitatively due to the diversity of protocols.

4.5 | Future work

Before EEG can be proposed as a functional CWL meas-
urement system in cognitively demanding professional
situations such as those experienced by military, medi-
cal, transport, or nuclear operators, many factors need
to be studied in greater depth. Several studies comparing
three levels of CWL (low, moderate, and high) have ob-
served no difference between moderate and high load-
ing conditions (e.g., Castro-Meneses et al., 2020; Gevins
et al., 1998). This quantitative review was restricted to
comparing relatively distinct loads (low vs. high load).
More studies might be interested in investigating inter-
mediate levels of difficulty, which could then be ana-
lyzed by meta-regression.

With regard to the safety domain, the study of the
emotional load also seems to be of crucial importance,
considering that unforeseen and/or extremely dangerous
unexpected events can greatly affect operators, despite
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their training. For example, Grissmann et al. (2017) ob-
served a decrease in the activity of the frontal theta under
negative affective valence. The authors considered that
the negative stimuli interfered with the processing of the
task through the reduction in activity of the frontal cogni-
tive control network.

The combined study of attentional reserve and CWL
also seems to be a promising avenue for both applied
and fundamental research. To our knowledge, only two
studies have jointly studied CWL (by spectral power) and
attentional reserve (by ERP; Jaquess et al., 2017; Shaw
et al., 2018). These two constructs appeared indeed to be
strongly linked, considering that CWL represents what is
used and attentional reserve what remains available from
our limited resources. The study of these two constructs
could lead to a finer understanding of our cognitive capac-
ities and their limits.

Our meta-analysis was limited to the comparison of
spectral power difference in the frequency bands of inter-
est. However, this method of analysis of the brain elec-
trical signal is embedded in a simplifying localizationist
framework and does not allow to take account of the in-
terconnected neural networks that enable cognitive func-
tions (Herbet & Duffau, 2020). For example, one model
that is gaining influence in the understanding of the
human brain is the “communication through coherence”
model (Fries, 2005, 2015), which suggests that neural
synchronization is the functional mechanism by which
information transmission and perceptual binding occurs
in the brain (Chapeton et al., 2019; de Vries et al., 2020).
We suggest that the systematic study of the effect of CWL
on the interareal coherence and functional connectivity
of the brain could be of interest to complete our under-
standing of the effect of CWL on our brain activity (e.g.,
Kamzanova et al., 2020; Muthukrishnan et al., 2020).

For field application purposes, it is likely that fre-
quency spectral power will not be able to measure
all of the constituent dimensions of CWL (Matthews
et al., 2015). Indeed, it is illusory to expect an increase
in cognitive demand to be treated in the same way for
each individual, especially in real-world settings where
several tasks must generally be performed in parallel.
Responding to this demand implies a cascade of pro-
cesses (from the commitment of cognitive resources
to self-regulation processes) that can vary inter and
intraindividually across tasks, goals, and time. It is
unrealistic to search for a measure that would index
all these phenomena at once. However, the increase in
the activity of the central nervous system that can be
measured by EEG, and particularly the frontal theta
spectral power, allows us to have a reflection of the
neural resources engaged to complete the task. This
index can serve as a basis for the systematized study
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of other processes involved in the resolution of a cog-
nitive task, such as effort allocation (Hockey, 1997) or
stress regulation (Matthews et al., 2002). A better esti-
mate of CWL could be made by coupling EEG with an-
other technique, for example with heart rate variability
measures which seems sensitive for other dimensions
of CWL (Matthews et al., 2015) with a certain robust-
ness, as shown by a recent meta-analysis (Hughes
et al., 2019).

5 | CONCLUSION

Overall, our results argue in favor of a sensitiveness of
EEG for CWL. Among the three main frequencies used
in the literature, the theta power spectral is the most sen-
sitive to an increase in task demand. The beta band was
also sensitive to CWL, while the alpha band was inversely
correlated with it. The EEG technique, even with few
electrodes, appears to be an inexpensive and valid way
to measure some aspects of CWL in real time. However,
the presence of heterogeneity and potential publication
bias means that our results should be taken with caution.
Several studies still need to be carried out in order to test
the different hypotheses concerning the functional role
of these frequencies and their interaction with interindi-
vidual differences.
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