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1   |   INTRODUCTION

In our modern, highly connected societies, work environ-
ments impose increasingly high demands on our cognitive 
and cerebral resources that allow us to process informa-
tion. Such a high demand on cognitive resources exposes 
individuals to situations of cognitive overload, which 
can be dangerous for their health (Klonowicz,  1995) 

and can lead to errors and accidents (Zoer et al.,  2011). 
Electroencephalogram (EEG) is one of the main tech-
niques for measuring the brain resources corresponding 
to cognitive workload (CWL). So far, several brain frequen-
cies (mainly theta and alpha) have been candidates to 
reflect the mental state of an individual exposed to high 
CWL. Despite a growing number of studies, results do not 
always converge. One recent meta-analysis focused on 
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Abstract
Cognitive workload (CWL) is a fundamental concept in the assessment and mon-
itoring of human performance during cognitive tasks. Numerous studies have 
attempted to objectively and continuously measure the CWL using neuroimag-
ing techniques. Although the electroencephalogram (EEG) is a widely used tech-
nique, the impact of CWL on the spectral power of brain frequencies has shown 
inconsistent results. The present review aimed to synthesize the results of the 
literature and quantitatively assess which brain frequency is the most sensitive to 
CWL. A systematic literature search following PRISMA recommendations high-
lighted three main frequency bands used to measure CWL: theta (4–8 Hz), alpha 
(8–12 Hz), and beta (12–30 Hz). Three meta-analyses were conducted to quanti-
tatively examine the effect of CWL on these frequencies. A total of 45 effect sizes 
from 24 studies involving 723 participants were computed. CWL was associated 
with significant effects on theta (g = 0.68, CI [0.41, 0.95]), alpha (g = −0.25, CI 
[−0.45, 0.04]), and beta (g = 0.50, CI [0.21, 0.79]) power. Our results suggests that 
theta, especially the frontal theta, is the best index of CWL. Alpha and beta power 
were also significantly impacted by CWL; however, their association seemed less 
straightforward. These results are critically analyzed considering the literature on 
cerebral oscillations. We conclude by emphasizing the need to investigate the in-
teraction between CWL and other factors that may influence spectral power (e.g., 
emotional load), and to combine this measure with other methods of analysis of 
the central and peripheral nervous system (e.g., functional connectivity, heart 
rate).
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the link between CWL and Event-Related Potential (ERP, 
Ghani et al., 2020), while two systematic reviews examined 
the main sensors usually used to measure CWL (Charles & 
Nixon, 2019; Tao et al., 2019). However, no meta-analysis 
specifically examined the relationships between CWL and 
EEG spectral power. The present quantitative review thus 
aims to synthesize the results of the literature, in order to 
evaluate whether brain frequency spectral power is a use-
ful method for measuring CWL.

1.1  |  Cognitive workload (CWL) concept

CWL is a fundamental concept in the study of human 
performance that emerged from the observation that our 
cognitive system has limited capacities to perform a cog-
nitive task (Broadbent, 1971). This upper limit of our pro-
cessing capacity led authors to postulate the existence of 
a finite quantity of resources, which must be used to per-
form a cognitive operation (Kahneman,  1973; Norman 
& Bobrow,  1975; Wickens,  2002). The limited amount 
of these resources implies that the more resources are 
needed for a processing operation, the less resources are 
available for other cognitive operations. Although the 
concept of mental resources has only a limited explana-
tory capacity (see Dehais et al., 2020, for a review on this 
issue with a neuroergonomic approach), it remains useful 
for studying and predicting human performance in cogni-
tively demanding situations (e.g., multi-tasking). During a 
cognitive task, these attentional and neural resources are 
engaged, among other things, in processes of maintaining 
and manipulating relevant information, generally mod-
eled by the concept of working memory (Baddeley, 2012; 
Cowan,  2016). Although it has been used and exten-
sively studied since the 1960s, the concept of CWL has 
no single, consensual definition (Moray,  1979; Young 
et al.,  2015). Nevertheless, it is commonly accepted that 
CWL is multidimensional in nature and can interact with 
many factors such as expertise, work environment, age, 
and other psychosocial factors (Hart & Wickens,  1990; 
Xie & Salvendy,  2000). In the present review, CWL will 
be defined as the amount of brain resources required for 
an individual to complete a task (i.e., cognitive activities 
requiring the achievement of a particular goal). Thus, 
CWL emerges from the interaction between the task to be 
performed and the individual, who has limited resources 
(Young et al., 2015). When the demand of the task leaves 
sufficient mental resources available to the individual, re-
source models consider that the individual should be able 
to maintain a high level of performance (e.g., in terms of 
speed or accuracy; Wickens, 2008). Cognitive overload oc-
curs when the demand of the task exceeds the resources 
available to the individual, who is then no longer able 

to correctly process the relevant information or produce 
an adapted response. This state reduces efficiency and 
drastically increases the probability of making mistakes. 
Detecting and preventing situations of cognitive overload 
is crucial when applied to the study of operators whose 
errors can cause serious harm, as is the case in the in-
dustrial (nuclear), transportation (maritime, car, avia-
tion), military and medical fields (McFadden et al., 2004; 
Senders & Moray, 2020). Valid and sensitive methods for 
measuring CWL continuously and in real time are thus 
indispensable.

1.2  |  Measuring CWL

Historically, the first method used to infer an individual’s 
mental state was to analyze their performance (e.g., re-
sponse time, accuracy, error rates) on a task, which may 
be single or accompanied by a secondary task. This sec-
ond task has generally no interest other than adding in-
formation to be processed in order to observe the effect 
of this additional task on the performance of the main 
task (Wickens, 1991). However, this method is not com-
pletely satisfactory. Indeed, the level of performance does 
not necessarily reflect the quantity of brain resources used 
by the individual: An increase in the demand of the task 
can lead to a strong increase in the cognitive resources 
invested to maintain an equivalent level of performance 
(Young et al., 2015). Having to wait for errors to appear 
makes the use of this method ineffective in operational 
environments where errors can be costly financially or 
humanly.

The second group of methods are subjective measures, 
which refer to the use of rating scales, self-reported by 
the individual after completing the task to be assessed. 
Two scales are usually used to assess subjective CWL: 
the National Aeronautics and Space Administration Task 
Load Index (NASA-TLX) scale (Hart & Staveland, 1988), 
and the Subjective Work-load Assessment Technique 
(SWAT) scale (Reid & Nygren, 1988). Besides the fact that 
the assessment cannot be done “online” (i.e., when the 
task is performed), many biases can also interfere with the 
validity of these measurements, such as the participant’s 
understanding of the concept being assessed, the interac-
tion between task performance and subjective assessment 
(e.g., poor performance will increase the subjective assess-
ment of difficulty; Moray, 1982), social desirability, inter-
individual differences in the capacity for introspection 
and consciousness, memory bias (e.g., peak-end effects; 
Peterson & Kozhokar, 2017).

More recently, technical development has enabled the 
development of physiological measurements for assess-
ing CWL. While the previous measures allow an indirect 
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measurement of the individual’s mental state, physiolog-
ical sensors, by measuring certain characteristics of the 
central nervous system (e.g., brain) and peripheral ner-
vous system (e.g., heart rate), give us physiological cues 
of the individual’s mental state. Technological progress 
has enabled many laboratories to equip themselves with 
physiological sensors at lower prices, for increasingly pre-
cise measurements (Marini et al.,  2019). Several studies 
have demonstrated the sensitivity of EEG as an index 
of CWL (e.g., Gevins et al.,  1998; Lei & Roetting, 2011), 
particularly in the field of adaptive automation systems 
where brain activity is used as input to the system (Aricò 
et al., 2016; Parasuraman, 1990). Some studies suggest that 
EEG is more sensitive than other physiological measures 
(Brookings et al., 1996; Taylor et al., 2010), while others 
show that EEG can measure unique processes that are 
not detected by other physiological measures (Hankins & 
Wilson, 1998; Matthews et al., 2015). To select a relevant 
instrument for CWL measurement, it is necessary to con-
sider the sensitivity of the measurement but also the con-
ditions under which this technique can be used effectively. 
Brouwer et al. (2014) found that pupil size measurement 
was a more sensitive marker of cognitive effort than EEG. 
However, its use is limited to contexts where brightness is 
stable and flicker-free, which is very difficult to obtain in 
real-life situations. On the other hand, the use of EEG in 
real life is made possible by the refinement of algorithms 
for processing artifacts (Onikura et al., 2015). For instance, 
advances in algorithms have made it possible to effectively 
remove noise from the EEG signal, even when the signal 
is obtained during walking or running (Gwin et al., 2010).

1.3  |  EEG technique and 
frequency power

The signal obtained by EEG comes from the post-synaptic 
excitatory (or inhibitory) potentials produced by the ac-
tion potentials moving through the dendrites of pyrami-
dal neurons in the outer layers of the cortex (Dickter & 
Kieffaber, 2013; Sanei & Chambers, 2013). The transition 
from the activity of dipole sources located in the brain 
(i.e., neurons) to a measurable electric field on the scalp 
is achieved by the geometry of the neurons (i.e., pyrami-
dal) and the volume conduction properties of the differ-
ent layers of the head (hair, scalp, skull, brain). These 
different layers attenuate and distort the electric field, 
making it impossible to measure small groups of neurons 
and making it difficult to locate the dipoles. However, the 
synchronized activity of several thousands of synapses 
and the summation of these electric fields via propaga-
tion through the tissues allows a weak, but measurable 
signal to be obtained at the surface on the scalp. This 

signal is measured by electrodes (less than 3 mm in di-
ameter), whose surface is usually composed of silver and 
silver chloride (Ag/AgCl). The signal recorded by the 
sensors is then amplified and converted via an analog-to-
digital converter. Due to the weakness of the measured 
signal, it is commonly accepted that the electrode im-
pedance must be less than 5 kΩ to avoid increasing the 
noise level, which would result in a lower signal-to-noise 
ratio (Kappenman & Luck,  2010). Electrode placement 
is generally standardized according to the recommen-
dations of the International Federation of Societies of 
Electroencephalography and Clinical Neurophysiology, 
known as 10–20 placement (Jasper, 1958). This technique 
is characterized by an excellent temporal resolution (mil-
liseconds), making it possible to examine the temporal 
course of cognitive, perceptive, and sensory processes 
with great precision (Cohen,  2011). Compared to other 
neurophysiological recording techniques such as positron 
emission tomography and functional magnetic resonance 
imaging (fMRI), EEG recording device are small (e.g., pos-
sibly mobile), easier to set up (e.g., with dry electrodes), 
and less expensive to acquire and maintain. These advan-
tages have made EEG an ideal tool for studying brain re-
source allocation in laboratories or in the field.

The EEG signal can be decomposed into several fre-
quency ranges (usually by a Fourier transform), whose 
power is determined by power spectral analysis. Although 
there are no standardized frequency ranges and the 
boundaries may change slightly depending on the au-
thor, the frequency ranges are classically defined as fol-
lows: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 
beta (12–30 Hz), and gamma (30–50 Hz). Alpha and 
beta frequencies are sometimes decomposed into sub-
bands whose functional differences have been observed 
(Klimesch, 1999; Staufenbiel et al., 2014): low alpha (8–10 
Hz), high alpha (10–12 Hz), or beta1 (12–20 Hz) and beta2 
(20–30 Hz). Numerous studies have focused on theta and 
alpha frequencies, which have long been associated with 
cognitive processes (Gevins et al., 1997; Klimesch, 1999, 
2012; Onton et al., 2005; Roux & Uhlhaas, 2014). Roughly 
speaking, the theta frequency in the frontal cortex is pos-
itively correlated with increasing CWL, while conversely, 
the alpha frequency of the parietal cortex decreases as 
CWL increases (Gevins et al., 1997; Lei & Roetting, 2011). 
This dissociation has not always been demonstrated in the 
literature (e.g., Borghini et al., 2014). An increase in theta, 
particularly frontal theta, is often associated with an in-
crease in working memory load (Deiber et al., 2007; Jensen 
& Tesche, 2002; Onton et al., 2005), but some studies show 
a decrease in theta power associated with a high load (e.g., 
Brzezicka et al., 2019). Alpha, on the other hand, yielded 
much more inconsistent results, with some studies show-
ing an increase in alpha in association with increased 
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workload (Jensen et al.,  2002; Klimesch,  2012), while 
other studies showed the opposite (Michels et al.,  2010; 
Palva & Palva, 2007). The studies examining the beta band 
also show diverging results, with increases in load lead-
ing to a power increase (Chen & Huang, 2016; Kornblith 
et al., 2016) or decrease (Proskovec et al., 2019).

The primary aim of this quantitative review is, there-
fore to synthesize and combine the results of the liter-
ature, in order to clarify the relationship between the 
different brain oscillations spectral power and an increase 
in CWL. Indeed, extant reviews that focused on the major 
physiological measures of CWL (Charles & Nixon, 2019; 
Lean & Shan, 2012; Tao et al., 2019) did not quantitatively 
address this issue.

To deepen the analysis, several moderators were se-
lected a priori based on the literature. Concerning brain 
oscillations, we were interested in the specific frequency 
bands measured across the different EEG component 
when they contain several sub-bands that may have differ-
ent functional roles (i.e., low & high alpha, beta1 & beta2, 
Fink et al.,  2005; Klimesch, 1999). In order to study the 
spatial specificities of the measured oscillations, the brain 
region of interest was also used as a moderator variable. 
Regarding individual characteristics, we controlled for the 
gender of the individuals involved in the studies, as sev-
eral studies have shown that gender can have an impact 
on CWL (de Moura et al., 2017; Hancock et al., 1992) as 
well as on brain oscillations (Güntekin & Başar, 2007). We 
also examined the effect of expertise, which may generate 
variability in the measurement of CWL, since with equal 
task load, experts process information more efficiently 
than novices (Ward et al.,  2019). This processing effi-
ciency is accompanied by changes in brain activity, with 
a reduction in the activity of the prefrontal and parietal 
cortex (Bilalić & Campitelli, 2018). Moreover, the recent 
development of low-cost mobile EEG systems (Ayaz & 
Dehais,  2018) that accompanied the emergence of neu-
roergonomics, has made the study of brain activity in 
ecological conditions (i.e., similar to a real-world setting) 
easier. As this type of system naturally attracts research-
ers looking to evaluate CWL online and will certainly 
be increasingly developed in the future, we additionally 
wanted to compare the EEG measurements obtained ac-
cording to the type of system used (i.e., mobile EEG or not). 
We also coded for the number of tasks to be performed by 
the participant (i.e., single or multiple), in order to exam-
ine the impact of a multitasking situation on brain oscilla-
tions. Performing several tasks “at the same time” implies 
managing the prioritization of these tasks according to 
different criteria (e.g., priority, interest, difficulty; Wickens 
& Gutzwiller, 2017). This task management thus induces 
an additional demand on cognitive resources compared to 
the execution of a single task (i.e., management load; Xie 

& Salvendy, 2000), and can, therefore generate a greater 
CWL. Finally, we considered mental fatigue, which is an 
intrinsically related concept to CWL and is also associated 
with decreased performance (Bendak & Rashid, 2020) and 
can cause impairment in theta and alpha spectral power 
(Borghini et al., 2014). To investigate this factor, we esti-
mated the time-on-task (i.e., duration of required mental 
effort) during which participants’ EEG activity was re-
corded. When the total duration was not explicitly given 
in the article, an estimate was computed.

2   |   Method

2.1  |  Inclusion and exclusion criteria

Only studies that were published in a peer-reviewed 
journal were eligible. Moreover, they had to meet the fol-
lowing criteria: (a) contain at least one quantitative EEG 
measure of the usual frequency bands (i.e., delta, theta, 
alpha, beta, and gamma) with spectral power analysis; 
(b) introduce a manipulation of the CWL in order to op-
pose low and high load; (c) use a within-subject design or 
compare independent groups; (d) present sufficient sta-
tistical information to calculate an effect size (e.g., mean, 
standard deviation, and sample size); (e) focus on healthy 
young adults; (f) present original data; (g) be written in 
English. Reviews, conference papers, book chapters, 
and studies using overlapping data were excluded. To 
restrict the scope of this study and to allow comparison 
between the effect sizes, we did not included studies 
that uses alternative types of EEG analyses (e.g., time-
frequency analysis, ERP, brain networks connectivity) 
nor those that compared classification algorithms (Lotte 
et al., 2007).

2.2  |  Information sources

We conducted a systematic search of the literature, in ac-
cordance with the guidelines of the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (Moher 
et al., 2009). The search covered a period up to September 
2019 in the following databases: arXiv (19), Cochrane 
Library (48), Embase (925), IEEE Xplore (425), PsycINFO 
(643), PubPsych (190), PubMed (684), Science Direct 
(3759), SpringerLink (4302), Taylor & Francis Online 
(783), Web of Science (1220). A combination of the follow-
ing keywords was used: “EEG or electroencephalogra*” 
and “cognitive load”; “EEG or electroencephalogra*” and 
“cognitive workload”; “EEG or electroencephalogra*” 
and “mental load”, “EEG or electroencephalogra*” and 
“mental workload”. Moreover, we manually performed 
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a search in the major reviews of the field (Borghini 
et al., 2014; Charles & Nixon, 2019; Kramer, 1991; Lean 
& Shan, 2012; Tao et al., 2019; Young et al., 2015) and in 
the reference lists of included articles (K = 23). For studies 
that met the inclusion criteria but in which information 
was missing, we contacted the corresponding author of 
the paper (K = 7, only one author responded, for whom 
the data were no longer accessible). References were man-
aged using Excel spreadsheets.

2.3  |  Study selection

Eligibility assessment was performed by two authors. After 
having removed the duplicates, studies were screened by 
their title, following the flowchart sequence (Figure  1). 
Then, abstracts were screened and studies that did not 
meet the inclusion criteria were excluded. When the ab-
stract did not provide enough information (e.g., type of 

EEG analysis), the study was eligible for full-text screen-
ing. Finally, full texts were screened and studies meeting 
all inclusion criteria were included for the meta-analysis 
(K = 24).

2.4  |  Data collection

When reported, we extracted the following information 
from each study: (1) sample size, (2) mean age (and stand-
ard deviation) and gender of participants, (3) research do-
main, (4) study design (within- or between-participants), 
(5) frequency band(s), (6) electrode position, (7) number 
of tasks and method used to increase the CWL, (8) time 
on task, (9) method used to estimate spectral power, and 
(10) statistical data used to calculate effect sizes. Datafiles 
and the R script for the meta-analysis can be found on the 
Open Science Framework (OSF) through the following 
link: https://osf.io/xrb4z/.

F I G U R E  1   PRISMA flow diagram of the systematic search

https://osf.io/xrb4z/
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2.5  |  Summary measures

Statistical analyses were conducted in RStudio (RStudio 
Team, 2020, version 1.3.1093) using R (R Core Team, 2013, 
version 4.0.1). We used the esc package in order to compute 
the effect sizes (Lüdecke, 2018), and the meta (Schwarzer, 
2007), metafor (Viechtbauer,  2010), and dmetar (Harrer 
et al.,  2019) packages to conduct the meta-analyses and 
meta-regression.

We computed a Hedges’s g statistic for the standardized 
mean difference in bandwidth power between high and 
low workload conditions. If the experimental compari-
son involved more than two load levels, the standardized 
mean difference was between the harder and the easier 
condition. Since most studies evaluated this difference in 
the same individual (within-subject design), we calculated 
repeated-measures effect sizes. Hedges’s g statistic was pre-
ferred to Cohen’s d because it adjusts for the small sample 
bias (Hedges, 1981). A positive effect size indicates an in-
crease in average bandwidth power in the high workload 
condition.

Effect sizes were calculated based on the means and 
standard deviations, following Morris and DeShon’s 
correction for within-subject designs (Morris & 
DeShon, 2002). As none of the studies reported the cor-
relation values between the low and high load measure, 
we used a correlation value of r = 0.50 (which is consid-
ered as relatively conservative; Balk et al., 2012). Studies 
that reported F, t or Cohen’s d values were converted to 
g (Lakens, 2013).

Knowing that all effect sizes should be indepen-
dent in a meta-analysis—to avoid under-estimated 
standard errors of the average effects—we conducted 
three separate meta-analyses on the three main fre-
quency bands measured in the included studies (i.e., 
theta, alpha, and beta). Studies measuring other bands 
were too few to be meta-analyzed (e.g., delta, gamma, 
theta/alpha ratio). When a study provided different 
measurements of the same frequency within the same 
participant (e.g., one measure of theta per electrode), 
data were averaged together to compute one effect 
size (Cooper et al., 2019). An exception was made for 
alpha and beta spectral power analyses, for which 
some studies (alpha: K = 3; beta: K = 2) reported low 
and high alpha and beta1 and beta2 measurements, 
respectively. Although this lack of independence may 
lead to an underestimation of the standard error, 
the small number of studies concerned precludes 
the use of multivariate or three-level meta-analyses 
(Cheung, 2019). On the other hand, this small number 
of studies reduces the risk of obtaining Type I error 
rates (Song et al., 2020).

2.6  |  Synthesis of results

Given the diversity of protocols included, we expected 
high heterogeneity between the studies, and therefore 
applied a random effects model to combine and weight 
effect sizes across studies using inverse variance meth-
ods. We also included an analysis of the data by a fixed 
effects model (see Supplementary data), since there 
is a risk of overestimating effect sizes when a ran-
dom effects model is used in the presence of strong 
publication bias (Cooper et al.,  2019). We quantified 
heterogeneity using the effect sizes’ percentage of 
variability (i.e., the I2 statistic). A value of 75% and 
above indicates high heterogeneity, a value of 50% in-
dicates moderate heterogeneity, a value of 25% indi-
cates low heterogeneity and a value of 0% indicates no 
heterogeneity (Higgins et al.,  2019). Despite its ease 
of interpretation, the I2 statistic depends on the sam-
pling error and number of studies included. To have 
an indicator independent of the number of studies, we 
also calculated the between-study-variance estimator 
τ2, using the Hartung–Knapp–Sidik–Jonkman method 
(IntHout et al., 2014). Although the DerSimonian and 
Laird method is widely used for random effects meta-
analysis, this method has been shown to be biased to-
ward type 1 error, producing false positives (IntHout 
et al., 2014). It has been recently established that this 
method is outperformed by the Hartung–Knapp–
Sidik–Jonkman method, especially when the number 
of studies is small (IntHout et al., 2014). Heterogeneity 
was also statistically assessed by the Chi-square test 
(Cochran’s Q-statistic). Since Cochran’s Q test may be 
under-powered when few studies have been included 
(West et al.,  2010), it is recommended to choose a p 
value higher than the classical threshold of signifi-
cance (i.e., p < .05). We, therefore set the significance 
threshold at p < .10.

A sensitivity analysis was performed when heteroge-
neity was significant and greater than 50%. We used the 
“leave-one-out” function to assess the influence of each 
study on the results and heterogeneity. This method 
consists in removing one study at a time from the meta-
analysis and repeating the operation until each study had 
been removed once to verify that our conclusions were 
not influenced by a single study (Viechtbauer,  2010). 
Influence analyses were then carried out by visual inspec-
tion of Baujat et al. (2002) and Viechtbauer and Cheung 
graphs (Viechtbauer & Cheung, 2010). Lastly, studies for 
which the 95% confidence interval was outside the 95% 
confidence interval of the pooled studies were considered 
outliers (Viechtbauer & Cheung, 2010) and were excluded 
from the meta-analysis and meta-regression.
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Sensitivity analyses were pre-specified to assess the impact 
of our subgroups on the overall effect size. Subgroup analy-
ses were performed on categorical moderator variables using 
a mixed-effects model (i.e., random effects within and fixed 
effects between, Borenstein & Higgins,  2013). The purpose 
of the subgroup analyses was twofold: to conduct sensitivity 
analyses to explain the presence of heterogeneity, and to inves-
tigate relevant theoretical points related to the coded categor-
ical moderator variables, following the recommendations of 
Richardson et al. (2019). Subgroups with less than three stud-
ies were not reported (Higgins et al., 2019). Meta-regression 
was used for continuous moderator variables to test whether 
those variables had a significant impact on the average effect 
size (time-on-task, year of publication, and sample size).

Potential publication bias was investigated by visual in-
spection of contour-enhanced funnel plots and tested sta-
tistically by Egger’s linear regression (Egger et al.,  1997). 
The contour-enhanced funnel plot is an improved version 
of the funnel plot, which has often been criticized because 
of its subjective interpretation (Peters et al., 2008). Contour 
lines that are superimposed on the funnel correspond 
to perceived “milestones” of statistical significance (p = 
.01,  .025, .05). These different contours help to distinguish 
an asymmetry caused by the nonreporting of nonsignifi-
cant studies (publication bias) from an asymmetry caused 
by other factors (e.g., poor methodological quality, linguis-
tic bias, chance; Egger et al., 1997). An asymmetry caused 
by the absence of studies with a statistically non-significant 
effect size is an indication of publication bias. Conversely, 
if the asymmetry is caused by studies that should have had 
statistically significant effect sizes, factors other than pub-
lication bias should be considered (Higgins et al.,  2019). 
When the distribution was significantly asymmetrical ac-
cording to Egger’s regression, suggesting a publication bias, 
we used the trim-and-fill method (Duval & Tweedie, 2000) 
to compute a bias-corrected estimate of the average effect.

3   |   Results

3.1  |  Study selection

After duplicates had been removed, 5 716 unique records 
were identified in searches through the database and ref-
erence list. 4 916 records were then excluded from the 
preliminary screening of titles. Among the remaining 800 
records, 570 were excluded after screening of abstracts be-
cause they did not manipulate CWL (69), they did not in-
clude any EEG measure with spectral power analysis (74), 
they were a book chapter (89), conference paper (205), 
review article (39), dissertation (7), inaccessible (4), tech-
nical report or article using classification algorithms (67), 
not in English (10) or focused on a clinical population (6). 

Two hundred and thirty reports were retrieved for de-
tailed evaluation of the full-text and a total of 24 records 
met the inclusion criteria and were included in the quan-
titative review (see Figure 1).

3.2  |  Study characteristics

The included studies, published between 1984 and 2019 
(mean: 2014, median: 2017), involved a total of 723 partici-
pants (mean age of 24.4 ± 3.42, 33.3% female) for which 45 
effect sizes were computed. Of these effect sizes, 16 were 
from a difference in the mean power of the theta band, 17 
from the alpha band and 12 from the beta band. Four stud-
ies examined expertise (k = 7, Fallahi et al., 2016; Jaquess 
et al., 2017; Morales et al., 2019; Orlandi & Brooks, 2018), 
five studies used a portable EEG system (k  =  9, Castro-
Meneses et al.,  2020; Fallahi et al.,  2016; Matthews 
et al., 2015; Morales et al., 2019; Orlandi & Brooks, 2018). 
Four studies used multiple tasks to induce CWL (k = 9, 
Fallahi et al., 2016; Gong et al., 2019; Matthews et al., 2015; 
Puma et al., 2018) and the N-Back task was the most fre-
quently used method for increasing CWL (k = 12, Brouwer 
et al., 2014; Grissmann et al., 2017; Hsu et al., 2015; Murata, 
2005; Pergher et al., 2019; Rietschel et al., 2012). Twelve 
studies used Fast-Fourier Transformation (k = 26, Fallahi 
et al., 2016; Gentili et al., 2018; Hsu et al., 2015; Jaquess 
et al., 2017; Kakizaki, 1984; Matthews et al., 2015; Morales 
et al., 2019; Murata et al. 2005; Pavlov & Kotchoubey, 2017; 
Pergher et al., 2019; Puma et al., 2018; Sammer et al., 2007), 
two studies used Short-Time Fourier Transformation 
(k = 3, Dasari et al., 2017; Zhang et al., 2016), one study 
used Continuous-Fourier Transformation (k  =  1, Hsu 
et al.,  2017), three studies used Welch’s method (k  =  5, 
Gong et al., 2019; Grissmann et al., 2017; Zakrzewska & 
Brzezicka, 2014), and six studies did not report the method 
used to estimate the EEG spectral power (k = 10, Brouwer 
et al., 2014; Castro-Meneses et al., 2020; Lee, 2014; Orlandi 
& Brooks, 2018; Rietschel et al., 2012; Shaw et al., 2018). 
The individual studies, sample characteristics, encoded 
moderator variables, and effect sizes with standard er-
rors are presented in Table 1. Method used to manipulate 
CWL, estimate spectral power, electrode placement, and 
the estimation of time-on-task are presented in Table S1.

3.3  |  Meta-analysis of outcome measures

3.3.1  |  Theta

Individual study (k = 16) and aggregate effect size for stud-
ies measuring the theta band are presented in Figure 2 (see 
Figure S1 for the fixed effects model). Overall, CWL had 
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a large effect on the theta band, g = 0.68, 95% CI [0.41–
0.95], p  <  .01, indicating that theta power during high 
workload tasks was significantly greater than theta power 
in low workload conditions. Nevertheless, heterogeneity 
was pronounced and highly significant, Q = 42, df = 15, 
p < .01, tau2 = 0.19, I2 = 64.3%.

3.3.1.1  |  Sensitivity analyses
An influence analysis by the leave-one-out method and 
identification of the studies whose 95% confidence inter-
val was outside the 95% confidence interval of the pooled 
studies revealed that two studies could be considered as 
outliers (Matthews et al., 2015; Zhang et al., 2016). After 
removing these studies (k  =  14), the overall effect size 
remained stable and heterogeneity was no longer sig-
nificant, g = 0.62, 95% CI [0.41–0.83], p < .01, Q = 17.14, 
df = 13, p > .10, tau2 = 0.07, I2 = 24.2%.

3.3.1.2  |  Subgroup analysis of categorical moderator 
variables (Table S2)
The test for subgroup differences between EEG systems 
suggested that there was a statistically significant sub-
group effect (p <  .001), meaning that the effect of CWL 
on the theta band was significantly different depending on 
the EEG system used. The effect of CWL on the theta band 
was greater for the non-portable EEG system subgroup (g 
= 0.81, p  <  .01) than for the portable EEG system sub-
group (g = 0.22, p < .01). However, there is an insufficient 
number of studies in the portable EEG subgroup (k = 3) 
and a substantial unexplained heterogeneity between the 
studies within the non-portable subgroup (I2 = 55%), thus 

the validity of the CWL effect estimates for each subgroup 
is uncertain. The test for subgroup differences between 
single and multiple tasks indicated that there was a sta-
tistically significant subgroup effect (p < .05), suggesting 
that the theta band was more impacted by CWL during 
single task (g = 0.81, p < .01) than during multiple tasks 
(g = 0.28, p < .01). However, a smaller number of studies 
and participants contributed to the multi-task subgroup 
(k = 4, N = 225) than to the single-task subgroup (k = 12, 
N = 306), meaning that the covariate distribution is prob-
lematic for this subgroup analysis. There is substantial 
unexplained heterogeneity between the trials within the 
single-task subgroup (I2 = 62%). Therefore, the validity of 
the CWL effect estimates for each subgroup is uncertain. 
The test for subgroup differences between brain regions 
indicated that there was a statistically significant sub-
group effect (p  =  .04), suggesting that the brain regions 
measured were affected differently by the effect of CWL 
on the theta band. The pooled effect estimate for the fron-
tal region was large and significant (g = 0.66, p  <  .01). 
Central, occipital, and multiple region subgroups were 
not reported because of an insufficient number of studies 
(k < 3). Subgroup meta-analyses using gender and exper-
tise as predictor variables were not done because of the 
insufficient number of studies per subgroup (k = 1 within 
expert and female subgroup).

3.3.1.3  |  Meta-regression of continuous moderator 
variables
Meta-regression analysis did not reveal any effect of year 
of publication, sample size, nor time-on-task.

F I G U R E  2   Forest plot of standardized effect sizes (g) of theta power in high versus low workload conditions. Total standardized mean 
difference with 95% confidence and prediction interval, weight, and heterogeneity are reported
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3.3.1.4  |  Publication bias
Visual inspection of the funnel plot asymmetry (Figure 3) 
and Egger’s linear regression revealed a publication bias, 
B = 3.13, 95% CI [1.87–4.39], p <  .05. The trim-and-fill 
procedure suggested that seven studies could be added 
(k  =  23), resulting in a decrease in the effect size (g = 
0.35, 95% CI [0.01–0.69], p  <  .05) and an increase in 
heterogeneity (Q = 87.45, df = 22, p < .01, tau2 = 0.52, 
I2 = 74.8%).

3.3.2  |  Alpha

A random effects model applied to the studies which 
measured the alpha band (k = 17) resulted in a significant 
effect size with moderate heterogeneity, g = −0.25, 95% 
CI [−0.45 – −0.04], p < .05, Q = 29.76, df = 16, p < .01, 
tau2 = 0.11, I2 = 46.2%, indicating that alpha power dur-
ing high workload tasks was significantly lower than 
alpha power during low workload conditions (Figure  4, 
see Figure S2 for the fixed effects model).

3.3.2.1  |  Sensitivity analyses
An influence analysis by the leave-one-out method and 
identification of the studies whose 95% confidence inter-
val was outside the 95% confidence interval of the pooled 
studies revealed that one study could be considered as an 
outlier (Kakizaki, 1984). Withdrawing this study resulted 
in an increase in the mean effect size and a decrease in 
heterogeneity, g = −0.30, 95% CI [−0.47 – −0.12], p < .01, 
Q = 22.11, df = 15, p > .10, tau2 = 0.08, I2 = 32.1%.

3.3.3.2  |  Subgroup analysis of categorical moderator 
variables (Table S2)
The test for subgroup differences between alpha frequency 
bands indicated a statistically significant subgroup effect 
(p < .01), suggesting that alpha frequency sub-bands were 
influenced differently by CWL. The effect of CWL on the 
alpha power was significantly larger for the high alpha 
(10–12 Hz) subgroup (g = −0.39, p < .01), while the effect 

F I G U R E  3   Contour-enhanced funnel plot of studies measuring 
theta band activity. Some studies are missing on the left-hand side 
of the plot, where results would be in the area of non-significance 
(i.e., the white area where p > .05) and for which non-reporting 
bias is a plausible explanation

F I G U R E  4   Forest plot of standardized effect sizes (g) of alpha power in high versus low workload conditions. Total standardized mean 
difference with 95% confidence and prediction interval, weight, and heterogeneity are reported
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was smaller for the low alpha (8–10 Hz) subgroup (g = 
−0.21, p  <  .01) and no longer significant for the broad-
band subgroup (g = −0.21, p = .22). However, a smaller 
number of trials and participants contributed to the high 
and low alpha subgroups (high alpha: k = 4, N = 67; low 
alpha: k  =  3, N  =  50) than to the broad-band subgroup 
(k = 10, N = 359), meaning that the uneven covariate dis-
tribution may not be able to produce valid results.

The test for subgroup differences between brain re-
gion suggested that there was a statistically significant 
subgroup effect (p < .01), meaning that the effect of CWL 
on the alpha band was significantly different depending 
on the brain region measured. The effect of CWL on the 
alpha band was larger for the parietal region (g = −0.29, 
p < .01) than for the multiple region subgroup (g = −0.23, 
p = .12). A sufficient number of studies and participants 
(parietal: k = 6, N = 153; multiple: k = 6, N = 79) were 
included in each subgroup, so the covariate distribution 
was not problematic for this subgroup analysis. Frontal, 
central, and occipital electrode location groups were not 
reported because of the insufficient number of studies 
(k < 3). Results of subgroup meta-analyses for the gender 
and multi-tasking moderators did not show any significant 
effects. Subgroup meta-analyses using expertise and type 
of EEG system as predictor variables were not reported be-
cause of the insufficient number of studies (k < 3).

3.3.2.3  |  Meta-regression of continuous moderator 
variables
Meta-regression analysis revealed a significant effect of 
publication year (B = −0.03, p < .01) and no effect of sam-
ple size and time-on-task.

3.3.2.4  |  Publication bias
Visual inspection of the funnel plot asymmetry (Figure 5) 
and Egger’s linear regression test revealed a potential publi-
cation bias, B = −1.42, 95% CI [−2.06 – −0.24], p < .05. The 
trim-and-fill procedure suggested that four studies could be 
added (k = 20), resulting in a decrease in the effect size (g = 
−0.15, 95% CI [−0.69–0.38], p = .55), and high heterogeneity 
(Q = 104.28, df = 19, p < .01, tau2 = 1.19, I2 = 81.8%).

3.3.3  |  Beta

3.3.3.1  |  Sensitivity analyses
The aggregated effect sizes for the 12 studies measuring 
beta band activity are presented in Figure 6 (see Figure S1 
for the fixed effects model). Overall, CWL had a moder-
ate effect on the beta band, g = 0.50, 95% CI [0.21–0.79], 
p <  .01, indicating that beta power during a high work-
load task was significantly greater than beta power in the 
low workload condition. However, heterogeneity was 

substantial and significant, Q = 23.23, df = 11, p  <  .01, 
tau2 = 0.15, I2 = 52.6%. Sensitivity analyses did not iden-
tify any potential outlier.

3.3.3.2  |  Subgroup analysis of categorical moderator 
variables (Table S2)
The test for subgroup differences between beta frequency 
bands suggested that was a statistically significant sub-
group effect (p < .01), meaning that the effect of CWL on 
the beta band was significantly different depending on the 
beta sub-band measured. The effect of CWL was signifi-
cant and large for the beta1 (13–20 Hz, g = 0.93, p < .01) 
and beta2 band (20–30 Hz, g = 0.74, p < .01), while the 
effect was no longer significant when the broad-band fre-
quency (13–30 Hz) was used (g = 0.28, p = .07). However, 
there is an insufficient number of studies in the beta1 (k 
= 2, N = 34) and beta2 subgroups (k = 3, N = 99), so the 
covariate distribution is problematic. Therefore, the va-
lidity of the CWL effect estimates for each subgroup is 
uncertain. The test for subgroup differences between beta 
region suggested that there was a statistically significant 
subgroup effect (p < .10), meaning that the effect of CWL 
on the beta band was significantly different depending 
on the brain region measured. The effect of CWL on the 
beta band was higher for the multiple region (g = 0.59, 
p  <  .05) than for the frontal region (g = 0.33, p  >  .05). 
There is a substantial unexplained heterogeneity between 
the studies within the frontal region subgroup (I2 = 43%). 
Therefore, the validity of the CWL effect estimates for 
each subgroup is uncertain. The occipital electrode lo-
cation subgroup was not reported because of the insuf-
ficient number of studies (k < 3). The test for subgroup 
differences for expertise highlighted a statistically signif-
icant subgroup effect (p  <  .01), meaning that the effect 
of CWL on beta band activity was significantly different 

F I G U R E  5   Contour-enhanced funnel plot of studies measuring 
the alpha band. Some studies are missing on the right-hand side 
of the plot, where results would be in the area of non-significance 
(i.e., the white area where p > .05) and for which non-reporting 
bias is a plausible explanation
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depending on the participant’s expertise. The effect of 
CWL on the beta band was larger for the expert subgroup 
(g = 1.43, p  <  .01) than for the non-expert subgroup (g 
= 0.36, p < .01). The smaller number of studies and par-
ticipants in the expert subgroup (k = 3, N = 28) and the 
substantial unexplained heterogeneity between the stud-
ies within the non-expert subgroup (I2 = 49%) may reduce 
the validity of this effect. The results of subgroup meta-
analyses for gender and EEG portability did not show any 
significant result. Subgroup meta-analysis using multi-
tasking as predictor variable was not reported because of 
the insufficient number of studies per subgroup (k < 3).

3.3.3.3  |  Meta-regression of continuous moderator 
variables
Meta-regression analysis revealed a significant effect of 
time-on-task (p < .05, R2 = 45.54%) and sample size (B = 
−0.01, p < .05) and no effect of publication year.

3.3.3.4  |  Publication bias
The funnel plot asymmetry (Figure  7) could have been 
caused by publication bias. Egger’s linear regression test 
revealed a publication bias, B = 1.61, 95% CI [0.7–2.53], 
p  <  .01. The trim-and-fill procedure suggested that six 
studies could be added, resulting in a decrease in the ef-
fect size (g = 0.21, 95% CI [−0.17–0.59], p > .05) and an 
increase in heterogeneity (Q = 43.61, df = 17, p  <  .01, 
tau2 = 0.47, I2 = 61%).

4   |   Discussion

CWL is an important concept in many fields (e.g., system 
design, adaptive automation). Although it has been the 

focus of research for more than fifty years, the methods 
used to evaluate it are still of interest. EEG, as one of the 
most accessible brain imaging methods, has often been a 
favorite candidate.

In the current study, we reviewed articles that inves-
tigated EEG spectral band power differences during low 
and high workload tasks. Our meta-analysis is the first to 
quantitatively examined the impact of CWL on the three 
bands most often used in the literature: theta (k = 16), 
alpha (k = 17), and beta (k = 12). We found significant evi-
dence for the influence of CWL on the three power bands. 
The standardized mean difference of band power between 
high and low workload was 0.68 with a 95% confidence 
interval of 0.41 to 0.95 for theta, −0.25 with a 95% confi-
dence interval of −0.45 to −0.04 for alpha, and 0.50 with 

F I G U R E  6   Forest plot of standardized effect sizes (g) of beta power in high versus low workload conditions. Total standardized mean 
difference (SMD) with 95% confidence and prediction interval, weight, and heterogeneity are reported

F I G U R E  7   Contour-enhanced funnel plot of studies measuring 
the beta band. Some studies are missing on the left-hand side of the 
plot, where results would be in the area of non-significance (i.e., 
the white area where p > .05) and for which non-reporting bias is a 
plausible explanation
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a 95% confidence interval of 0.21 to 0.79 for beta. We will 
begin by discussing these results and the accompanying 
subgroup analyses to investigate the effect of our selected 
moderators, then we will consider the limitations of this 
review as well as future perspectives for the measurement 
of CWL by EEG.

4.1  |  Theta

The theta frequency power is the most sensitive to the in-
crease in CWL due to an increase in the task demands: 
theta power was greater in high versus low cognitive load 
conditions. Moreover, this effect is specifically observed 
for the frontal region, as indicated by our subgroup analy-
sis. The theta of the frontal cortex is a frequency that has 
been associated with the processes of working memory 
and executive functions. The increase in theta power has 
often been related, in a proportional way, to the amount of 
information to be retained in memory (Gärtner et al., 2015; 
Howard et al.,  2003; Jensen & Tesche,  2002; Maurer 
et al.,  2015; Onton et al.,  2005; Roux & Uhlhaas,  2014; 
Wisniewski et al., 2015) as well as information manipu-
lation (Griesmayr et al.,  2010; Griesmayr et al.,  2014). 
Studies showing that an increase in theta power predicted 
performance in working memory tasks have suggested 
the functional role of this frequency in this type of process 
(Womelsdorf et al., 2010; Zakrzewska & Brzezicka, 2014). 
At the neuroanatomical level, studies coupling EEG and 
fMRI (Meltzer et al., 2007; Michels et al., 2010; Scheeringa 
et al., 2009; Tsujimoto et al., 2010) as well as studies by 
magnetoencephalography (Gevins et al.,  1997; Meltzer 
et al.,  2007; Onton et al.,  2005) have associated this fre-
quency with the activation of two regions: the anterior 
cingulate cortex (ACC) and the medial prefrontal cortex 
(mPFC). The activation of these two regions has been as-
sociated with executive control and working memory pro-
cesses (Bush et al., 2000; Niendam et al., 2012; Shenhav 
et al., 2013). More than simply being involved in memory 
processes, the theta could allow the allocation of different 
cortical resources according to the task (Onton et al., 2005; 
Sauseng et al., 2007; Shenhav et al., 2013). Thus, theta may 
underpin cognitive control and the distribution, efficient 
or not, of cognitive resources (Cavanagh & Frank, 2014).

Surprisingly, our subgroup analysis results showed 
a smaller average effect size in multi-tasking situations 
compared to single-tasking situations. This result, incon-
sistent with what is generally observed in the literature 
(Borghini et al.,  2014), is also in contradiction with the 
hypothetical role of theta power in cognitive control, 
which should be strongly solicited during multitasking. 
For example, a study that trained elderly people via video 
games showed an increase in frontal-midline theta power 

associated with the training gains of the multi-task train-
ing (Anguera et al.,  2013). This inconsistent result may 
be due to the insufficient number of studies (K = 4) that 
used multi-tasking. Three of these 4 studies had a rela-
tively high standardized effect size (Fallahi et al.,  2016: 
g = 0.40; Gong et al., 2019: g = 0.50; Puma et al., 2018: g 
= 0.51), compared to the study by Matthews et al. (2015); 
g = 0.15). In the latter study, which was detected as an 
outlier in our analyses, the comparison between low and 
high CWL was operationalized by asking participants 
to perform two separate tasks at the same time: a threat 
detection task, in which participants were instructed to 
identify potentially dangerous individuals in a 3D visual 
scene, and a change detection task, where participants 
were instructed to detect the simultaneous appearance, 
disappearance or movement of two icons on a map. These 
tasks, which are specific to military operations, are cog-
nitively demanding and may, therefore, require signif-
icant neural recruitment even when performed alone. 
Performing these two tasks concurrently might not be as-
sociated to an increase in theta power because the theta 
power may already be high in the “low load,” single-task 
condition and may not have increased considerably in 
the dual-task condition (i.e., ceiling effect). However, 
the unequal distribution of studies between subgroups 
prevents any categorical conclusions and further work 
is needed to investigate the impact of multi-tasking on 
theta power. The second outlier detected by our analy-
ses (Zhang et al., 2016) had a very large effect size (g = 
2.28). The authors studied the impact of a single visual 
working memory task with parametric variation of load 
(1 to 6) on the theta power in the frontal midline region 
(Fz). Moreover, the authors extracted the theta power 
during stimulus retention times, the periods in which the 
most resources are committed (Jensen & Tesche, 2002). 
Focusing on the critical period undoubtedly enabled such 
a large effect size to be obtained.

Some studies have shown that theta power was modu-
lated by the increase in task demand only for individuals 
having higher working memory capacities (Zakrzewska 
& Brzezicka, 2014) or presenting higher performance in 
multitasking situations (Puma et al., 2018). In these stud-
ies, groups with low performances showed high theta 
power throughout the experiment, regardless of the level 
of difficulty. The neural efficiency hypothesis—that is, at 
equal performance, a higher neural activation is a sign of 
less efficient neural processing (Neubauer & Fink, 2009)—
could explain this phenomenon. The hypothesis surmises 
that a high theta power for low performers in a low-
demand condition reflects a greater recruitment in neural 
resources and therefore, less efficient neural processing. 
High performers, on the other hand, demonstrate neural 
efficiency to meet the demands of the simplest tasks with 
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fewer neural resources (i.e., lower theta power). Increased 
difficulty then requires greater neural resources, matching 
the increase in theta power. This increase then reaches a 
plateau when the demands of the task require all the avail-
able neural resources (Puma et al.,  2018; Zakrzewska & 
Brzezicka, 2014; Zhang et al., 2016). By indexing the level 
of effort required for a certain type of task, the theta could 
be an indicator of the level of neural efficiency of the par-
ticipants. This hypothesis, although speculative, could 
partly explain the inconsistency of the results evaluating 
theta and CWL (e.g., Brouwer et al., 2014; Hsu et al., 2015).

4.2  |  Alpha

Alpha spectral power appears to be negatively impacted 
by the increase in CWL: an increase in CWL leads to a de-
crease in alpha power. The presence of the alpha frequency 
has long been considered as indexing a “wakefulness” 
state of the brain, due to its desynchronization during cog-
nitive tasks (the “cortical idling hypothesis,” Pfurtscheller 
et al.,  1996). Several studies have indeed observed a de-
crease in alpha power associated with an increase in 
task demands (Fairclough & Venables,  2006; Fallahi 
et al.,  2016; Fink et al.,  2005; Klimesch,  1999; Pergher 
et al., 2019; Sterman et al., 1994). Klimesch et al.  (2007) 
hypothesized that alpha synchronization may correspond 
to an active process of inhibiting information that is not 
relevant to the task (the “inhibition-timing hypothesis”): 
The hypothesis postulates that when faced with a cogni-
tive demand, the cortical areas involved in the processing 
of the task experience a desynchronization of alpha power 
(i.e., uninhibited), while the areas that are not necessary 
to the task or that could interfere with it are inhibited 
by alpha synchronization, particularly in the occipito-
parietal areas (Jensen et al., 2002; Klimesch et al., 2007; 
Rihs et al.,  2007). This may explain why an increase in 
alpha power has also been observed during the processing 
of cognitive tasks (Jensen et al., 2002; Palva et al., 2005; 
Tuladhar et al., 2007). The alpha rhythm could thus act 
as an information inhibiter which optimizes the signal-
to-noise ratio for the benefit of the neurons involved in 
the processing of relevant information (Klimesch, 2012). 
This functional role of alpha has been supported in nu-
merous studies of visual attention that have shown that 
the allocation of attention in one direction is accompanied 
by a suppression of alpha in the contralateral visual cor-
tex and an increase in alpha in the ipsilateral visual cortex 
(Clayton et al., 2019; Wildegger et al., 2017). In a recent 
study that used rhythmic transcranial magnetic stimula-
tion (rTMS) during a visuospatial working memory task 
(Riddle et al., 2020), 10 Hz magnetic pulses at the poste-
rior parietal cortex contralateral to the non-cued hemifield 

(where distractors are presented), increased visual work-
ing memory performance compared to arrhythmic TMS. 
This study suggests the involvement of parietal alpha in 
the inhibition processes. Our subgroup analyses are con-
sistent with those results, showing a greater decrease in 
alpha power in the parietal area following an increase in 
CWL.

However, a controversy remains because some stud-
ies observed an increase in alpha power in areas involved 
in cognitive processing (e.g., Jensen et al., 2002). An ex-
planation for this discrepancy has been advanced by van 
Ede  (2018), who argue that the posterior alpha power 
increases during the encoding of verbal material (even 
when the stimuli are encoded visually), whereas it de-
creases during the encoding of visual material (van Ede 
et al., 2017). However, this explanation based on the na-
ture of the stimuli (i.e., visual or verbal) does not account 
for some of our results. Kakizaki’s study (Kakizaki, 1984, 
considered as an outlier by our analyses), measured the 
cerebral activity of the occipital cortex (Oz) during an 
increase in CWL imposed by mental arithmetic tasks. 
Results revealed an increase in the spectral power of all 
frequencies, including alpha, with the increase in CWL. 
Calculation involves many cortical networks (e.g., prefron-
tal, premotor, parietal; Zago et al., 2001), including the oc-
cipital cortex. Indeed, it has been shown that injury of the 
occipital cortex impairs the calculation process when the 
digits to be manipulated are presented visually (Dehaene 
& Cohen,  1997). The involvement of this region during 
the task should, therefore have resulted in a decrease in 
alpha power. Moreover, in Murata’s study (Murata, 2005), 
participants were asked to determine whether the stimu-
lus (letter) presented on the screen matched the stimulus 
presented one, two or three trials previously, in terms of 
letter and location. Alpha power measured in Fz, Cz, and 
Pz also increased with the difficulty of the task. Further 
studies evaluating the modulation of alpha according to 
the type of stimuli must be conducted in order to test the 
hypothesis of alpha specificity. Concerning the power 
of alpha sub-bands, results from the literature showed 
that high alpha interacts with visual cognitive tasks and 
semantic memory demands, while low alpha reflects 
a general attentional demand, not specific to the task 
(Klimesch,  1999). The results of our subgroup analyses, 
although based on a small number of studies, provides 
support to the literature. Among the studies that mea-
sured both sub-bands, the difference in sensitivity to CWL 
between lower and upper alpha was minor when mea-
sured during an N-back (Rietschel et al., 2012) or stimulus 
detection task (Shaw et al., 2018), but larger in the case of 
a more visually rich flight simulator environment (Jaquess 
et al., 2017). The difference between these two sub-bands 
thus appears to be quantitative rather than qualitative, 
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with the upper alpha slightly more sensitive to CWL than 
the lower alpha. Overall, the inverse relationship between 
alpha and CWL seems well established, as indicated by 
the very similar estimated effect sizes from the random 
and fixed effects models used in the present meta-analysis.

4.3  |  Beta

The results regarding the beta frequency range revealed 
a moderate positive effect of CWL on this frequency. 
Numerous studies have established the involvement 
of the beta frequency in a variety of cognitive processes 
such as working memory (Chen & Huang, 2016; Deiber 
et al., 2007), language processing (Weiss & Mueller, 2012), 
long-term memory (Hanslmayr et al.,  2014), and deci-
sion making and reward processing (Marco-Pallarés 
et al.,  2015). However, the functional role of this fre-
quency is debated. Some researchers consider that the 
beta frequency plays a role in maintaining cognitive rep-
resentations and motor commands (the “status quo hy-
pothesis,” Engel & Fries,  2010), while others argue that 
this frequency allows network-level communication 
and endogenous (re)activation of information (Spitzer 
& Haegens,  2017). Moreover, some authors suggest that 
there are functional distinctions between beta1 and beta2, 
and that these sub-bands have functional roles similar to 
their neighboring frequencies (i.e., alpha and gamma). 
Thus, beta1 is thought to have an inhibitory role and 
could contribute to the protection of WM representations 
(Hanslmayr et al., 2009; Kornblith et al., 2016; Pereira & 
Wang, 2015), while beta2 is thought to be more involved 
in top-down information processing processes (Kornblith 
et al., 2016; Marco-Pallarés et al., 2015). Our meta-analysis 
by subgroup analyses indicate that beta1 (g = 0.93, k = 2; 
Kakizaki, 1984; Orlandi & Brooks, 2018) and beta2 (g = 
0.74, k = 3; Kakizaki, 1984; Orlandi & Brooks, 2018; Pavlov 
& Kotchoubey, 2017) were much more sensitive to CWL 
than broad-band beta (g = 0.28, k = 7). The insufficient 
number of studies in these subgroups and a redundancy 
of these studies across subgroups could explain these un-
expected results. Another subgroup analysis revealed that 
expert participants (g = 1.43, k = 3; Morales et al., 2019; 
Orlandi & Brooks, 2018) showed a greater increase in beta 
power with an increase in CWL than non-expert partic-
ipants (g = 0.36, k = 9). Here, we must note that some 
of the studies had characteristics that could explain the 
aforementioned subgroup analysis results. Orlandi and 
Brooks’ study (Orlandi & Brooks, 2018) took place in the 
Maritime Safety Queensland Simulator, in which par-
ticipants were asked to complete several berthing tasks 
that lasted one to two hours depending on the difficulty. 
Morales et al.  (2019) measured the activity of four pairs 

of surgeons during a surgical exercise on domestic pigs. 
The surgeons performed eight surgical exercises, with an 
average duration of approximately 20 minutes. The first 
study had a total time-on-task comprised between 360 and 
480 min, while the second had a time-on-task of about 172 
min, which is much larger than the average time-on-task 
of the other studies (M = 42.73 min). Such heavy and time-
consuming protocols might explain the very large increase 
in beta power observed by the estimated effect sizes.

Our results seem to indicate that the beta frequency is 
positively associated with CWL. However, the numerous 
mechanisms that underlie this frequency and their speci-
ficities still need to be specifically investigated for a better 
understanding. Studies specifically aimed at distinguish-
ing the functional roles of beta according to its location 
(e.g., prefrontal, parietal) and frequency (i.e., beta1 & 
beta2) under high CWL are thus still needed.

Taken together, our results support the use of the theta 
power spectral as a neurophysiological index of CWL. The 
theta frequency of the frontal cortex, although it cannot 
be associated with a unique cognitive process, appears to 
be most strongly associated with CWL. While the alpha 
and beta frequencies are believed to reflect inhibition and 
engagement processes of brain resources, the frontal cor-
tex theta frequency seems to have a more straightforward 
relationship with cognitive engagement.

4.4  |  Limitations

At the methodological level, several factors limit the re-
sults of this quantitative review.

First, our meta-analyses did not include all studies 
that are relevant to the topic and cannot claim to be 
exhaustive. Inclusion is determined by the statistical 
indices provided by the studies and estimating a mean 
effect size, therefore requires being more restrictive 
in including studies than in a systematic review. Also, 
several publications that matched the inclusion criteria 
were not included, because the authors did not answer 
and we, therefore lacked the necessary information to 
calculate an effect size. In addition, by restricting the 
studies included in the analysis to those published in 
peer-reviewed journals, it is possible that some data 
available in the literature (e.g., gray literature, non-
English sources) were not included. Restricting our 
selection to studies published in peer-reviewed jour-
nals could in part explain the asymmetry observed on 
the different funnel plots; an asymmetry that shows a 
bias in favor of studies with large standard errors and 
large positive ES, symptomatic of the “file drawer prob-
lem” (Rosenthal, 1979). The trim-and-fill method aims 
to identify asymmetries caused by publication bias and 
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to correct them, by virtually integrating missing studies. 
After estimating and integrating the number of missing 
studies, this method makes it possible to recalculate a 
meta-analysis considering the newly integrated studies. 
This resulted, for each of the three frequencies investi-
gated, in a decrease in the estimated effect sizes. It is, 
therefore, possible that the effects initially observed in 
our analyses were overestimated due to publication bias. 
However, the “trim-and-fill” method does not consider 
other factors that can influence a funnel plot asymmetry 
(e.g., Egger et al.,  1997). Moreover, in the presence of 
strong intergroup heterogeneity, this method is known 
to produce biased estimates (Terrin et al., 2003). The in-
tergroup heterogeneity observed in our meta-analyses 
can be explained by the methodological diversity of 
the included studies, such as the tasks used to generate 
CWL, the type of EEG system used (e.g., headset, wire-
less EEG) and the location of the electrodes (e.g., one 
at Fz, two at F3, F4). This heterogeneity was expected 
due to the wide variety of protocols that have attempted 
to measure CWL and reflects the interest of CWL mea-
surement in many areas. This review, which is not in-
tended to be limited to a specific field, therefore reflects 
this diversity. As discussed above, it is important to keep 
in mind that different tasks were used to modulate cog-
nitive load (see Table S1). Some of the included studies 
compared EEG spectral power between a 0-back and a 
1-back condition on the N-Back test, while other studies 
compare 1-back and 3-back conditions. This difference 
in mental effort is expected to be an important moder-
ator of the computed effect size but is difficult to assess 
quantitatively due to the diversity of protocols.

4.5  |  Future work

Before EEG can be proposed as a functional CWL meas-
urement system in cognitively demanding professional 
situations such as those experienced by military, medi-
cal, transport, or nuclear operators, many factors need 
to be studied in greater depth. Several studies comparing 
three levels of CWL (low, moderate, and high) have ob-
served no difference between moderate and high load-
ing conditions (e.g., Castro-Meneses et al., 2020; Gevins 
et al., 1998). This quantitative review was restricted to 
comparing relatively distinct loads (low vs. high load). 
More studies might be interested in investigating inter-
mediate levels of difficulty, which could then be ana-
lyzed by meta-regression.

With regard to the safety domain, the study of the 
emotional load also seems to be of crucial importance, 
considering that unforeseen and/or extremely dangerous 
unexpected events can greatly affect operators, despite 

their training. For example, Grissmann et al.  (2017) ob-
served a decrease in the activity of the frontal theta under 
negative affective valence. The authors considered that 
the negative stimuli interfered with the processing of the 
task through the reduction in activity of the frontal cogni-
tive control network.

The combined study of attentional reserve and CWL 
also seems to be a promising avenue for both applied 
and fundamental research. To our knowledge, only two 
studies have jointly studied CWL (by spectral power) and 
attentional reserve (by ERP; Jaquess et al.,  2017; Shaw 
et al., 2018). These two constructs appeared indeed to be 
strongly linked, considering that CWL represents what is 
used and attentional reserve what remains available from 
our limited resources. The study of these two constructs 
could lead to a finer understanding of our cognitive capac-
ities and their limits.

Our meta-analysis was limited to the comparison of 
spectral power difference in the frequency bands of inter-
est. However, this method of analysis of the brain elec-
trical signal is embedded in a simplifying localizationist 
framework and does not allow to take account of the in-
terconnected neural networks that enable cognitive func-
tions (Herbet & Duffau,  2020). For example, one model 
that is gaining influence in the understanding of the 
human brain is the “communication through coherence” 
model (Fries,  2005, 2015), which suggests that neural 
synchronization is the functional mechanism by which 
information transmission and perceptual binding occurs 
in the brain (Chapeton et al., 2019; de Vries et al., 2020). 
We suggest that the systematic study of the effect of CWL 
on the interareal coherence and functional connectivity 
of the brain could be of interest to complete our under-
standing of the effect of CWL on our brain activity (e.g., 
Kamzanova et al., 2020; Muthukrishnan et al., 2020).

For field application purposes, it is likely that fre-
quency spectral power will not be able to measure 
all of the constituent dimensions of CWL (Matthews 
et al., 2015). Indeed, it is illusory to expect an increase 
in cognitive demand to be treated in the same way for 
each individual, especially in real-world settings where 
several tasks must generally be performed in parallel. 
Responding to this demand implies a cascade of pro-
cesses (from the commitment of cognitive resources 
to self-regulation processes) that can vary inter and 
intraindividually across tasks, goals, and time. It is 
unrealistic to search for a measure that would index 
all these phenomena at once. However, the increase in 
the activity of the central nervous system that can be 
measured by EEG, and particularly the frontal theta 
spectral power, allows us to have a reflection of the 
neural resources engaged to complete the task. This 
index can serve as a basis for the systematized study 
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of other processes involved in the resolution of a cog-
nitive task, such as effort allocation (Hockey, 1997) or 
stress regulation (Matthews et al., 2002). A better esti-
mate of CWL could be made by coupling EEG with an-
other technique, for example with heart rate variability 
measures which seems sensitive for other dimensions 
of CWL (Matthews et al., 2015) with a certain robust-
ness, as shown by a recent meta-analysis (Hughes 
et al., 2019).

5   |   CONCLUSION

Overall, our results argue in favor of a sensitiveness of 
EEG for CWL. Among the three main frequencies used 
in the literature, the theta power spectral is the most sen-
sitive to an increase in task demand. The beta band was 
also sensitive to CWL, while the alpha band was inversely 
correlated with it. The EEG technique, even with few 
electrodes, appears to be an inexpensive and valid way 
to measure some aspects of CWL in real time. However, 
the presence of heterogeneity and potential publication 
bias means that our results should be taken with caution. 
Several studies still need to be carried out in order to test 
the different hypotheses concerning the functional role 
of these frequencies and their interaction with interindi-
vidual differences.
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