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Mental Workload Modeling in an Integrated Cognitive Architecture 
 

Shi Cao and Yili Liu 
University of Michigan  

Ann Arbor, Michigan 48109 USA
 

Mental workload analysis is an important component in the test and evaluation of human-
machine systems. Existing empirical workload measures have limited applicability when human-
in-the-loop tests are impractical, which produces the need for theory-based workload modeling 
and prediction methods. ACTR-QN is a theory-based integrated cognitive architecture combining 
the advantages of Adaptive Control of Thought-Rational (ACT-R) and Queueing Network (QN) 
architectures. The research reported in this paper proposes and examines a theory and method for 
modeling and visualizing mental workload in ACTR-QN. Validation with an empirical study of a 
semantic judgment task showed that an ACTR-QN model produced both performance and mental 
workload data similar to the human results. In addition, different components of the multi-
dimensional mental workload can be visualized with ACTR-QN. Mental workload modeling in 
ACTR-QN provides a new tool for human factors evaluation of mental workload.  
   

INTRODUCTION 
 

As system operations grow more complex in 
cognitive demands, mental workload analysis becomes 
of increasing importance in human factors tests and 
evaluations. Although there is still no clear definition of 
mental workload, researchers have generally agreed that: 
(1) mental workload is related to the relationship 
between task demands and the capacity of human 
information processing; (2) it is multi-dimensional 
(Wickens, 2008); (3) it cannot be measured by primary 
task performance alone. The goal of mental workload 
analysis is to identify and help prevent both mental 
overload, which may decrease performance potentials 
and cause fatigue, and underload, which may lead to the 
loss of vigilance. 

Two groups of methods can be used to assess mental 
workload. Human-in-the-loop empirical testing methods 
include performance measures such as secondary task 
methods, physiological measures such as blink rate, and 
subjective measures such as NASA-Task Load Index 
(TLX, Hart, 2006). The other group is computational 
modeling methods, which include task-analysis-based 
methods (e.g., Mitchell & Samms, 2009; Wang, Cain, & 
Lu, 2010) and cognitive-architecture-based methods 
(e.g., Gray, Schoelles, & Sims, 2005; Wu & Liu, 2007).  

This paper introduces a cognitive-architecture-based 
method for mental workload modeling. The architecture 
is ACTR-QN, which integrates Adaptive Control of 
Thought-Rational (ACT-R, Anderson et al., 2004) and 
Queueing Network (QN, Liu, Feyen, & Tsimhoni, 2006) 
cognitive architectures. The server structure of ACTR-
QN is illustrated in Figure 1. 

ACT-R represents the human mind as a production 
rule system. It assumes two types of knowledge 

representations: declarative chunks and production rules 
(rules, for short). A chunk’s retrieval time and error rate 
are determined by its activation level, which is jointly 
determined by the chunk’s learning history and 
association with other chunks. Rules represent 
procedural knowledge in the form of condition-action 
(IF-THEN) pairs, and its action will be fired when its 
condition matches the current “mental state”. A mental 
state consists of the state of each module, and each 
module is a cognitive component, such as the vision 
module and the declarative module. ACT-R “thinks” and 
“acts” by firing rules until a goal state is reached.  

 

 
Figure 1. The server structure of ACTR-QN. 

 
The QN cognitive architecture represents the human 

mind as a queueing network, where information 
processing is the process of servers holding and 
processing entities. Each server represents millions of 
neurons from a certain functional field of the brain, and 
each entity represents certain information to be 
processed and passed within the brain. Compared with 
ACT-R, QN has the advantages of visualizing mental 
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information processing, defining and visualizing mental 
workload (Wu & Liu, 2007), and modeling multi-task 
performance (Liu, 1997; Wu & Liu, 2008). However, 
QN currently does not have the capability to model a 
wide range of complex cognitive activities like those that 
can be modeled with ACT-R. To benefit from both QN 
and ACT-R architectures, ACTR-QN integrates the two 
cognitive architectures by representing ACT-R as a QN. 
A completed study (paper submitted for review) has 
implemented ACTR-QN in a C# based discrete event 
simulation platform Micro Saint Sharp 
(www.maad.com). ACT-R modules and their buffers are 
represented as servers in QN. ACT-R buffer requests, 
chunks, production rules, and the notice of completion 
are represented as entities that flow between these 
servers. ACTR-QN can read the same ACT-R codes to 
define a model’s task-specific knowledge and 
parameters. It has been verified that ACTR-QN is able to 
generate identical mental processes and results as ACT-
R for the ACT-R 6.0 tutorial models (act-r.psy.cmu.edu), 
and it also replicated three models of threaded cognition 
(Salvucci & Taatgen, 2008), a multitask performance 
theory implemented in ACT-R.  

The work reported in the paper further develops the 
function of ACTR-QN by adding a theory and method 
for modeling and visualizing mental workload. Mental 
workload was quantified by server utilization, which has 
been used in a previous QN modeling study (Wu & Liu, 
2007) to model driver workload and its NASA-TLX 
measurements. In queueing theory, utilization is the 
proportion of time during which the system’s resources 
are used by the entities in the system. Considering server 
capacities in QN as mental resources in the brain, one 
can intuitively link utilization with workload. Since 
different servers/modules represent different mental 
resources, the utilization values from different servers 
processing different entities can be used to estimate 
different components of the multi-dimensional 
workload. For example, the utilization value computed 
from the visual module processing text entities will 
represent the visual verbal perception component of 
mental workload.  

Although the current released version of ACT-R 
does not include any mental workload modeling theory 
and method, several efforts have been made to propose 
and test possible workload modeling methods with ACT-
R (Gray et al., 2005; Jo, Myung, & Yoon, 2010; Lebiere, 
2001). In comparison, the work in this paper has its 
unique values. First, it modeled both the error rate 
performance and the mental workload NASA-TLX data 
from an empirical study (Colle & Reid, 1998) with the 
same model. Second, it can visualize the multi-
dimensional components of mental workload.  

 
METHOD 

 
ACTR-QN uses server utilization to estimate mental 

workload. We assume that, in general, mental workload 
has a linear relationship with server utilization. At the 
implementation level, the instant utilization of a 
server/module is 1.0 when it is busy (processing any 
entity) and 0.0 otherwise. The averaged utilization over a 
second, for example, equals to the busy time of the 
module within the second. ACTR-QN computes 
utilization for all servers except the intentional module 
and all the buffers, because their processes do not take 
any time, which is the same case in ACT-R.  

In the current implementation, the utilization of a 
network is computed as the average of all server 
utilizations in the network. The perceptual sub-network 
utilization is averaged from the vision and the audio 
modules. The cognitive sub-network utilization is 
averaged from the production, the declarative, and the 
imaginary modules. The motor sub-network utilization is 
averaged from the motor and the speech modules. These 
three utilization values correspond to the workload 
components of perception, cognition, and response, 
which are the three levels of the processing stage 
dimension in the multiple resource theory view of 
mental workload (Wickens, 2008). Finally, the overall 
utilization of a model is computed as the average of the 
three sub-network utilization values. We assume that the 
overall utilization is linear to aggregated subjective 
workload measurements such as NASA-TLX’s overall 
workload rating.  

For model validation we used the empirical data 
from Colle and Reid (1998) Experiment 2, which is a 
semantic category judgment task. This study was 
selected because it can demonstrate both ACT-R’s 
advantage in modeling complex cognitive performance 
and QN’s advantage in modeling mental workload 
embedded in ACTR-QN. In each trial, participants 
judged whether or not two words shown on the screen 
belong to the same category by pressing one of two 
buttons. Words were randomly selected from 10 
categories, each of which had 10 words. All words and 
categories were frequently used ones such as “dog – 
animal.” Each trial had a fixed display duration, and 
there was no time interval between successive trials. A 
response was counted as correct if and only if it was the 
correct classification and was made within the display 
duration of a trial. Trials came in groups that each lasted 
2 min 20 s. The presentation rate in a group was 
manipulated (6, 14, 22, 30, 38, 46, 54, and 62 word 
pairs/min) as an independent variable. The two 
dependent variables used in this validation were percent 
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correct and NASA-TLX overall mental workload. The 
experiment had another independent variable, context 
effect, but its effect was not statistically significant. 
Therefore, the results used in this validation were 
averaged over different levels of context effect. 

A model was built in ACTR-QN to simulate the 
empirical data. The task-specific knowledge was defined 
using the same syntaxes as ACT-R. Each word-category 
relationship was defined as a declarative chunk. For 
example,  

(pA0 ISA property object "A0" attribute category value 
A) 
defined that an abstract word “A0” belongs to an abstract 
category “A”. The initial goal chunk for each trial had its 
judgment, 1st word, 2nd word, 1st category, and 2nd 
category all unknown. Eight production rules were 
defined to represent the procedural knowledge. Table 1 
shows their English descriptions. 
 
Table 1. English descriptions of the model’s production rules. 

Rule English description 

Attend 
IF the judgment is unknown, visual-location buffer has a 

visual location, and visual module is free, 
THEN encode the content of the visual item. 

Retrieve-
first 

IF 1st word is unknown, visual buffer has a text chunk, and 
declarative module is free, 

THEN 1st word is the text, retrieve its category, and maintain 
the visual buffer chunk. 

Retrieve-
failed 

IF the judgment is unknown, visual buffer has a text chunk, 
and retrieval failed, 

THEN retrieve the text’s category, and maintain the visual 
buffer chunk. 

First-
retrieved 

IF 1st category is unknown, and a category is retrieved,  
THEN 1st category is the category, find visual-location of the 

second word. 

Retrieve-
second 

IF 1st word is known, 2nd word is unknown, visual buffer has a 
text chunk, and declarative module is free, 

THEN 2nd word is the text, retrieve its category, and maintain 
the visual buffer chunk. 

Second-
retrieved 

IF 1st category is known, 2nd category is unknown, and a 
category is retrieved,  

THEN 2nd category is the category. 

Yes 
IF the two categories are the same, and manual module is free, 
THEN press the yes key, judgment is yes, and the goal is 

done. 

No IF the two categories are different, and manual module is free, 
THEN press the no key, judgment is no, and the goal is done. 

 
The default values of the ACTR-QN’s parameters 

are identical to those in ACT-R. To model the particular 
task situation of Colle and Reid (1998), only three 
parameters were changed from their default values, two 
of which were set according to the related ACT-R 
methods and only one was adjusted to fit the data. 
Specifically, parameter :esc (enable subsymbolic 
computations) was set to true to allow random noise in 
chunk activation. Parameter :ans (activation noise s), 
which controls the scale of chunk activation noise, was 
set at 0.5 following the paired word-number 
memorization model in the ACT-R 6.0 tutorial. 

Parameter :blc (base-level constant) was set at 1.8 to fit 
the empirical results. Since the experiment used frequent 
words and categories and controlled the learning effect, 
we assumed that the learning effect was negligible and 
chunk activation did not change during the experiment. 
As a result, we did not turn on the declarative chunk 
learning mechanism. 

The task environment (i.e., displays and controls) 
was set using the single-discrete-two-stage template 
provided in ACTR-QN to simulate the empirical 
experiment. Each presentation rate level was repeated 
three times, and the results were averaged before 
analyses. Detailed module activity traces, response 
results, and server and network utilization were 
recorded.   
 

RESULTS 
 

The model fitness for percent correct results is 
illustrated in Figure 2. The mean absolute percentage 
error (MAPE) was 2.6%, the root mean square error 
(RMSE) was 2.450, and the coefficient of determination 
(R2) was 0.986.  

 

 
Figure 2. Comparing human and model percent correct results. 

 
Examining the module activity traces revealed two 

types of errors. The first type is no response. Due to the 
random noise in chunk activation, the retrieval of a 
word-category relationship from the declarative memory 
may take a long time or even fail. Although the model 
will keep retrieving if it fails, it may not have enough 
time to complete the judgment and issue the manual key-
press response within the duration of a trial. As the 
duration decreases with increasing presentation rates, no-
response errors become more frequent. The second type 
is incorrect response. It happens when the model has 
issued a key-press motor command, but the next trial 
starts before the “finger” actually hits the “key”. If the 
second trial’s correct response is different from the first 
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trial’s correct response, the key press will become an 
incorrect response to the second trial. 

Linear regression was used to fit the relationship 
between model overall utilization (OU) and NASA-TLX 
overall workload (OW) ratings (R2 = 0.988). The resulted 
regression function is 

OW_predicted = -5.8 + 570.4 * OU.         (1) 
Figure 3 shows the subject-reported NASA-TLX 

overall workload and corresponding model prediction 
under different task demand conditions.  

 

 
Figure 3. Comparing human and model overall workload results. 
 

 
Figure 4. Visualization of mental workload components in ACTR-
QN under different task demands. Word presentation rates: (a) 6 
pairs/min, (b) 30 pairs/min, and (c) 62 pairs/min. 

 
Although the authors (Colle & Reid, 1998) did not 

report subjective ratings for each mental workload 
component, ACTR-QN computed and visualized sub-
network utilization values, which we assume to have 
linear  relationship with corresponding workload 
components. Figure 4 shows the utilization of 
perceptual, cognitive, and motor sub-networks under 
three different presentation rates. The visualization 
clearly demonstrates workload increasing with faster 
presentation rates and provides more detailed estimation 
about each workload components.  
 

DISCUSSION 

 
As argued by Byrne and Pew (2009), a merit of 

modeling techniques is to quantitatively define concepts 
like workload, rather than qualitatively define them in a 
verbal form. This study proposed and validated a 
quantitative mental workload modeling theory and 
method in ACTR-QN, which is an integrated cognitive 
architecture combining the advantages of ACT-R and 
QN human performance modeling. Server utilization in 
QN was used to model mental workload. Modeling 
results were validated against human data from a 
semantic category judgment task. The same ACTR-QN 
model generated both percent correct performance 
results and NASA-TLX overall mental workload results 
that were very similar to the corresponding human data 
(MAPE < 5.0% and R2 > 0.95). In addition, different 
components of mental workload were visualized in 
ACTR-QN. The visualization clearly showed the 
increase of mental workload with greater task demands.  

ACT-R is perhaps the most influential cognitive 
architecture in the research field, but its application in 
human factors analysis has mainly focused on modeling 
performance. This study introduces a new theory and 
method to measure and visualize mental workload in 
ACTR-QN. The theory and method is in accord with 
three important features of mental workload: sensitive to 
task demands, multi-dimensional, and different from 
primary task performance. Since ACTR-QN uses exactly 
the same modeling syntaxes as ACT-R to define task-
specific knowledge and parameters, as demonstrated by 
this study, researchers who are familiar with ACT-R can 
enjoy a seamless modeling of mental workload in 
ACTR-QN.  

Compared with human-in-the-loop empirical 
methods, mental workload evaluation using predictive 
models such as ACTR-QN does not require any real time 
measurement of operator in-the-loop testing. This feature 
makes ACTR-QN especially suitable for early-stage 
evaluation without any full-scale system, quick 
evaluation of a large amount of design alternatives, and 
evaluation in high-risk domains. In this regard, task-
based (e.g., Cassenti, Kelley, & Carlson, 2010) and task-
time-based (e.g., Wang et al., 2010) methods usually 
need expert judgments to estimate workload scales and 
time constraints for unit cognitive tasks. In contrast, 
ACTR-QN’s prediction of mental workload can 
complement or substitute expert subjective judgments, as 
it is based on a synthesis of a large amount of related 
findings and governed by the psychological and 
neuroscience theories underlying the cognitive 
architecture. These advantages make ACTR-QN a 
valuable one in the arsenal of system test and evaluation 
tools. Future research can further develop and examine 
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ACTR-QN’s workload modeling function in more 
complex task scenarios.  
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