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Mental Workload Modeling in an Integrated Cognitive Architecture

Shi Cao and Yili Liu
University of Michigan
Ann Arbor, Michigan 48109 USA

Mental workload analysis is an important component in the test and evaluation of human-
machine systems. Existing empirical workload measures have limited applicability when human-
in-the-loop tests are impractical, which produces the need for theory-based workload modeling
and prediction methods. ACTR-QN is a theory-based integrated cognitive architecture combining
the advantages of Adaptive Control of Thought-Rational (ACT-R) and Queueing Network (QN)
architectures. The research reported in this paper proposes and examines a theory and method for
modeling and visualizing mental workload in ACTR-QN. Validation with an empirical study of a
semantic judgment task showed that an ACTR-QN model produced both performance and mental
workload data similar to the human results. In addition, different components of the multi-
dimensional mental workload can be visualized with ACTR-QN. Mental workload modeling in
ACTR-QN provides a new tool for human factors evaluation of mental workload.

INTRODUCTION

As system operations grow more complex in
cognitive demands, mental workload analysis becomes
of increasing importance in human factors tests and
evaluations. Although there is still no clear definition of
mental workload, researchers have generally agreed that:
(1) mental workload is related to the relationship
between task demands and the capacity of human
information processing; (2) it is multi-dimensional
(Wickens, 2008); (3) it cannot be measured by primary
task performance alone. The goal of mental workload
analysis is to identify and help prevent both mental
overload, which may decrease performance potentials
and cause fatigue, and underload, which may lead to the
loss of vigilance.

Two groups of methods can be used to assess mental
workload. Human-in-the-loop empirical testing methods
include performance measures such as secondary task
methods, physiological measures such as blink rate, and
subjective measures such as NASA-Task Load Index
(TLX, Hart, 2006). The other group is computational
modeling methods, which include task-analysis-based
methods (e.g., Mitchell & Samms, 2009; Wang, Cain, &
Lu, 2010) and cognitive-architecture-based methods
(e.g., Gray, Schoelles, & Sims, 2005; Wu & Liu, 2007).

This paper introduces a cognitive-architecture-based
method for mental workload modeling. The architecture
is ACTR-QN, which integrates Adaptive Control of
Thought-Rational (ACT-R, Anderson et al., 2004) and
Queueing Network (QN, Liu, Feyen, & Tsimhoni, 2006)
cognitive architectures. The server structure of ACTR-
QN is illustrated in Figure 1.

ACT-R represents the human mind as a production
rule system. It assumes two types of knowledge

representations: declarative chunks and production rules
(rules, for short). A chunk’s retrieval time and error rate
are determined by its activation level, which is jointly
determined by the chunk’s learning history and
association with other chunks. Rules represent
procedural knowledge in the form of condition-action
(IF-THEN) pairs, and its action will be fired when its
condition matches the current “mental state”. A mental
state consists of the state of each module, and each
module is a cognitive component, such as the vision
module and the declarative module. ACT-R “thinks” and
“acts” by firing rules until a goal state is reached.
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Figure 1. The server structure of ACTR-QN.
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The QN cognitive architecture represents the human
mind as a queueing network, where information
processing is the process of servers holding and
processing entities. Each server represents millions of
neurons from a certain functional field of the brain, and
each entity represents certain information to be
processed and passed within the brain. Compared with
ACT-R, QN has the advantages of visualizing mental
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information processing, defining and visualizing mental
workload (Wu & Liu, 2007), and modeling multi-task
performance (Liu, 1997; Wu & Liu, 2008). However,
QN currently does not have the capability to model a
wide range of complex cognitive activities like those that
can be modeled with ACT-R. To benefit from both QN
and ACT-R architectures, ACTR-QN integrates the two
cognitive architectures by representing ACT-R as a QN.
A completed study (paper submitted for review) has
implemented ACTR-QN in a C# based discrete event
simulation platform Micro Saint Sharp
(www.maad.com). ACT-R modules and their buffers are
represented as servers in QN. ACT-R buffer requests,
chunks, production rules, and the notice of completion
are represented as entities that flow between these
servers. ACTR-QN can read the same ACT-R codes to
define a model’s task-specific knowledge and
parameters. It has been verified that ACTR-QN is able to
generate identical mental processes and results as ACT-
R for the ACT-R 6.0 tutorial models (act-r.psy.cmu.edu),
and it also replicated three models of threaded cognition
(Salvucci & Taatgen, 2008), a multitask performance
theory implemented in ACT-R.

The work reported in the paper further develops the
function of ACTR-QN by adding a theory and method
for modeling and visualizing mental workload. Mental
workload was quantified by server utilization, which has
been used in a previous QN modeling study (Wu & Liu,
2007) to model driver workload and its NASA-TLX
measurements. In queueing theory, utilization is the
proportion of time during which the system’s resources
are used by the entities in the system. Considering server
capacities in QN as mental resources in the brain, one
can intuitively link utilization with workload. Since
different servers/modules represent different mental
resources, the utilization values from different servers
processing different entities can be used to estimate
different components of the multi-dimensional
workload. For example, the utilization value computed
from the visual module processing text entities will
represent the visual verbal perception component of
mental workload.

Although the current released version of ACT-R
does not include any mental workload modeling theory
and method, several efforts have been made to propose
and test possible workload modeling methods with ACT-
R (Gray et al., 2005; Jo, Myung, & Yoon, 2010; Lebiere,
2001). In comparison, the work in this paper has its
unique values. First, it modeled both the error rate
performance and the mental workload NASA-TLX data
from an empirical study (Colle & Reid, 1998) with the
same model. Second, it can visualize the multi-
dimensional components of mental workload.

METHOD

ACTR-QN uses server utilization to estimate mental
workload. We assume that, in general, mental workload
has a linear relationship with server utilization. At the
implementation level, the instant utilization of a
server/module is 1.0 when it is busy (processing any
entity) and 0.0 otherwise. The averaged utilization over a
second, for example, equals to the busy time of the
module within the second. ACTR-QN computes
utilization for all servers except the intentional module
and all the buffers, because their processes do not take
any time, which is the same case in ACT-R.

In the current implementation, the utilization of a
network is computed as the average of all server
utilizations in the network. The perceptual sub-network
utilization is averaged from the vision and the audio
modules. The cognitive sub-network utilization is
averaged from the production, the declarative, and the
imaginary modules. The motor sub-network utilization is
averaged from the motor and the speech modules. These
three utilization values correspond to the workload
components of perception, cognition, and response,
which are the three levels of the processing stage
dimension in the multiple resource theory view of
mental workload (Wickens, 2008). Finally, the overall
utilization of a model is computed as the average of the
three sub-network utilization values. We assume that the
overall utilization is linear to aggregated subjective
workload measurements such as NASA-TLX’s overall
workload rating.

For model validation we used the empirical data
from Colle and Reid (1998) Experiment 2, which is a
semantic category judgment task. This study was
selected because it can demonstrate both ACT-R’s
advantage in modeling complex cognitive performance
and QN’s advantage in modeling mental workload
embedded in ACTR-QN. In each trial, participants
judged whether or not two words shown on the screen
belong to the same category by pressing one of two
buttons. Words were randomly selected from 10
categories, each of which had 10 words. All words and
categories were frequently used ones such as “dog —
animal.” Each trial had a fixed display duration, and
there was no time interval between successive trials. A
response was counted as correct if and only if it was the
correct classification and was made within the display
duration of a trial. Trials came in groups that each lasted
2 min 20 s. The presentation rate in a group was
manipulated (6, 14, 22, 30, 38, 46, 54, and 62 word
pairs/min) as an independent variable. The two
dependent variables used in this validation were percent
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correct and NASA-TLX overall mental workload. The
experiment had another independent variable, context
effect, but its effect was not statistically significant.
Therefore, the results used in this validation were
averaged over different levels of context effect.

A model was built in ACTR-QN to simulate the
empirical data. The task-specific knowledge was defined
using the same syntaxes as ACT-R. Each word-category
relationship was defined as a declarative chunk. For
example,

(pAO ISA property object "AQ" attribute category value
A)
defined that an abstract word “A0” belongs to an abstract
category “A”. The initial goal chunk for each trial had its
judgment, 1% word, 2™ word, 1* category, and 2™
category all unknown. Eight production rules were
defined to represent the procedural knowledge. Table 1
shows their English descriptions.

Table 1. English descriptions of the model’s production rules.

Rule English description
IF the judgment is unknown, visual-location buffer has a
Attend visual location, and visual module is free,

THEN encode the content of the visual item.
IF 1% word is unknown, visual buffer has a text chunk, and
Retrieve- declarative module is free,
first THEN 1% word is the text, retrieve its category, and maintain
the visual buffer chunk.
IF the judgment is unknown, visual buffer has a text chunk,

Retrieve- and retrieval failed,
failed THEN retrieve the text’s category, and maintain the visual
buffer chunk.

IF 1* category is unknown, and a category is retrieved,

First- THEN 1% category is the category, find visual-location of the

retrieved second word.
IF 1% word is known, 2" word is unknown, visual buffer has a

Retrieve- text chunk, and declarative module is free,

second THEN 2™ word is the text, retrieve its category, and maintain

the visual buffer chunk.
Second- IF 1* category is kr.lown, 2" category is unknown, and a
. category is retrieved,
retrieved

THEN 2™ category is the category.

IF the two categories are the same, and manual module is free,

Yes THEN press the yes key, judgment is yes, and the goal is
done.

IF the two categories are different, and manual module is free,

THEN press the no key, judgment is no, and the goal is done.

No

The default values of the ACTR-QN’s parameters
are identical to those in ACT-R. To model the particular
task situation of Colle and Reid (1998), only three
parameters were changed from their default values, two
of which were set according to the related ACT-R
methods and only one was adjusted to fit the data.
Specifically, parameter :esc (enable subsymbolic
computations) was set to true to allow random noise in
chunk activation. Parameter :ans (activation noise s),
which controls the scale of chunk activation noise, was
set at 0.5 following the paired word-number
memorization model in the ACT-R 6.0 tutorial.

Parameter :blc (base-level constant) was set at 1.8 to fit
the empirical results. Since the experiment used frequent
words and categories and controlled the learning effect,
we assumed that the learning effect was negligible and
chunk activation did not change during the experiment.
As a result, we did not turn on the declarative chunk
learning mechanism.

The task environment (i.e., displays and controls)
was set using the single-discrete-two-stage template
provided in ACTR-QN to simulate the empirical
experiment. Each presentation rate level was repeated
three times, and the results were averaged before
analyses. Detailed module activity traces, response
results, and server and network utilization were
recorded.

RESULTS

The model fitness for percent correct results is
illustrated in Figure 2. The mean absolute percentage
error (MAPE) was 2.6%, the root mean square error
(RMSE) was 2.450, and the coefficient of determination
(R?) was 0.986.
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Figure 2. Comparing human and model percent correct results.

Examining the module activity traces revealed two
types of errors. The first type is no response. Due to the
random noise in chunk activation, the retrieval of a
word-category relationship from the declarative memory
may take a long time or even fail. Although the model
will keep retrieving if it fails, it may not have enough
time to complete the judgment and issue the manual key-
press response within the duration of a trial. As the
duration decreases with increasing presentation rates, no-
response errors become more frequent. The second type
is incorrect response. It happens when the model has
issued a key-press motor command, but the next trial
starts before the “finger” actually hits the “key”. If the
second trial’s correct response is different from the first
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trial’s correct response, the key press will become an
incorrect response to the second trial.

Linear regression was used to fit the relationship
between model overall utilization (OU) and NASA-TLX
overall workload (OW) ratings (R’ = 0.988). The resulted
regression function is

OW predicted =-5.8 + 570.4 * OU. (D

Figure 3 shows the subject-reported NASA-TLX
overall workload and corresponding model prediction
under different task demand conditions.
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Figure 3. Comparing human and model overall workload results.
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Figure 4. Visualization of mental workload components in ACTR-
QN under different task demands. Word presentation rates: (a) 6
pairs/min, (b) 30 pairs/min, and (c) 62 pairs/min.

Although the authors (Colle & Reid, 1998) did not
report subjective ratings for each mental workload
component, ACTR-QN computed and visualized sub-
network utilization values, which we assume to have
linear relationship with corresponding workload
components. Figure 4 shows the utilization of
perceptual, cognitive, and motor sub-networks under
three different presentation rates. The visualization
clearly demonstrates workload increasing with faster
presentation rates and provides more detailed estimation
about each workload components.

DISCUSSION

As argued by Byrne and Pew (2009), a merit of
modeling techniques is to quantitatively define concepts
like workload, rather than qualitatively define them in a
verbal form. This study proposed and validated a
quantitative mental workload modeling theory and
method in ACTR-QN, which is an integrated cognitive
architecture combining the advantages of ACT-R and
QN human performance modeling. Server utilization in
QN was used to model mental workload. Modeling
results were validated against human data from a
semantic category judgment task. The same ACTR-QN
model generated both percent correct performance
results and NASA-TLX overall mental workload results
that were very similar to the corresponding human data
(MAPE < 5.0% and R’ > 0.95). In addition, different
components of mental workload were visualized in
ACTR-QN. The visualization clearly showed the
increase of mental workload with greater task demands.

ACT-R is perhaps the most influential cognitive
architecture in the research field, but its application in
human factors analysis has mainly focused on modeling
performance. This study introduces a new theory and
method to measure and visualize mental workload in
ACTR-QN. The theory and method is in accord with
three important features of mental workload: sensitive to
task demands, multi-dimensional, and different from
primary task performance. Since ACTR-QN uses exactly
the same modeling syntaxes as ACT-R to define task-
specific knowledge and parameters, as demonstrated by
this study, researchers who are familiar with ACT-R can
enjoy a seamless modeling of mental workload in
ACTR-QN.

Compared with human-in-the-loop empirical
methods, mental workload evaluation using predictive
models such as ACTR-QN does not require any real time
measurement of operator in-the-loop testing. This feature
makes ACTR-QN especially suitable for early-stage
evaluation without any full-scale system, quick
evaluation of a large amount of design alternatives, and
evaluation in high-risk domains. In this regard, task-
based (e.g., Cassenti, Kelley, & Carlson, 2010) and task-
time-based (e.g., Wang et al., 2010) methods usually
need expert judgments to estimate workload scales and
time constraints for unit cognitive tasks. In contrast,
ACTR-QN’s prediction of mental workload can
complement or substitute expert subjective judgments, as
it is based on a synthesis of a large amount of related
findings and governed by the psychological and
neuroscience theories underlying the cognitive
architecture. These advantages make ACTR-QN a
valuable one in the arsenal of system test and evaluation
tools. Future research can further develop and examine
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ACTR-QN’s workload modeling function in more
complex task scenarios.
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