Diagnosticity and Multidimensional Subjective Workload Ratings

Tsang & Velazquez (1996)

Workload Profile Rating Scale

(Range: 0.0 - 1.0; Proportion of Available Resource Utilized)

Workload Dimensions								
Stage of processing		Code of processing		Input		Output		
Perceptual/ Central	Response	Spatial	Verbal	Visual	Auditory	Manual	Speech	
	Perceptual/	Perceptual/ Response	Stage of processing Code of processing Perceptual/ Response Spatial	Stage of processing Code of processing Perceptual/ Response Spatial Verbal	Stage of processing Code of processing In Perceptual/ Response Spatial Verbal Visual	Stage of processing Code of processing Input Perceptual/ Response Spatial Verbal Visual Auditory	Stage of processing Code of processing Input Out Perceptual/ Response Spatial Verbal Visual Auditory Manual	

Obviously inspired by Wickens' Multiple Resource Theory

Appendix A. Workload dimensions in the Workload Profile.

1. Stages of processing

- (1) Perceptual/central processing. These are attentional resources required for activities like perceiving (detecting, recognizing, and identifying objects), remembering, problem-solving, and decision making.
- (2) Response processing. These are attentional resources required for response selection and execution. For example, there are three foot pedals in a standard shift automobile; to stop the automobile, we have to select the appropriate pedal and step on it.

2. Processing codes

- (1) Spatial processing. Some tasks are spatial in nature. Driving, for example, requires paying attention to the position of the car, the distance between the current position of the car and the next stop sign, the geographical direction that the car is heading, etc.
- (2) Verbal processing. Other tasks are verbal in nature. For example, reading involves primarily processing of verbal, linguistic materials.

3. Input modality

- (1) Visual processing. Some tasks are performed based on the visual information received. For example, playing basketball requires visual monitoring of the physical location and velocity of the ball. Watching TV is another example of a task that requires visual resources.
- (2) Auditory processing. Other tasks are performed based on auditory information. For example, listening to the person on the other end of the telephone is a task that requires auditory attention. Listening to music is another example.

Note that spatial information may be processed visually or auditorily. For example, you can get to a new restaurant by following a map (visual processing) or by following the directions spoken by your friend (auditory processing). Similarly, verbal information may be processed visually or auditorily. Listening to the news on the radio requires auditory processing of verbal materials; reading the news from the newspaper requires visual processing of verbal materials.

4. Output modalities

- (1) Manual responses. Some tasks require considerable attention for producing the manual response as in typing or playing a piano.
- (2) Speech responses. Other tasks require speech responses instead. For example, engaging in a conversation requires attention for producing the speech responses.

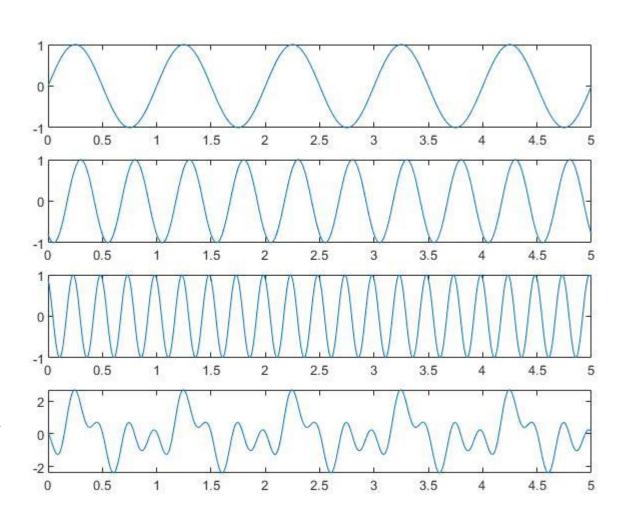
Experimental Details

Two laboratory tasks:
 Sternberg Memory Task
 Continuous 1-D Tracking Task

Sternberg Task

Search contents of working memory; DV = RT Two levels of difficulty

SB2: memory set size = 2 letters SB4: memory set size = 4 letters


Tracking Task

Compensatory tracking; keep moving cursor on central target Sum-of-sines "forcing function"; DV = RMSE Two levels of difficulty

TR1: forcing function = speed (1st-order)

TR2: forcing function = acceleration $(2^{nd}$ -order)

Sample "Forcing Function" for Tracking Task (Sum of Sines)

Experimental Details

• Participants experience the following conditions: Single Task: SB2, SB4, TR1, TR2

Dual-Task: SB2TR1, SB4TR1, SB4TR1, SB4TR2

- Conditions are presented in randomized order
- Subjective workload ratings obtained for each condition

Bedford scale

Magnitude estimation (Relative to SB2 = 100 modulus)

Workload Profile

PC – Perceptual/Central Processing; RP – Response Selection

SP – Spatial Processing; VB – Verbal Processing

VS – Visual Processes; MN – Manual Processes

{Auditory input and Speech output excluded}

Diagnosticity Results

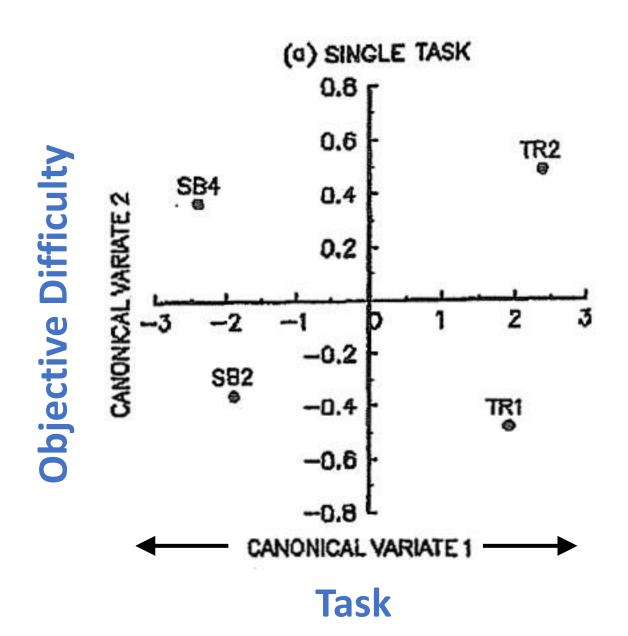
Canonical Discriminant Analysis

• <u>Canonical discriminant analysis</u> is the equivalent of a canonical correlation analysis between a set of quantitative variables (e.g., the six Workload Profile ratings) and a set of orthogonal dummy variables coded to represent the classification variables (e.g., the four dual-task conditions)

Dummy (Classification) Variables:

SB2TR1	0	0	0
SB2TR2	0	0	1
SB4TR1	0	1	0
SB4TR2	1	0	0

• Quantitative Variables Set:


[PC RP SP VB VS MN]

Canonical Discriminant – Single Task Condition

Table 3. Canonical correlations between task conditions and workload profiles.

First and second Canonical Variates are significant		
PC RP	-0·36 0·16	0·81 0·54 0·25
VB VS MN	-0.88 0.15 0.23	0·27 0·17 0·34
	·26	.03
TR1 TR2 SB2 SB4	1.92 2.37 -1.89 -2.40	-0·48 0·48 -0·36 0·37
	0.83	0.16
	RP SP VB VS MN TR1 TR2 SB2	RP 0.16 SP 0.93 VB -0.88 VS 0.15 MN 0.23 -26 TR1 1.92 TR2 2.37 SB2 -1.89 SB4 -2.40 0.83

Significant Separation of Profiles by Conditions

Single-Task Workload
Profiles annotated with
high-value "structural
coefficients" from the
Canonical Discriminant
Analysis

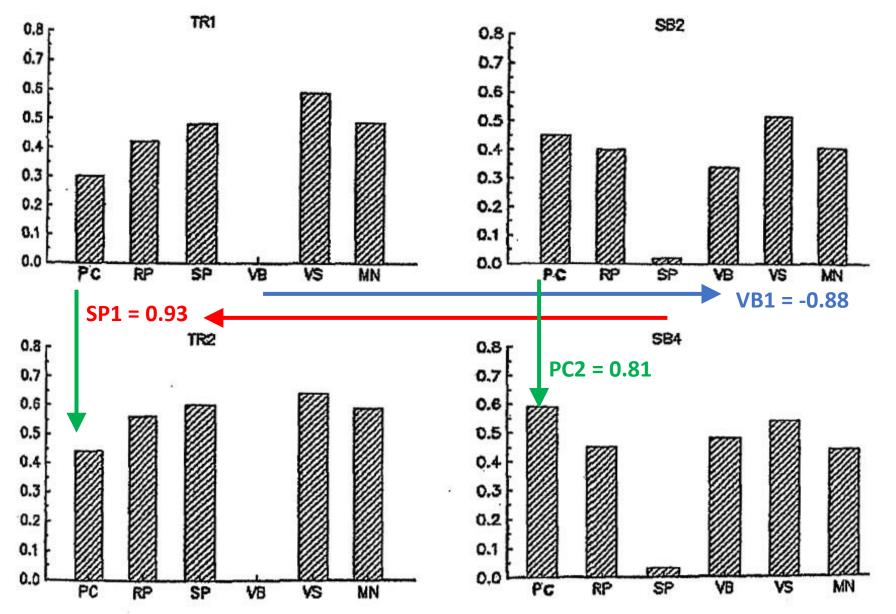
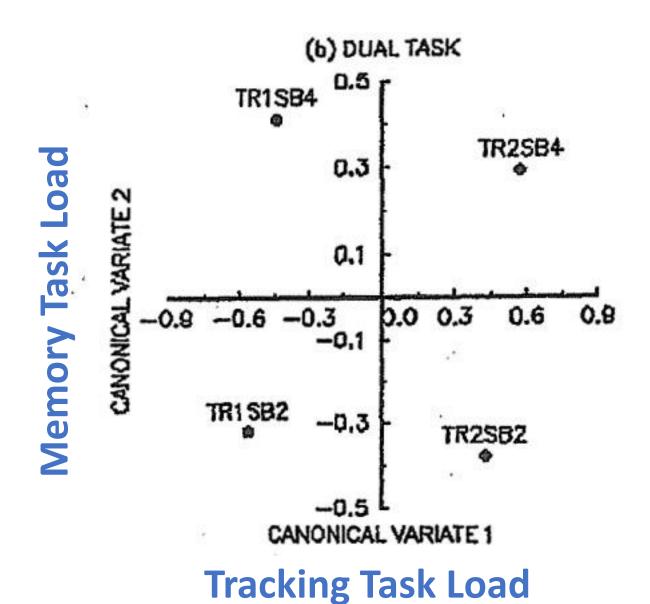



Figure 3. Single task mean subjective ratings on the six workload dimensions in the Workload Profile procedure. PC = perceptual/central, RP = response, SP = spatial, VB = Verbal, VS = visual, MN = manual.

Canonical Discriminant – Dual Task Conditions

Table 3. Canonical correlations between task conditions and workload profiles.

Only the First Cand	Only the First Canonical Variate was successful		Structure coefficients		
at discriminating among conditions			Canonical Variate 1	Canonical Variate 2	
Dual-task workload	dimension	PC	0.64	0.68	
	First Canonical variate	RP	0.70	0.45	
70	First Canonical variate	SP	0.84	0.03	
	accounts for 8% of the	$\mathbf{V}\mathbf{B}$	0.25	0.62	
	variation in the Workload	VS	0.49	0.38	
	Profiles across conditions	MN	0.63	0.21	
Redundancy			.08	.03	
Task means		TR1SB2	-0.56	-0.32	
Tubic IIIouiio	Wilkes Lambda (p < 0.001)	TR1SB4	-0.44	0.41	
	Significant Workload Profile	TR2SB2	0.43	-0.38	
	differences across conditions	TR2SB4	0.57	0.29	
R^2			0.21	0.13	
A'C	Moderately meaningful d	imension —			

Dual-Task Workload
Profiles annotated with
high-value "structural
coefficients" from the
Canonical Discriminant
Analysis

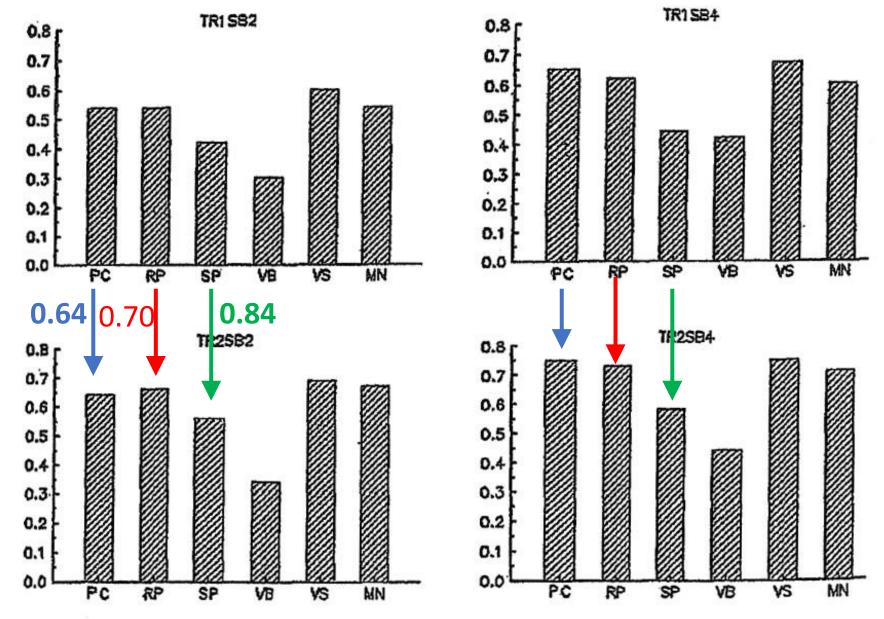


Figure 4. Dual task mean subjective ratings on the six workload dimensions in the Workload Profile procedure. PC = perceptual/central, RP = response, SP = spatial, VB = verbal, VS = visual, MN = manual.

Sensitivity Analysis

• (5) ANOVAs

[2] Blocks (Early; Late] x [6-8] Task ConditionsDependent variables:RMSE, RT, Bedford, Psychophysical, Sum of WP Ratings

• (2) MANOVAs

[4] Dual-Task Conditions
Dependent variable sets:

[RMSE, RT] i.e., Performance

[PC,RP,SP,VB,VS,MV] i.e., six Workload Profile scores

ANOVA Results

- Significant BLOCK (Practice) effect for all ANOVAs: improved performance; decreased subjective workload
- Significant TASK main effect for all ANOVAs: denoting sensitivity to the task load manipulations

POST HOCs:

- Significant differences across Tracking task load conditions: error increased for all second-order tracking task conditions
- RT fastest for SB2, slowest for TR2SB4 condition
- Dual-task RT always slower than single-task RT
- As predicted by Multiple Resource Theory, TR2SB4 demonstrated the highest tracking error and slowest RT

Table 5. Comparison of the workload assessment instruments.

	Performance		Subjective			
	RMSE RT		Bedford	Psychophysical	Workload profile	
Subjective approache Dimensionality Absolute versus relative Immediate versus retrospective	S		Unidimensional Absolute Immediate	Unidimensional Relative Retrospective	Multidimensional Absolute Retrospective	
Time to complete			Several seconds	Few minutes	15-30 minutes	
Sensitivity Univariate effect size Multivariate effect size	75 : .97	·30	·37	-57	•28 Sum WF	
[RMSE, RT	1		[PC,RP,	SP,VB,VS,MN]		

APPLIED PSYCHOLOGY: AN INTERNATIONAL REVIEW, 2004, 53 (1), 61-86

Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods

Susana Rubio,* Eva Díaz, Jesús Martín and José M. Puente

Universidad Complutense de Madrid, Spain

TABLE 3
Workload Means and Standard Deviations for Each Instrument

		Mean	SD
M2	TLX	7.44	6.58
	SWAT	4.07	1.84
	WP	1.24	0.79
M4	TLX	8.81	7.55
	SWAT	4.09	1.33
	WP	1.60	0.91
S3	TLX	16.53	11.01
	SWAT	5.70	2.37
	WP	1.72	0.81
S1	TLX	25.97	10.95
	SWAT	7.32	1.83
	WP	2.61	0.93
M2S3	TLX	32.42	18.30
	SWAT	9.73	2.39
	WP	2.96	0.97
M4S3	TLX	33.17	17.06
	SWAT	10.94	3.15
	WP	3.30	0.82
M2S1	TLX	39.30	16.40
	SWAT	13.53	3.01
	WP	3.44	0.82
M4S1	TLX	46.28	17.61
	SWAT	14.51	4.13
	WP	4.32	1.02

<u>Single Task ANOVAs</u>: (2) Task Load Levels; <u>Dual-Task ANOVAs</u>: (2) Memory Task Levels x (2) Tracking Task Levels <u>Dependent Variable</u>: Global Workload Score WP = Sum of WP scores (0.0-6.0)

TABLE 4 Summary of ANOVAs for Each Instrument

Task	Variable	Instrument	F(1,11)	p
Single	Memory set size	TLX	1.09	0.319
1000	187	SWAT	0.00	0.976
		WP	28.72	0.000**
	Path width	TLX	48.86	0.000**
		SWAT	14.20	0.003**
		WP	50.43	0.000**
Dual	Memory set size	TLX	13.81	0.003**
		SWAT	4.52	0.057
		WP	70.39	0.000**
	Path width	TLX	43.67	0.000**
		SWAT	18.14	0.001**
		WP	30.93	0.000**
	Interaction	TLX	4.86	0.500
		SWAT	0.03	0.864
		WP	6.22	0.030*

^{*} p < .05; ** p < .01.

Sensitivity Analysis

Appendix:

Predicting Task Performance: Regression Models

P. S. Tsang and V. L. Velazquez

Table 1. Multiple regression analysis models and squared multiple correlations.

						R^2			
					Full	model	Reduc	e model	
	Multiple Regressio	n model			With	Without	With	Without	
Single ← RT	PC RP SP VB VS MN Single-task ratings	Memory Size		Block	·84***	.51****	·71****	·26****	
$\begin{array}{c} \text{Single} \leftarrow \\ \text{RMSE} \end{array}$	PC RP SP VB VS MN Single-task ratings		Track order	Block	.93****	·86****	·43****	·18***	
Dual ← ZSUM	PC RP SP VB VS MN Dual-task ratings	Memory Size	Track M×T order	Block	·81****	·79****	·56****	.15**	
Dual ← ZSUM	PC RP SP VB VS MN Single memory + Single tracking ratings	Memory Size	Track M×T order	Block	·82***	·79***	·30***	.10*	

Notes. PC = perceptual/central, RP = response, SP = spatial, VB = verbal, VS = visual, MN = manual; full model included all independent variables listed, reduced model included only the subjective ratings for the six workload dimensions; with = with subject as a classification variable in the model, without = without the subject variable; $M \times T = Memory$ set size × tracking order interaction; ZSUM = sum of the standardized dual task RT and RMSE; **** p < .0001 that R^2 is significantly different from zero, *** p < .001, ** p < .01, * p < .05.