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Computational Modeling of Foveal Target Detection

Gary Witus, Turing Associates, Ann Arbor, Michigan, and R. Darin Ellis, Wayne State
University, Detroit, Michigan

This paper presents the VDM2000, a computational model of target detection
designed for use in military developmental test and evaluation settings. The model
integrates research results from the fields of early vision, object recognition, and
psychophysics. The VDM2000 is image based and provides a criterion-independent
measure of target conspicuity, referred to as the vehicle metric (VM). A large data
set of human responses to photographs of military vehicles in a field setting was
used to validate the model. The VM adjusted by a single calibration parameter
accounts for approximately 80% of the variance in the validation data. The primary
application of this model is to predict detection of military targets in daylight with
the unaided eye. The model also has application to target detection prediction using
infrared night vision systems. The model has potential as a tool to evaluate the visual
properties of more general task settings.

INTRODUCTION

Need and Scope
Visual detection by human observers to is

considered to be the major operational threat
to individual vehicle and unit operation security.
The U.S. Army, as well as the NATO countries,
have recognized the need for a greater under-
standing of both the visual signature of their
vehicles and the process of detection by human
observers using unaided eyes and direct view
optics. To this end, the military community im-
plemented initiatives such as the U.S. Army Tar-
get Acquisition Model Improvement Program
in the early 1990s and the NATO Research
and Technology Organization working group
(SCI-12) on camouflage evaluation methods
and models. This project was motivated by the
need for tools for developmental test and evalu-
ation of military vehicles employing designs and
technologies for detection avoidance (i.e., "sig-
nature management"). This project was specifi-
cally motivated by the need for models of visual
detection.

The performance specification for develop-
mental test and evaluation is expressed in terms
of detection, given that the observer is looking
at, or in the direction of, the vehicle (i.e., foveal
target detection). It is not expressed in terms of
search time or probability of detection during
wide-field-of-view search. Search performance
is of interest in operationaln.test and evaluation
of large-scale combat, but it is not used in per-
formance requirements for materiel develop-
ment because search outcome and performance
is influenced by many factors over which the
materiel designer has no control (e.g., the tactics'
and operational employment of 'friendly and
threat forces; the large-scale terrain properties).
The materiel designer has control over only the
vehicle signature and, to some degree, how it in-
teracts with its local surrounding. The perfor-
mance specifications for signature management
are expressed in terms of detection range and
probability of detection. In the context of military
target acquisition, detection means determin-
ing that an object is a potential target, specifi-
cally a military vehicle. Detection avoidance
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requirements for ground vehicles invariably ad-
dress detection avoidance for a stationary vehi-
cle. Moving target detection is considered in
combat models but is not currently a major com-
ponent in developmental test and evaluation.

Objectives

The goal of the project was to develop a robust
and accurate analytic model to predict human
observer performance in visual vehicle discrim-
ination at the "detection" level for stationary
targets, given that the observer was looking at,
or in the direction of, the target. The result of
this work was a model of target detection called
VDM2000.

VDM2000 THEORY

Comparison with Recent Approaches

The visual search paradigm. An extensive
body of research in experimental psychology
has been developed based on the visual search
paradigm. This paradigm, although useful in
studies of basic visual attention and perception,
does not apply to search for vehicles in natural
scenes. The visual search paradigm enables ex-
perimental psychologists to control the visual
content to which the participants respond and
thereby to isolate specific aspects of vision. The
visual search paradigm, as described by Wolfe
(1998), is characterized by (a) discrete target
and distractor figures, (b) a well-defined spe-
cific target description, (c) well-defined dis-
tractors, (d) well-defined visual attributes with
distinctive and discrete values, (e) randomized
placement, and (f) a noninterfering and nonin-
formative background.

The standard experimental psychology visual
search paradigm eliminates uncertainty on sev-
eral dimensions important to understanding
search in natural scenes. First, there is no uncer-
tainty as to the appearance of the target or the
question of what the objects are. Second, this
paradigm eliminates the contribution of local
and global context in search. These properties
make the standard visual search paradigm use-
ful for basic vision and attention research, but
they also make it inapplicable to search for
vehicles in natural terrain.

Salience theory of search and computer
vision models. The salience theory of search

holds that the strength with which locations
draw visual attention is proportional to the mag-
nitude of resemblance between the target and
scene locations (Itti & Koch, 2000; Wolfe, 1994).
Computer-vision-based models of search and
performance based on salience theory have the
challenge of developing a computational metric
of the extent to which locations resemble a tar-
get. The computational salience models attempt
to find targets in an image using cues and crite-
ria that correspond, in theory, to those used by
people. Computer vision systems have been ef-
fective in structured environments and tasks, but
they have not proven effective in unconstrained
environments or for ill-structured tasks.

Even when computer vision systems are ef-
fective, they do not use the same methods that
human vision uses. Itti and Koch (2000) con-
cluded that the performance of their algorithm
is uncorrelated with human performance. Com-
putational salience modeling is a special case
of the more general problem of automatic target
recognition (ATR) algorithms. ATR algorithms
focus on target detection as the end goal, rather
than on increasing understanding of human
vision. Over the past 20 years, the U.S. Depart-
ment of Defense has provided significant fund-
ing for ATR development. The U.S. Army, Navy,
Air Force, and Defense Advanced Research
Projects Agency all have active ATR programs.
To date, no robust and effective computational
method has been demonstrated to find loca-
tions in images that resemble ground vehicles.
No ATR algorithms have been successfully
placed in the field, even with the more limited
goal of cuing human observers.

Operational effectiveness models. The U.S.
Army Night Vision Laboratory's target acquisi-
tion models (O'Kane, 1995; Wilson, 2001) are
the preeminent examples of the "operational
effectiveness" approach. These models have
shown some limited success in explaining per-
formance for search and detection with low-
resolution night vision devices. These models
were intended to predict average performance
over a set of similar images, not to predict detec-
tion performance for specific images (as the cur-
rent modeling effort does). The Night Vision Lab
models have been less accurate when applied
to high-resolution visual search or to evaluate
specific images. In 1992 the U.S. Army initiated
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a 3-year Target Acquisition Model Improvement
Program, which ultimately failed to produce an
improved model (Mazz, Kistner, Bushra, &
Pibil, 1997).

Development and Historical Antecedents

The VDM2000 is a cascading sequence of
equations representing front-end vision, per-
ceptual organization of the vehicle, local con-
trast and clutter, evidence accumulation, and
psychophysical response. The richness of the
model comes primarily from the number of
different factors and stages of processing that
are represented. It is a' low-threshold model,
consistent with basic vision research results for
search and cued detection.

The VDM2000 makes numerous contribu-
tions to the science and practice of modeling
human observers in areas such as contrast mech-
anisms and measurement, the ability to account
for masking attributable to local clutter, and rep-
resentation of internal target structure. Table 1
presents a list of VDM2000 contributions vis-

a-vis classical models (Matchko & Gerhart,
2001; O'Kane, 1995; Wilson, 2001). A process
flow of the VDM2000 is show in Figure 1.

Low-Level Vision Module: Achromatic and
Color Vision

The model's front end (the side of the model
that interacts with the inputs) represents bot-
tom-up visual processing, including pupil reflex;
cone saturation and spectral response; spatial
filtering and sampling resulting in the retinal
output response to the image formed on the reti-
na; and finally achromatic and color-opponent
response (Kaiser & Boynton, 1996). See the box
labeled "low-level vision module" in Figure 1 for
a depiction of this module relative to the overall
VDM2000 architecture.

The red-green-blue (RGB) image is converted
to the standard Commission Internationale de
l'Eclairage (CIE) tri-stimulus XYZ coordinates
(CIE, 1932). The XYZ image is converted to an
image of the long-, medium-, and short- (LMS)
wavelength cone responses. The perceived color

TABLE 1: VDM2000 Contributions with Respect to Classical Models

Model Feature Classical Models" VDM2000

Basis for contrast Based on the input to Based on the output of the receptors (cones)
measurement the visual system after luminance adaptation and cone nonlinearities

(Boynton & Whitten, 1970; Kaiser & Boynton,
1996)

Contrast channels Evaluate only luminance Includes both luminance and chromatic contrast
accounted for contrast (Brainard, 1996; Wandell, 1995)

Ability to account Compute aggregate Uses a simple model of the structure and
for effects of object's statistics treating the entire appearance of 3-D objects under natural
internal structure vehicle as homogeneous illumination (Moore & Cavanagh, 1998; Witus,

Gerhart, & Ellis, 2001)

Generality of Use an equation to Uses a band-limited, adaptive function to
contrast model compute contrast that compute local contrast in inhomogeneous

is well defined only for surroundings (Ahumada & Beard, 1998; Peli,
uniform targets against 1990, 1997)
uniform backgrounds

Ability to account Do not include a measure Computes local clutter and represents its
for local clutter of local clutter or its effect masking effect on the efficiency of contrast for

on detection detection (DeValois & DeValois, 1990)

Model output Predict detection Generates a receiver operating characteristic
independent of the curve, expressing the probability of positive
response biases and false response as a function of the false alarm rate
alarm context and the vehicle detection metric (Palmer et al.,

2000)

Matchko & Gerhart, 2001; O'Kane, 1995; Wilson, 2001.
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Figure 1. VDM2000 processing flow.

image (Acd; achromatic, red-green, and yellow-
blue color-opponent channels) is modeled as a
linear transformation of the LMS cone response.

Local Contrast and Local Clutter
Local contrast and clutter are calculated

based on a combination of the bottom-up infor-
mation provided from the front-end vision mod-
ule and some top-down assumptions regarding

the cognitive processes involved in the perceptu-
al organization of the target. These modules are
implemented as independent modules in the
model architecture and are depicted in Figure 1.

Target organization: Shape from shading.
With simple two-dimensional targets there is
typically no need to consider the organization
of target perception. Ground vehicles are three-
dimensional (3-D) structures that rarely present
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a uniform appearance. The simple physics of
lighting and geometry of configuration dictate
that some surfaces of a 3-D object will receive
more illumination than others because of shad-
ing from surface orientation and shadowing
from occlusion. Some surfaces are bright, some
are dark. These systematic variations 'provide
the pop-out cues that the human visual system
uses to segment objects from their surround-
ings (Sun & Perona, 1996). Tarr, Kersten, and
Buelthoff (1998) found that the human visual
system encodes the direction of illumination
and its related effects (e.g., shading and shad-
ows) and that these function to reveal a 3-D
object's shape. Moore and Cavanagh (1998)
found that two-tone images of 3-D objects were
highly effective at inducing 3-D object percep-
tion despite their lack of shading, hue, or tex-
ture. They concluded that the mechanisms of
3-D object perception in natural scenes include
a mechanism for processing scene illumination
with respect to an internal memory representa-
tion of a 3-D object's shaded appearance. Witus
and Gerhart (2000) found that aggregate differ-
ences among the front, side, and top regions
accounted for more than 65% of the luminance
variance over the entire vehicle for a sample of
44 images of military vehicles in natural settings.

VDM2000 does not attempt to emulate the
process by which the visual system recognizes
objects. Rather, the model uses as an input a
representation of the results of the top-down
processing to measure the amount of, signal
available for an observer to detect the object.
In VDM2000, the generic representation of a
vehicle is the projection onto the image plane
of the orthogonal front (or rear), side, and top
vehicle surfaces - a 2.5-D representation.
These vehicle surfaces have different orienta-
tions with respect to the illumination source
and observer. Consequently, there tends to be
low variation within a region,and high contrast
between regions. These properties are charac-
teristic of 3-D 'objects and are natural for a
simplified representation of a military vehicle.

Clutter and contrast. Defining the local sur-
round. For each of the three characteristic target
regions, and across the achromatic and two color-
opponent channels of the Acd images in per-
ceptual coordinates (the outputs of the model's
front end), the VDM2000 computes local con-

trast and local clutter. The VDM2000 local-
contrast and local-clutter measures are single-
channel band-pass metrics. The upper limit on
the spatial band-pass is the Nyquist limit of the
input image (45 cycles/'). The lower,limit is a
function of the size and shape of the target re-
gion and its local surround. The local surrounds
are computed with the same algorithm; however,
the local surround' for calculating contrast is
narrower than the local surround for calculating
local clutter. Aggregate values for each region
are then calculated for determination of the vehi-
cle metric in the next step. Aggregate contrast is
the sum of the contrast magnitude on the indi-
vidual achromatic and color-opponent chan-
nels. Aggregate clutter is the root-sum-square
of the clutter (a) on the individual achromatic
and color-opponent channels plus a component
representing the internal noise of the visual sys-
tem (CVIsION). See Figure 1 for a depiction of the
contrast and clutter modules as well as their
relation to the overall model architecture.

Evidence Accumulation:
The Vehicle Metric Module

The visual evidence is based on the spatial
signal from the bottom-up path (contrast and
clutter metrics), organized by the region of inter-
est from the top-down path (2.5-D mask). The
contrast, clutter, and area are all combined into
a detectability metric for each surface region (see
Figure 1, vehicle metric module). The region
metric is equal to region area times aggregate
contrast times contrast efficiency. The contrast
efficiency is the ratio of aggregate contrast to
aggregate clutter. Thus the region metric is
equal to area times contrast squared, divided
by clutter.

The vehicle metric is the maximum of the
three surface region metrics. This is consistent
with the observation that detection is a function
of the dominant cue: Suppressing secondary
cues has no effect if the dominant cue is not
treated, but suppressing the dominant cue re-
duces detectability until it is reduced to the point
where it is no longer dominant.

Psychophysical Response Module

The vehicle metric is a criterion-independent
measure of target signal. Observer detection
response also depends on a number of other
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factors unrelated to the image (e.g., perceived
cost of a missed detection vs. perceived cost of
a false alarm; expectations regarding the fre-
quency or density of targets; nontarget objects
that resemble targets). The effect of these factors
is measured by the probability of false alarm
(i.e., false alarm rate). The psychophysical
function expresses the probability of hit (i.e.,
positive response in the presence of, but not
necessarily in response to, a target) as a function
of the criteria-independent measure of perceived
signal and the probability of false alarm in the
form of a receiver operating characteristic
curve. Several different psychophysical models
have been used successfully in visual search and
detection (Palmer, Verghese, & Pavel 2000).
VDM2000 uses a two-stage psychophysical
model. Pr(D), report of "detection" in response
to a target, is computed as a function of the vehi-
cle metric (VM), the probability of false alarm,
Pr(FA), and the calibration parameter, a. The
value of a is scaled to the false alarm rate, and
one value of a is used for all response levels.
The false alarm rate is used as a measure of
bias, or the willingness of an observer to call
some signal a target.

At any given response level characterized by
Pr(FA), Pr(D) is computed as the vehicle metric
divided by the vehicle metric plus a constant.
The constant is divided by the false alarm rate.

Pr(D) = VMI[VM + a/Pr(FA)]. (1)

The equation for Pr(H) (probability of a
"hit") as a function of Pr(D) and Pr(FA) is based
on a simple theoretical model. The model as-
sumes that positive response to the target signal
and positive response to other signals in the

image are processes that are parallel and inde-
pendent. A "detection" is reported if there is
either a positive perception of the target (at
probability Pr[DI) or positive misperception
of nontarget stimuli (at probability Pr[FA]).
The standard equation for the probability of the
union of two events is used:

Pr(H) = 1 - [1 - Pr(D)][1 - Pr(FA)] (2)

- that is, no detection is reported only when
there is no correct detection and no false alarm.
These two equations can be combined into a
single psychometric equation for Pr(H) as a
function of the vehicle metric, Pr(FA), and the
calibration parameter a:

Pr(H) = (VM + a)/[VM + a/Pr(FA)]. (3)

VDM2000 IMPLEMENTATION AND
OPERATION

VDM2000 takes two images as inputs: an
image of the vehicle in the scene and a mask
image designating the front (or rear), side, and
top surfaces of the vehicle. The specification of
the projection of the front (rear), side, and top
surfaces onto the image plane is based on the
geometry of illumination, shadowing, and reflec-
tion. The mask image is a three-color image in
which the projections of the front, side, and
top are arbitrarily color coded red (255, 0, 0),
green (0, 255, 0), and blue (0, 0, 255). The non-
target area is black (0, 0, 0). An example tar-
get image and accompanying mask is shown in
Figure 2. Finally, the VDM2000 predicts Pr(H)
and Pr(D) for several values of Pr(FA). The
values of Pr(FA) for which the analyst wants to
predict Pr(H) and Pr(D) are entered as well.

Vt
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Figure 2. Original image and "2.5-D" mask of the three characteristic surfaces.
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A fully detailed discussion of the technical
requirements for images (e.g., resolution, blur),
calibration requirements (e.g. computing the
RGB-to-XYZ transform), construction of masks,
and other aspects of operating the model is
beyond the scope of this paper but appears in
Witus (2001).

VALIDATION DATA: METHODS,
PROCEDURE, AND RESULTS

Participants

The model validation experiments were con-
ducted using paid participants recruited from
the general population. Participants (18-45
years of age) had vision corrected to 20/20 and
normal color vision (screened with a Bausch
and Lomb Orthorater). Of the 20 participants,
there were 19 men and 11 women.

Stimulus Material

The image set consisted of 1150 distinct
images, 800 images with vehicles in the scene
and 350 without. The images were created from
44 color slide images taken during the 1995
Distributed Interactive Simulation, Search, and
Target Acquisition Fidelity field test held by the
U.S. Army Communications-Electronics Com-
mand Night Vision and Electronic Sensors Di-
rectorate (Toet, Bijl, Kooi, & Valeton, 1998).
The color slides were digitized at high resolution

to produce a digital image of 6144 x 4096 pix-
els. The original 44 images contained nine dif-
ferent types of tracked and wheeled U.S. and
foreign military vehicles in a variety of locations,
aspects, postures (including partially obscured),
and lighting conditions. Ranges were from 500
to 5000 m. The original 44 images did not pro-
duce wide variation in probability of detection in
search and detection test (Toet et al., 1998). The
1150 images used for model validation in this
project were down sampled with low-pass filter-
ing, cropped to 1080 x 720 pixels, and then dig-
itally manipulated to produce a wider range of
expected' observer response. Details of the stim-
ulus image manipulation process are given in
W\itus (2001). Image manipulations were chosen
so that the image set would vary with respect to
factors that are knowxn to influence visual per-
ception, such as brightness, contrast, chromatic-
ity, and spatial scale. Table 2 briefly describes
the image manipulations.

Apparatus

Stimuli were presented and responses col-
lected via custom-made visual search experi-
mentation software Written in Visual Basic 6.
All responses were collected through a two-
button mouse. The experimental software ran on
a Gateway 2000 Pentium II PC using a 17-inch
(43-cm) EV700 monitor with an ATI Rage Pro
128 graphics card set to 24-bit color at 1280 x
1024 pixel resolution.

TABLE 2: Important Dimensions of Variation in the Image Set

Dimension Source of Variation

Vehicle type
Viewing azimuth
Viewing elevation
Range

Lighting
Uighting
Overall illumination
Contrast attenuation
Color
Vehicle exposure
Clutter
Signature
Vehicle shadows
Camouflage nets
Camouflage paint patterns

9 types of military vehicles
3600
00 to 450
13x variation in linear scale, resulting from a combination of original
image target size and the down-sampling scale factor (2:1 and 3:1)
direct, diffuse, or in shadow
from front, back, side, or top
light or dark
clear or haze
full color or gray scale
fully exposed, partially exposed, or foreground foliage
in the open or amid clutter
baseline, reduced contrast, or suppressed cue features
present or absent
present or absent
present or absent
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The monitor was calibrated prior to testing
by displaying red, green, and blue images at a
staircase of intensities and measuring the CIE
xyY coordinates with a Minolta CS-100 col-
orimeter. We also measured the display xyY
with only the low level of ambient illumination
maintained for the test. These data were used
to estimate the parameters of the RGB-to-XYZ
transfer function in the computer model (the
monitor bias, the gamma exponent, and a linear
matrix). Ambient illumination from the wall
behind the monitor varied somewhat but was
approximately 30 cd/m2 . Peak monitor output
was 110 cd/m2. Reflection from the dark screen
was 5 cd/m2. The participants were seated 60
inches (152 cm) from the monitor and behind a
table to prevent them from moving forward. At
this distance, the angular resolution of the mon-
itor was 110 pixels/°, roughly equal to the limit
of visual acuity for high-contrast signals at the
central fovea.

Experimental Procedure

Instructions and pretest training. Observers
were individually tested in a self-paced manner.
Prior to the experiment, the observers were pre-
sented with a set of 27 closeup images of the
various vehicles in the natural terrain. The close-
up images were presented in a brief training
session to familiarize the participants with the
procedure. The results from the familiarization
trials were not included in the experiment re-
sults, and the training images were not used in
the experiment.

Block procedure. The test was organized into
four experimental blocks based on systematic
differences in the overall scene appearance:
baseline images, darkened images, lightened
images with contrast attenuated, and gray-scale
images. Within each block, image order was
randomized without replacement across trials.

Trial procedure. The testing was self-paced.
Before a scene was presented, a random spatial
noise pattern was displayed for 750 to 2000 ms.
Target location was cued with a red circle 300
pixels (approximately 30) in diameter, centered
on the target location. When a trial used an
image that did not contain a target, the cuing
circle was centered at a location where it was
physically possible for a vehicle to be. This cue
oriented the participant to the vehicle location

without distracting from or interfering with ve-
hicle perception. The participant would click the
mouse to display the image and then click again
when he or she had decided whether or not a
vehicle was in the scene. For trials in which the
participants identified a vehicle (or thought that
they did), they were instructed to click on the ve-
hicle itself to indicate its location in the image.
The scene was then masked with the noise
image again, and a response menu appeared.
The observer selected from one of the follow-
ing four responses: (a) "definitely no vehicle
was present," (b) "unsure whether or not a
vehicle was present," (c) "confident that a vehi-
cle was present," and (d) "certain that a vehicle
was present."

In addition to the menu choice, the response
time between image display and mouse click
was recorded. There was a maximum response
time of 60 s, at which time the four-choice re-
sponse menu was displayed. Following menu
selection, a dialog box appeared that provided
feedback on target presence, response time,
and the number of trials remaining in the block.
Clicking "OK" on this dialog box started the
next experimental trial.

Data Treatment

For the specific purposes of model valida-
tion, each trial response provided a single data
point: the rating of target-present confidence.
The first step in data reduction and analysis was
coding the observers' target-present response
level (on a 1-4 scale) into correct and incor-
rect decisions. Three different response levels
were used: liberal, moderate, and conservative.
For target-present images, hit rate (HR) at the
liberal level was the proportion of responses
that had a rating of 2 (maybe) or higher. HR at
the moderate and conservative levels were the
proportion of responses that had a rating of 3
(probably) or higher or 4 (definitely), respective-
ly. The false alarm rate (FAR) at each response
level was calculated from the 350 images with-
out targets. Thus, for each of the images, we
obtained three estimates of HR as a function
of FAR.

Aggregate Results

Empirical estimates of Pr(FA) were calculat-
ed at each response level by aggregating over all
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participants and over all images without targets.
Empirical estimates of Pr(H) were calculated at
each response level for each image with' a ve-
hicle present by aggregating over all partici-
pants. Figure 3 shows a plot of Pr(H) versus
Pr(FA) at each of the three response levels. Pr(H)
is aggregated over all vehicles, and Pr(FA) is
aggregated over all vehicle-absent scenes. We
computed Pr(H) for an image by simply pool-
ing the participants' responses and dividing the
number ,of positive responses by the total num-
ber of responses. Table 3 shows the mean Pr(H)
for different partitions of the image set.

1.000-

0.800

0.600- f Confident

Pr(FA)= 0.13
IL. Pr(H) = 0.58

0.400

Certain
Pr(FA) = 0.06

0.200- Pr(H) - 0.43

0.000
0.000 0.200 0.400

Table 4 shows the proportion of variance in
Pr(H) explained by each of the major factors
over all images with vehicles, calculated as 2.

The base scene accounts for 49% to 66% of the
variance in Pr(H). Interaction effects account
for 25% to 39% of the variance in Pr(H). In-
dividually, the variations in vehicle signature
modification, scene modification, and scale mo-
dification had only small effects. Large vehicles
in the open were still large vehicles in the open.
In combination, however, and in combination
with the variation in the base scene, these fac-
tors had significant effects;

0.600 0.800' 1.000

Pr(FA)

Figure 3. Aggregate Pr(H) versus Pr(FA).

TABLE 3: Mean Value of Pr(H) by Level of Factors in the Experimental Design

Factor Image Set Partition Certain Confident Unsure

Vehicle Baseline vehicles .51 .67 .86
Low-contrast vehicles .34 .50 .74
Special vehicle variations .39 .54 .76

Scene Unmodified scene .46 .61 .81
3:1 Scale factor .39 .53 .77
2:1 Scale factor .46 .62 .83
Darkened scene .42 .58 .80
Hazy scene .38 .52 .76
Gray-scale scene .43 .59 .81
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TABLE 4: Pr(H) 2 Results for All Images with Vehicles

,. Proportion of Variance Explained, .92

Factor Certain Confident Unsure

Base scene .66 .60 .49
Vehicle modification .07 .07 .08
Scene modification .01 .01 .01
Scale modification .01 .02 .03
Total main effects .75 .70 .61

Table 5 shows the average Pr(H) for each of
the partitions of the major factors in the experi-
mental design. Comparing the unmodified vehi-
cle aggregates with the reduced contrast vehicle
aggregates shows that the vehicle contrast re-
duction lowered Pr(H) by .17 at the "certain"
criterion, .13 at the "confident" criterion, and
.09 at the "unsure" criterion. Comparing the un-
modified scene aggregates with the darkened
scene aggregates shows that darkening the scene
lowered Pr(H) by .04 at the "certain" criterion,
.04 at the "confident" criterion, and .01 at the
"unsure" criterion. Comparing the unmodified
scene aggregates with the reduced contrast scene
aggregates shows that reducing contrast over
the entire scene lowered Pr(H) by .08 at the
"certain" criterion, .09 at the "confident" crite-
rion, and .06 at the "unsure" criterion. Com-
paring the unmodified scene aggregates with
the gray-scale scene aggregates shows that re-
moving color from the scene lowered Pr(H) by
.04 at the "certain" criterion, .02 at the "confi-
dent" criterion, and .00 at the "unsure" criterion.
These are only aggregate effects. For specific
scenes, the effects will be more or less depend-
ing on the interactions in the specific scene.

MODEL EVALUATION

Our evaluation goal was to determine if the
model is accurate in aggregate and if the model
has systematic biases with respect to identifi-
able properties or characteristics of the input
image. The factors and levels of the experiment
were designed to enable us to assess biases
with respect to a variety of characteristics
known to influence target detection (e.g., size,
contrast, luminance).

Outliers. The validation data set was exam-
ined to determine whether or not all the images
were appropriate for applying the model. Of
the 800 images with vehicles present in the
validation data set used, 118 were not appropri-
ate for applying the model. Of these 118 in-
appropriate images, 95 were derived from 4 of
the 44 base scenes. In these scenes, one edge
of the vehicle is aligned with a linear terrain
feature (such as a ridge), and on the remaining
three sides the vehicle had low contrast with its
surroundings. When this combination of condi-
tions occurred, the observers tended to interpret
the contrast at the target edge as a continuation
of the terrain feature. The model, which does

TABLE 5: Mean Pr(H) by Data Partition over All Scenes with Vehicles

Data Partition Certain Confident Unsure

BAII images with vehicles .43 .58 .80
Unmodified vehicle .52 .68 .87
Reduced contrast vehicle .35 .51 .75
Special variation vehicle .40 .55 .78
Unmodified scene .47 .62 .82
Darkened scene .43 .58 .81
Reduced contrast scene .39 .53 .76
Gray-scale scene .43 .60 .82
3:1 scale factor .40 .54 , .77
2:1 scale factor .46 .63 .83
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not analyze terrain features, interpreted the con-
trast across the edge as visual evidence for detec-
tion. The other 23 inappropriate images were
derived from 1 of the 44 base scenes: In this
scene there was unusual lighting and shadow-
ing such that a patch of glint from an elevation-
angle view of the side was all that was visible.
Observers could see the patch of glint but did
not interpret it as evidence of a vehicle, where-
as the model did. In both of these situations,
the images violate the assumption of the nature
of the top-down processing involved in detect-
ing a 3-D object in a natural scene. The model
validation proceeded with 682 images and their
associated observer responses.

Accuracy and Explanatory Power

The direct measure of accuracy is the root-
mean-square (RMS) prediction error. Over a
set of N images, the RMS prediction error, E, is

EF= [XJ Pr(H)prdicted ) Pr(H)obseed)N s2. (4)

A related measure of performance is the ex-
planatory power of the model. It is equal to the
fraction of the variance in experimental Pr(H)
explained by the model. The fraction of variance
explained by the model, 4, is 1 minus the ratio
of the RMS prediction error squared to the vari-
ance in Pr(H)Obse,, over the image set.

Model Fit -'Certain" Response
(89% Base Scenes, 682 Images)
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The term explanatory power is used rather
than r2 to maintain the distinction that linear
regression allows two free parameters, whereas
VDM2000 has only one free parameter. The
measures computed in Equations 4 and 5 under-
state the performance of the model because they
include sampling error in empirical Pr(H) as
part of the prediction error.

Figures 4 to 6 show scatter plots of observed
versus predicted Pr(H) at the three response
levels. The scatter between predicted Pr(H)
and observed Pr(H) includes sampling error in
observed Pr(H) in addition'to error between
predicted Pr(H) and the underlying true Pr(H).
Table 6 summarizes the accuracy and explana-
tory power of the model and the mean error in
observed Pr(H).

The VDM2000 accounts for more than 80%
of the variance in Pr(H). The model remains
accurate, although with somewhat reduced ex-
planatory power at the lower confidence re-
sponse levels. The accuracy of the model is
actually higher at the lower confidence response
levels (i.e., the RMS prediction error is lower;
see Table 6). The RMS error is lower because
the increased false alarm rate compresses the
range of responses. The explanatory power of
the model - that is, the fraction 'of variance in

Model Fit - "Confident" Response
(89% Base Scenes, 682 Images)
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Model Fit - Confident" Response
(89% Base Scenes, 682 Images)
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Figure 6. Predicted versus observed Pr(H) at the
"unsure" response level.

Pr(H) that is explained - is a better measure of
performance because it normalizes to the vari-
ance in the phenomena to be explained. The ex-
planatory power of the model is lower at the
lower confidence response levels because of
the contribution of false alarms to Pr(H). The
average rate of false alarms is an input to the
model, but false positive responses to images
add variance to Pr(H).

Bias

The term model bias refers to a situation in
which the model's prediction errors are not
zero-mean normally distributed (i.e., the model
underpredicts or overpredicts actual behavior
in a reliable manner). Bias in a model can be evi-
dence that a model is improperly or incomplete-
ly specified. The prediction bias with respect to
subset S, B(S), of the images is

B(S) = Es[Pr(H)pred() - Pr(H)Obs()] -
EA1I[Pr(H)P.d(W) - Pr(H)ObO(j)]* (6)

The bias of the model is shown in Table 7.
The net bias is the average prediction error for
the partition (i.e., factor of interest) minus the
average prediction error over all the cases. A
negative bias means that the model's prediction
of observer hit rate was, on average, less than
the empirical Pr(H) - that is, that the model
underestimated Pr(H). A positive bias means
that the model overestimated Pr(H). For com-
parison, the expected error magnitude - the
sampling error in empirical Pr(H) (at the "cer-
tain" response level) divided by the square root
of the number of cases - is also shown.

There are several important observations to
make with regard to the data in Table 7. There
are no large biases. Except for the special vari-
ations at the "unsure" response level, all of the
biases are less than 2%. Pr(H) is systematical-
ly underestimated for the baseline vehicles and
overestimated for the reduced signature vari-
ants, but the bias is not large compared with
the adjusted sampling error.

CONCLUSIONS

The vehicle metric as computed by the VDM-
2000 does a good job of accounting for variance
in foveal detection performance. The VDM2000
represents a substantial contribution to both
the state of the art in vision modeling and the
state of the art in developmental test and evalu-
ation tools. As previously noted, in some visual
target acquisition situations, the model is not
completely applicable. These are situations in
which observers are deceived or misinterpret
the visual signals. VDM2000 implicitly assumes
that all of the perceived elements of vehicle

TABLE 6: VDM2000 Performance in Terms of Accuracy (RMS Prediction
Error), Explanatory Power (Fraction of Variance Explained), and Mean Error

RMS Explanatory
Rating Prediction Error Power Mean Error

Certain .136 .803 .017
Confident .153 .740 .028
Unsure .119 .603 .008
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TABLE 7:Net Prediction Bias by Factor and Level in the Experimental Design

Data Partition Bias at "Certain" Bias at "Confident" Bias at "Unsure" Sampling Error/NV2

High resolution (2:1) .0042 -.0005 .0035 .0037
Reduced resolution (3:1) -.0028 .0005 -.0032 .0034
Darkened scene .0045 .0030 -.0031 .0051
Lightened "haze" scene -.0136 -.0003 .0020 .0051
Original scene .0044 .0019 .0069 .0051
Baseline vehicle signature -.0173 -.0192 -.0179 .0039
Reduced contrast signature .0153 .0153 .0100 .0039'
Special variation signature .0051 .0117 .0228 .0061

signature constitute evidence for vehicle detec-
tion. More development effort could be placed
in a cognition/decision-making module to help
disentangle some of these effects as well as in
extending the model to applications requiring
higher levels of target discrimination (e.g.,
recognition and identification). It is possible
that a richer vehicle template may be needed
(e.g., distinguishing turret and chassis regions
or other characteristic features, such as a gun
tube). This is a trivial extension to the software;
however, there are no available data with which
to test and evaluate the model.

The model could potentially be adapted to
target detection tasks, such as viewing thermal
images. However, the characteristic vehicle re-
gions for visual image detection will probably
not be the same for thermal image detection.
The characteristic visual regions (i.e., the image
organization that accounts for variance over the
vehicle image) are created by the vehicle surface
geometry and angles with respect to illumina-
tion and observer, in concert with the observer's
innate understanding of 3-D objects in a 3-D
world. Thermal signatures are created by tem-
perature gradients over the vehicle. The thermal
regions (i.e., those characteristic regions that
account for temperature variation) are created
by various heat-generation processes and lags
associated with different thermal mass. In ther-
mal imaging applications, the vehicle image
regions should reflect areas with different ther-
mal mass (because they will heat and cool at dif-
ferent rates), regions corresponding to different
heat sources (e.g., engine compartment, exhaust,
and tracks), and surface geometry (reflection
and shadowing of infrared illumination). It may
be the case that the top-down processes involved
in interpreting a thermal image of a scene are

very different from those involved in the task
of interpreting a naturally lit scene.

Computer models of vehicle detection are
needed for early evaluation of design alternatives
under a wide variety of terrain, lighting, and
weather conditions. Field exercises have a num-
ber of key limitations that make the VDM2000
an efficient alternative: They are expensive,
they require physical prototypes for each design
alternative, they typically have a limited variety
of terrain conditions, and their field atmospheric
and environmental conditions are not controlled.
The field of computer graphics is advancing
rapidly in its ability to capture, represent, and
render highly realistic imagery. The combina-
tion of these techniques with models of human
performance such as the VDM2000 could con-
ceivably give guidance to designers for any pos-
sible combination of design alternatives and
operational conditions.
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