Color



What is ‘Color’

Color is a fundamental attribute of human visual
perception.

By fundamental we mean that it is so unique that

its meaning cannot be fully appreciated without
direct experience.

How would you describe color to a person who
was blind since birth?
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3 Properties of Color Perception

* Hue
Qualitative, easily identified category of visual experience (Colloquially
known as ‘color’; e.g. ‘red’, ‘green’, ‘blue’). Differs from black-gray-white.
Quickly now: Name 10 ‘colors’...

e Brightness
Intensity of the visual experience (e.g., ‘dim’, ‘bright’, ‘light’, ‘dark’)

e Saturation
Purity of the hue experience (i.e., relative absence of ‘white’ or ‘gray’)
(reciprocal of ‘added white’ required for a color-match-to-sample)




Color Stimulus Triad

* llluminant Spectrum

* Surface Reflectance Spectrum

e Spectral Sensitivity of the Visual System




llluminant
Emission Spectra



“White” Light is a mixture of many
different WAVELENGTHS

~700 nm

We perceive different
wavelengths as
different colors




Spectra of Some Common llluminants
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Surface
Reflectance Spectra



Objects REFLECT some wavelengths

but ABSORB others....
Broadband
“White” Light N\ “Red” Light
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Surface Reflectance Spectra
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The Spectral Reflectance Profile is
the basic stimulus for Color Vision
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Visual Stimulus Spectrum =
llluminant x Surface Reflectance
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Additive vs. Subtractive
Color Mixing

. . Java Applet
° COlOr Mleng Demo Requires IE11 and Java Plugin



http://apps.usd.edu/coglab/rgbColor.html
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Sp ctral Response
of the Visual System



Newton’s Color Experiments

Sir Isaac Newton
(1643-1727)
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Found that light was not “pure”

but could be analyzed into separate
component that appeared different
in color [ROY G BIV]

Combinations of “spectral colors”
gave rise to perceived colors not
observed in the spectrum

“Non-spectral colors” were an
emergent property of the human
nervous system

“Color wheel” is one of the first
psychological theories in the classic
scientific literature




Newtonian Light Spectrum
(ROY G BIV)
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Trichromatic Theory of Color

Thomas Young
(1773-1829)

Hermann von Helmholtz
(1821-1894)

Color perception emerges from the
idiosyncratic discrimination of light
wavelength in the retina

Evidence strongly suggests that the
retina must “encode” color based upon
more than one type of wavelength-
tuned photoreceptor

[Univariance Principle] Next Slide

Additive color matching experiments
suggest that three wavelength sensors
are required

[aka Trichromatic Theory]



Relative Sensitivity (%)

100

90

80

70

60

50

40

30

20

10
0

1-Channel Chromatic Coding System
(Univariance Principle)

Stimulus wavelength and intensity are completely confounded.
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Bandpass Spectral Response
of Light-Activated Molecules

Signal = Activation x Intensity

There is no way of telling
how much of the signal
represents the intensity of
the stimulus versus the
wavelength-specific
activation of the receptor

(A x I)Confound Example :

S, =0.85x2.95 = 2.5
S,, = 0.25 x 10.0 = 2.5




Relative Sensitivity (%)

2-Channel Chromatic Coding System

Stimulus wavelength and intensity become separable.
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Classic Color Demonstrations
Explained by Trichromatic Mechanism

e Tristimulus Color Mixing Findings
(https://graphics.stanford.edu/courses/cs178/applets/ColorMatching10.swf)

Maxwell Color Matching

e Fast Color Adaptation

(http://u.sd-apps.usd.edu/coglab/coloradapt.html)
(Basis for Color Constancy)



https://graphics.stanford.edu/courses/cs178/applets/ColorMatching10.swf
http://apps.usd.edu/coglab/coloradapt.html

Simulated
Microspectrophotometry
Analysis of Human Retina
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3 Cones Revealed by MSP
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Trichromatic Response to Spectral Stimulus

llluminant spectrum
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Metameric match

Color Metamers
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Color Specification Systems
(Hue,Saturation,Brightness)

* CIE (1931) Chromaticity
(x,y) captures hue x saturation

* Munsell Color System
(18 Hues, 18 Chroma; 10 Values)

* Pantone
(Proprietary Color Matching Standards)



Energy

CIE Color Matching Paradigm

(Specifying Tristimulus Values)
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CIE Maxwellian Color Matching Functions
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CIE (1931) Standardized Tristimulus Color Matching Functions

(1) Y function transformed to recapitulate the CIE VA function
(2) X and Z functions transformed to eliminate “negative” values
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Munsell = (Hue,Value,Chroma)

VALUE

Munsell Hues
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Problems for Trichromatic Theory

Hue Cancellation Effects (Hurvich & Jameson)
Red+Green -2 Yellow (not reddish-green)
Yellow+Blue = White (not yellow-blue)

Complementary Color Afterimages
Complex Color Contrast Effects (Land)
“Blue” light discounted in Brightness Perception
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Complementary Color
Afterimages

Challenge for Simple Trichromatic
Theory












Problems for Trichromatic Theory

Hue Cancellation Effects (Hurvich & Jameson)
Red+Green -2 Yellow (not reddish-green)
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Experiments in Color Vision

Edwin Land
Scientific American (May 1959)






LONG AND SHORT RECORDS are provided by transparencies of these black-and-awhite
photographs made through a red filter (top) and a green filter (bottom). In projection the
long record (1op) is illuminated by the longer of two wavelengths or bands of wavelengths,
and the short record is illuminated by the shorter wavelength or hand of wavelengths.












Problems for Trichromatic Theory
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Opponent Process Theory
(Leo Hurvich & Dorothea Jameson)

Information from Red, Green and Blue Cones is organized into
three discrete channels before ascending to the visual cortex:

Two pairs of OPPONENT COLOR channels code for HUE

Red vs. Green channel L &= M cones
Blue vs. Yellow channel S &> L+M cones

One ACHROMATIC channel codes for BRIGHTNESS

Black vs. White L+M in center-surround
antagonism



DeValois & DeValois (1975)
Color-Opponent Cells in the LGN
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Red-Green Ganglion Cell
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(Notice that Blue Light is “Discounted”)
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Psychophysical vs. Physiological Results
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Monkey LGN data

Boynton & Gordon’s (1965)
Color Naming Results

Present brief-flash of mono-
chromatic light; Identify
appearance using four color
categories: RED, YELLOW, GREEN
or BLUE



Dichromatic Color “Blindness”

Only TWO cone types available
3D color-space reduced to 2D color-space
(i.e., diminished color discrimination capability)

Prevalence
Protanopia Missing L-cones 2% 0.02%
Deuteranopia Missing M-cones 6% 0.4%

Tritanopia Missing S-cones  0.01% 0.01%



Human Cone Spectra
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Daltonization

Computational algorithms
can be used to optimize the
color palettes of images in
order to minimize the
occurrence of metamerisms.

Red/Green
Dichromat

Trichromat

Source: www.vischeck.com/daltonize



