
CS425 Lab: Frequency Domain
Processing

1. Discrete Fourier Transform

See section 14.1 in your textbook

This is a brief review of the Fourier transform. An in-depth discussion of the Fourier
transform is best left to your class instructor.

The general idea is that the image (f(x,y) of size M x N) will be represented in the
frequency domain (F(u,v)). The equation for the two-dimensional discrete Fourier
transform (DFT) is:

The concept behind the Fourier transform is that any waveform can be constructed
using a sum of sine and cosine waves of different frequencies. The exponential in the
above formula can be expanded into sines and cosines with the variables u and v
determining these frequencies.

The inverse of the above discrete Fourier transform is given by the following equation:

Thus, if we have F(u,v), we can obtain the corresponding image (f(x,y)) using the
inverse, discrete Fourier transform.

Things to note about the discrete Fourier transform are the following:

 the value of the transform at the origin of the frequency domain, at F(0,0), is
called the dc component

o F(0,0) is equal to MN times the average value of f(x,y)
o in MATLAB, F(0,0) is actually F(1,1) because array indices in MATLAB

start at 1 rather than 0

 the values of the Fourier transform are complex, meaning they have real and
imaginary parts. The imaginary parts are represented by i, which is defined solely
by the property that its square is −1, ie:

 we visually analyze a Fourier transform by computing a Fourier spectrum (the
magnitude of F(u,v)) and display it as an image.

o the Fourier spectrum is symmetric about the origin

 the fast Fourier transform (FFT) is a fast algorithm for computing the discrete
Fourier transform.

 MATLAB has three functions to compute the DFT:

1. fft -for one dimension (useful for audio)

2. fft2 -for two dimensions (useful for images)

3. fftn -for n dimensions

 MATLAB has three related functions that compute the inverse DFT:

0. ifft

1. ifft2

2. ifftn

1.1 How to Display a Fourier Spectrum using MATLAB

The following table is meant to describe the various steps behind displaying the Fourier
Spectrum.

MATLAB code Image Produced

%Create a black 30x30 image

f=zeros(30,30);

%With a white rectangle in it.

f(5:24,13:17)=1;

imshow(f,'InitialMagnification', 'fit')

%Calculate the DFT.

F=fft2(f);

%There are real and imaginary parts to F.

%Use the abs function to compute the

magnitude

%of the combined components.

F2=abs(F);

figure, imshow(F2,[],

'InitialMagnification','fit')

%To create a finer sampling of the Fourier

transform,

%you can add zero padding to f when

computing its DFT

%Also note that we use a power of 2, 2^256

%This isbecause the FFT -Fast Fourier

Transform -

%is fastest when the image size has many

factors.

F=fft2(f, 256, 256);

F2=abs(F);

figure, imshow(F2, [])

%The zero-frequency coefficient is

displayed in the

%upper left hand corner. To display it in

the center,

%you can use the function fftshift.

F2=fftshift(F);

F2=abs(F2);

figure,imshow(F2,[])

%In Fourier transforms, high peaks are so

high they

%hide details. Reduce contrast with the log

function.

F2=log(1+F2);

figure,imshow(F2,[])

To get the results shown in the last image of the table, you can also combine MATLAB
calls as in:

f=zeros(30,30);

f(5:24,13:17)=1;

F=fft2(f, 256,256);

F2=fftshift(F);

figure,imshow(log(1+abs(F2)),[])

Notice in these calls to imshow, the second argument is empty square brackets. This
maps the minimum value in the image to black and the maximum value in the image to
white.

2. Frequency Domain Versions of Spatial Filters

See section 14.3.5, 14.5.1, and 14.5.2 in your textbook

The following convolution theorem shows an interesting relationship between the spatial
domain and frequency domain:

and, conversely,

where the symbol "*" indicates convolution of the two functions. The important thing to
extract out of this is that the multiplication of two Fourier transforms corresponds to the
convolution of the associated functions in the spatial domain. This means we can

perform linear spatial filters as a simple component-wise multiply in the frequency
domain.

This suggests that we could use Fourier transforms to speed up spatial filters. This only
works for large images that are correctly padded, where multiple transformations are
applied in the frequency domain before moving back to the spatial domain.

When applying Fourier transforms padding is very important. Note that, because images
are infinitely tiled in the frequency domain, filtering produces wraparound artefacts if you

don't zero pad the image to a larger size. The paddedsize function below calculates a

correct padding size to avoid this problem. The paddedsize function can also help
optimize the performance of the DFT by providing power of 2 padding sizes. See

paddesize's help header for details on how to do this.

2.1 Basic Steps in DFT Filtering

The following summarize the basic steps in DFT Filtering (taken directly from page 121
of Digital Image Processing Using MATLAB):

1. Obtain the padding parameters using function paddedsize:
PQ=paddedsize(size(f));

2. Obtain the Fourier transform of the image with padding:
F=fft2(f, PQ(1), PQ(2));

3. Generate a filter function, H, the same size as the image

4. Multiply the transformed image by the filter:
G=H.*F;

5. Obtain the real part of the inverse FFT of G:
g=real(ifft2(G));

6. Crop the top, left rectangle to the original size:
g=g(1:size(f, 1), 1:size(f, 2));

2.2 Example: Applying the Sobel Filter in the Frequency Domain

For example, let's apply the Sobel filter to the following picture in both the spatial
domain and frequency domain.

http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/paddedsize.m

*Note, this code relies on paddedsize.m

Spatial Domain Filtering Frequency Domain Filtering

%Create the Spacial Filtered Image

f = imread('entry2.png');

h = fspecial('sobel');

sfi = imfilter(double(f),h, 0, 'conv');

%Display results (show all values)

figure,imshow(sfi, []);

%The abs function gets correct

magnitude

%when used on complex numbers

sfim = abs(sfi);

figure, imshow(sfim, []);

%Create the Frequency Filtered Image

f = imread('entry2.png');

h = fspecial('sobel');
PQ = paddedsize(size(f));
F = fft2(double(f), PQ(1), PQ(2));
H = fft2(double(h), PQ(1), PQ(2));
F_fH = H.*F;
ffi = ifft2(F_fH);
ffi = ffi(2:size(f,1)+1,

2:size(f,2)+1);

%Display results (show all values)

figure, imshow(ffi,[])

%The abs function gets correct

magnitude

%when used on complex numbers

ffim = abs(ffi);

figure, imshow(ffim, []);

http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/paddedsize.m

%threshold into a binary image

figure, imshow(sfim >

0.2*max(sfim(:)));

%threshold into a binary image

figure, imshow(ffim >

0.2*max(ffim(:)));

You will notice that both approaches result in a similar looking, if not identical filtered
image. You may have to adjust how you crop the image slightly as shown in the
example above.

3. Frequency Domain Specific Filters

See section 14.5.3 in your textbook, and Chapter 4 and Section 5.4 in Digital Image Processing Using
MATLAB

As you have already seen, based on the property that multiplying the FFT of two
functions from the spatial domain produces the convolution of those functions, you can
use Fourier transforms as a fast convolution on large images. Note that on small images
it is faster to work in the spatial domain.

However, you can also create filters directly in the frequency domain. There are three
commonly discussed filters in the frequency domain:

 Lowpass filters, sometimes known as smoothing filters
 Highpass filters, sometimes known as sharpening filters
 Notch filters, sometimes known as band-stop filters

3.1 Lowpass Filters

Lowpass filters:

 create a blurred (or smoothed) image
 attenuate the high frequencies and leave the low frequencies of the Fourier

transform relatively unchanged

Three main lowpass filters are discussed in Digital Image Processing Using
MATLAB:

1. ideal lowpass filter (ILPF)
2. Butterworth lowpass filter (BLPF)
3. Gaussian lowpass filter (GLPF)

The corresponding formulas and visual representations of these filters are shown in the
table below. In the formulae, D0 is a specified nonnegative number. D(u,v) is the
distance from point (u,v) to the center of the filter.

Lowpass Filter Mesh Image

Ideal:

Butterworth:

Gaussian:

To view the MATLAB calls that were used to create the images in the above table, click
on this link.

The following is the result of applying a Gaussian lowpass filter on an image.

Original Image Fourier Spectrum of Image

Image with Gaussian lowpass filter Spectrum of image with Gaussian lowpass filter

http://www.cs.uregina.ca/Links/class-info/425/Lab5/creatingMesh.html

The above images were created using three M-files (paddedsize.m, lpfilter.m and
dftuv.m) and the following MATLAB calls:

footBall=imread('football.jpg');

%Convert to grayscale

footBall=rgb2gray(footBall);

imshow(footBall)

%Determine good padding for Fourier transform

PQ = paddedsize(size(footBall));

%Create a Gaussian Lowpass filter 5% the width of the Fourier transform

D0 = 0.05*PQ(1);

H = lpfilter('gaussian', PQ(1), PQ(2), D0);

% Calculate the discrete Fourier transform of the image

F=fft2(double(footBall),size(H,1),size(H,2));

% Apply the highpass filter to the Fourier spectrum of the image

LPFS_football = H.*F;

% convert the result to the spacial domain.

LPF_football=real(ifft2(LPFS_football));

% Crop the image to undo padding

LPF_football=LPF_football(1:size(footBall,1), 1:size(footBall,2));

%Display the blurred image

figure, imshow(LPF_football, [])

% Display the Fourier Spectrum

% Move the origin of the transform to the center of the frequency

rectangle.

Fc=fftshift(F);

Fcf=fftshift(LPFS_football);

http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/paddedsize.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/lpfilter.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/dftuv.m

% use abs to compute the magnitude and use log to brighten display

S1=log(1+abs(Fc));

S2=log(1+abs(Fcf));

figure, imshow(S1,[])

figure, imshow(S2,[])

3.2 Highpass Filters

Highpass filters:

 sharpen (or shows the edges of) an image
 attenuate the low frequencies and leave the high frequencies of the Fourier

transform relatively unchanged

The highpass filter (Hhp) is often represented by its relationship to the lowpass filter
(Hlp):

Because highpass filters can be created in relationship to lowpass filters, the following
table shows the three corresponding highpass filters by their visual representations:

Lowpass
Filter

Mesh Image

Ideal

Butterworth

Gaussian

To view the MATLAB calls that were used to create the images in the above table, click
on this link.

The following is the result of applying a Gaussian lowpass filter on an image.

Original Image Fourier Spectrum of Image

Image with Gaussian highpass filter Spectrum of image with Gaussian highpass filter

http://www.cs.uregina.ca/Links/class-info/425/Lab5/creatingMesh.html

The above images were created using four M-files (paddedsize.m, dftuv.m, and
hpfilter.m) and the following MATLAB calls

footBall=imread('football.jpg');

%Convert to grayscale

footBall=rgb2gray(footBall);

imshow(footBall)

%Determine good padding for Fourier transform

PQ = paddedsize(size(footBall));

%Create a Gaussian Highpass filter 5% the width of the Fourier transform

D0 = 0.05*PQ(1);

H = hpfilter('gaussian', PQ(1), PQ(2), D0);

% Calculate the discrete Fourier transform of the image

F=fft2(double(footBall),size(H,1),size(H,2));

% Apply the highpass filter to the Fourier spectrum of the image

HPFS_football = H.*F;

% convert the result to the spacial domain.

HPF_football=real(ifft2(HPFS_football));

% Crop the image to undo padding

HPF_football=HPF_football(1:size(footBall,1), 1:size(footBall,2));

%Display the "Sharpened" image

figure, imshow(HPF_football, [])

% Display the Fourier Spectrum

% Move the origin of the transform to the center of the frequency

rectangle.

Fc=fftshift(F);

Fcf=fftshift(HPFS_football);

% use abs to compute the magnitude and use log to brighten display

http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/paddedsize.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/dftuv.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/hpfilter.m

S1=log(1+abs(Fc));

S2=log(1+abs(Fcf));

figure, imshow(S1,[])

figure, imshow(S2,[])

3.3 Notch Filters

Notch filters:

 are used to remove repetitive "Spectral" noise from an image
 are like a narrow highpass filter, but they "notch" out frequencies other than the

dc component
 attenuate a selected frequency (and some of its neighbors) and leave other

frequencies of the Fourier transform relatively unchanged

Repetitive noise in an image is sometimes seen as a bright peak somewhere other than
the origin. You can suppress such noise effectively by carefully erasing the peaks. One
way to do this is to use a notch filter to simply remove that frequency from the picture.
This technique is very common in sound signal processing where it is used to remove
mechanical or electronic hum, such as the 60Hz hum from AC power. Although it is
possible to create notch filters for common noise patterns, in general notch filtering is an
ad hoc procedure requiring a human expert to determine what frequencies need to be
removed to clean up the signal.

The following is an example of removing synthetic spectral "noise" from an image.

Noisy Image Fourier Spectrum of Image (noise peaks circled)

Image after Butterworth notch filters Spectrum of image after Butterworth notch filters

The above images were created using four M-files (paddedsize.m, lpfilter.m, dftuv.m,
and notch.m), noiseball.png, and the following MATLAB calls

footBall=imread('noiseball.png');

imshow(footBall)

%Determine good padding for Fourier transform

PQ = paddedsize(size(footBall));

%Create Notch filters corresponding to extra peaks in the Fourier

transform

H1 = notch('btw', PQ(1), PQ(2), 10, 50, 100);

H2 = notch('btw', PQ(1), PQ(2), 10, 1, 400);

H3 = notch('btw', PQ(1), PQ(2), 10, 620, 100);

H4 = notch('btw', PQ(1), PQ(2), 10, 22, 414);

H5 = notch('btw', PQ(1), PQ(2), 10, 592, 414);

H6 = notch('btw', PQ(1), PQ(2), 10, 1, 114);

% Calculate the discrete Fourier transform of the image

F=fft2(double(footBall),PQ(1),PQ(2));

% Apply the notch filters to the Fourier spectrum of the image

FS_football = F.*H1.*H2.*H3.*H4.*H5.*H6;

% convert the result to the spacial domain.

F_football=real(ifft2(FS_football));

% Crop the image to undo padding

F_football=F_football(1:size(footBall,1), 1:size(footBall,2));

%Display the blurred image

figure, imshow(F_football,[])

% Display the Fourier Spectrum

% Move the origin of the transform to the center of the frequency

rectangle.

Fc=fftshift(F);

http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/paddedsize.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/lpfilter.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/dftuv.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/M-Functions/notch.m
http://www.cs.uregina.ca/Links/class-info/425/Lab5/Picts/noiseball.png

Fcf=fftshift(FS_football);

% use abs to compute the magnitude and use log to brighten display

S1=log(1+abs(Fc));

S2=log(1+abs(Fcf));

figure, imshow(S1,[])

figure, imshow(S2,[])

4. Exercises

Part 1: Identifying and Using High and Low Pass Filters (4 marks)

1. Download the following image "97.jpg" and store it in MATLAB's "Current
Directory".

2. Identify which of the following is the result of a lowpass or highpass Butterworth

filter and reproduce the results.

Image 1 Image 2

3. Display the Fourier spectrum for 97.jpg

Deliverables:

 Identification of high and low pass filters in above images

http://www.cs.uregina.ca/Links/class-info/425/Lab5/Exercise/97.jpg

 Reproduced highpass and lowpass filter for 97.jpg
 Fourier spectrum for 97.jpg

Part 2: Using Spatial Filters in the Frequency Domain (4 marks)

1. Download the following image "two_cats.jpg" and store it in MATLAB's "Current
Directory".

2. Load the image data.
3. Create a spatial filter to get the horizontal edge of the image
4. Create a spatial filter to get the vertical edge of the image (read the MATLAB

documentation of fspecial).
5. Transform both of these filters to the frequency domain.

6. Transform the two_cats image to the frequency domain
7. Apply the appropriate operations in the frequency domain
8. Transform the data back into the spatial domain
9. Sum the horizontal and vertical edge components together
10. The resulting image should look like this:

Deliverables:

http://www.cs.uregina.ca/Links/class-info/425/Lab5/Exercise/two_cats.jpg

 image of horizontal edge
 image of vertical edge
 image of horizontal and vertical edge combined

Part 3: CSI Style Image Enhancement (4 marks)

You are the image processing expert for a local police department. A detective has
reopened a cold case and part of his evidence is a newpaper print of a car. You have
been asked to do some CSI style magic to see if you can learn the suspect's license
plate number or see his face.

1. Download the image "halftone.png" and store it in MATLAB's "Current
Directory".

2. Use a set of notch filters to remove the peaks from the image's Fourier transform.

TIPS:
o create a function that takes a list of peaks as an argument
o the peaks form a repetitive pattern. Figure out the pattern to save time.

3. Fine tune your results by trying varying widths of the three notch filter types.
Provide a best effort solution for each one. Also provide a blurring based solution
in Photoshop.

http://www.cs.uregina.ca/Links/class-info/425/Lab5/Picts/halftone.png
http://www.cs.uregina.ca/Links/class-info/425/Lab5/Picts/halftone.png

4. The following is one possible solution:

Deliverables:

 A script that creates and displays 3 best effort notch filter sets for each of the
three notch filter types.

 Photoshop/Gimp created blur of the original image.

5. References

 Digital Image Processing, Using MATLAB, by Rafael C. Gonzalez, Richard E.
Woods, and Steven L. Eddins

 Image Processing Toolbox, For Use with MATLAB (MATLAB's documentation)--
available through MATLAB's help menu or online at:
http://www.mathworks.com/access/helpdesk/help/toolbox/images/

http://www.mathworks.com/access/helpdesk/help/toolbox/images/
http://www.cs.uregina.ca/Links/class-info/425/Lab5/Picts/sol.png

