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FIGURE 5.3 | Two superimposed taces, one
porlra'fed at a coarse spatial scale l':.;m:ling woman) and
the other at a fine spatial scale (unsmiling man). Under
normal viewing conditions, vou will probably see that the
male's face dominates the percept. The text explains
how yol can tip the balance in the direclion of the ather,

female face.

hrid images like the one in Figure 5,3, After each hybrid
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FIGURE 5.4 | The puzzle piece on the right fits
samewhere in the complete puzzle on the left. Can you

find the piece’s location?
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the test bybrids actually contained wwo different mean-

ingful images since they were aware of seeing just one
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pizzle (a thought experiment we introduced in Chapter
4, when speculating about the lateral geniculate nu
cleus's function). Before attempting o it tegether small,
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clusters based on common features, For example,
1 a pile, knowing that
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special jigsaw puzzle that's unusually hard 1o assemb
The assembled puzzle is shown in the right-hand part of
Figure 5.4, and as vou can see the puzzle portrays an ir

regular array of black, white, and gray checks. Notice that
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What Are Gratings?

Gratings have four defining characteristics: spatial fre-
quency, contrast, orientation, and spatial phase. These
characteristics can vary independently of one another,
which means that one can be changed without affecting
the others. Tet’s examing these characteristics one
: requency refers 1o the number of 1t
dark regions imaged withan a giv
Cine third of 2 milhmeter 1s a convernent unit of re
1ce becanse an image that size subtends one degree
=call the discussion of visual a
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en distance on the reting.
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of ¥isial :mgl.,: {
end of Chapte
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idth at the widest point, forms an image shour twice a5
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The ||t..n'|)lnw ed o express spatial frequency is the

number of cycles that fall within one'degree of visual an-
and one lght bar), A
ing of high spatial frequency—many cy within
wch degree of visual angle—is made up of namow bars,
A grating of low spatial frequency—{ewer eveles within
each degree of visual angle—contains wide bars, Because
s frequency 15 defined in terms of visual angle, a
arating's spatial frequency changes with viewing dis-
3 this distance decrenses, cach har casts a larger
agt. As a resull, the grating’s spatial requency de-
e decreases. To give you an example,
grating in Figure 5,6 has a

sts of one dark
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creases as thed
when held at arm’s length, the

spatial frequency of abow 1.0 cyele per degree of visual
angle. Douhlic ing distance doubles the g
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If this dif
a small

atrast 18 related o rthe intensity
tween the light and dark bars of the grating.
grating’s contrast 1§ high:
difference means the contrast is bow, If the contrast is low
enougth, the bars of the grating may not even be vizible,
Ar sufficiently low contrast, the computer monitor or
sion screen would appear uniform and unpatterned;
the threshald Tor

ference s great, the

ontrast would be “helow

Ciratings as Tools for Ex
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ible. In Figure 5.3, the s
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light and dark bars 15 & ils maximum).”
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ting shown in Figure 5.6 is about 40 pe
Orieniarion refers o the axis of the grating

cent,
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some landmark. A convernent landmeank 1s the
the display. Looking at that edge, we can

“heging” with a dack bar a light bar, or wmﬁh nga
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v in he-

tween. The tazs at the top and bottom of Figur are

the orhe

1 oppasite phase; one beging with a light bar
with a dark one. The phase
way between those at the top and bottom
Phase specifies how components of an i
o ane another,
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aspect of form percep
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nents, the '.lp[

frequencies assume viewing at arm’s length)y In the
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that their bright bars in the middle of the figure w
perimposed, In the lefi-hand hybrid, the middle

bar of one coincides with a dark bar of the other.

that these two hybrids are noticeably different I
they are composed of idenncal components:

combination.

thougi
phase affects the appearance of the
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can construct any visual pattern, incl udu-u a human
face. To stare, let's see how far we can
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FIGURE 5.7 1 These three gralings differ in phase only.

ings. each addiional pair consisting of a CW and 2
COW component. Looking at Figure 5.9, in A vou see
the first two gratings superimposed, Adding i the next
twocomponents (1) results in B, Adding tothis the pext
bwo components (2) produces the pattern shown in C. In
cach case, the added compuonents are nothing more than

FIGURE 3.8 | The same componenis added in
differant phases yield distinctly different compound
grafings.

4 patr of obliguely oriénted gratings of 4 particular fre-
guency. Note two things about C's evolution. First,
from A through C, the combination begins to resemble
a plaid. Here, interactions between components are cre-
iamonds) that are ot associ-
themselves.

aling visual structures (¢
ated with the individual components
Second, from A through C, the diamonds hetome more
sharply defined, even though enly sinusoidal compo
nents with no sharp edges were used. Repeating a pont
made previonsly when discussing introspection, you
cannot always tell what glementary components make
up a pattern.

Mow ler’s ry to synthesize an even moene complex
figure, a photograph of a natural scene, This synthesis
requires that we use nmiore than just two onentations, Be-
Cause it would take a greal many frequency components
1o synthesize the natural scene, il would be tedioos o
show each individual step of the process. Instead, an cach
stage we'll add whole ¢lusters of frequencies, Looking
at Figure 5.10, A shows the frequency and orientation
cluster that we'1] start with. From this point, we follow
the same procedure used in Iigure 5.9 suocessively
adding the clusters shown in | and 2 to creale B and €.
Mote how each cluster makes its own unique contribu-
tion to the final product, €. Bear in mind that this com-
plex  scene  results from  adding simple
components that differ in frequency, contrast. arienta-
tion and phase. Notice, incidentally, that A, 1, and 2 rep-
resent the low, mediom, and high spatial frequency
mformation of the final product.

As just shown, spanal frequency components can be
used to create a visual scene. Because they provide a vo-
cabulary rich encugh to express important aspects of vi-
popular ool for studying

various

sual Form, gratings became a
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FIGURE 5.9

Steps invoived in genérating a plaid

Crratimgs as Tools for F ajloring Forn Praception
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FIGURE 5.10

Steps invalvad in generating a natural scene, in this instance, a photograph ol flowers

A B

c
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represent the general shape of

It reduces the contrast of any h

conganed ooa g

drge target (such as a

fon
This

al targets can predict the quality

trese that is near the
fine details (such as the wrinkles in the e
tustrutes that sinuso:

ramera), it would nal be adeqgy

5 b

of a photograph produced by s
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L We call this curve the con-
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dowwn the contrast any further would reduce the graring o

invisibility.” This barely visible contrast value 15 then
recorded, and the procedure is re
rimes Lo prodiuce multiple estimates of the visibility
threshold for that spatial frequency, the average of these
threshold”

» procedure for other test

eated several more

setlings 1s delined as the “eontra: for that rest

Now we repeat the enti

ng contrast threshold values
he resulting set
rraphica

lues are plotted n the

shown 1o Figore 5013, The horizontal axis specifies the

spatial frequency, plotted as the number of cy

[

the minimum contrast required 1o see the zratir

s within a deg
¢, with

these values

the left-hand axis plott in wnits of contrast

and the right-hand axis plotting values as the inverse of
this contrast value (defined as sensibvity ). To see your
own CSF, use the web re
w.mhhe comblaked

urces listed for Cha

pter 5 at

isihility: The region

undemmneath t 15 combinations of contrast

and spatial frequency that . while the resion
above the culve represents combinations that cannol be
seen, To clarity this idea, pick any point on the CSF curve.

Because this point i5 the threshold contrast for seeing that

pattern, decreasing the pattern’s contrast (moving opward

gL

from the curve) renders ihle. Conversely,

the pattern

increasing the pattern wntrast (roving downward from
the curve) makes the pattern morg visible.

Nuote respect the shape of the human
CSF resembles the shape of the transfer function of a
ure 5 Both curves display
quency cutoff. Howeaver, in another respect the two are

that in one

lens

different. In particular, the CSF drops at low
5 not. The vi-
58 sensitive to very low

cigs, wh the tunction for the lens

sial systermn, in other words, is
spatial frequencies than 1t 1s to mtermediate ones. As a
result, thare is a range of spaual [requencics, toward the
‘e 5,13, where hu-
ible

ial fre

center of the horizontal axis in Fi

e (ratings are less v

mans are maximally sens

il they lie on either side of this optimum s

fquency; a person requires higher contrast in order to see

thein. The same line of reasoning can be applied to a vi-

sual scene or photograph of the

ascene have most of their spatial frequency information

ppendix, Alsoin the

ity thiresholds,

The
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FIGURE 5.14 | Contrast sensitivity functions
measured at three light levals,
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atound the optuimum point on the CSF, those objects

will be clearly visible even when they are low in con

TG

trast, If those objects contain onl
quencies (very large objects) or only very high spatial

ery smiall objects or fine details), they
Asible and their contrast w ¢ o be
This also ex

fvery Low spatial

high in orc
plains why the gratings in Figure 3.11 appear different

er for those objects Lo be seen.

in contrast: their apparent contrast varies with the sen-
sitivaty to ditferent spatial frequencies.

You know from experience that you are able 10 see
hetter under some conditions than others. [ the CSF
and your ability to see are importantly related, condi-
ticons that change one should also change the other, In
fact, this
such condition,

senssed in Chaprer 3. resolution iz poor under
c conditions. That is why it's hard to read indim
fine detail, we'd

15 precisely what happens. Let's consider one

light. Because resolution invelves seei
expect decreased light 1o affect particulacly that portion of
the CSF corresponding to fine detail, Indeed this happens,
as the curves in Figure 3,14 illustrate. The upper curve
shows the CSF measured under pholopic (daytime) light
levels: the middle curve shows a CSF measured under
mesopic (twilight) conditions; the lowest curve depicts
the CSF associated with scotapic (dim light) viewing con-
ditions. As the level of Tight decreases from daylight 1o
twilight, visual sensitivity drops primarily at high spatial
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exactly the sar

sensitivities, as th

@ abla 1o ses obj

pradict how well pilots wolld
ound. At le
ilight or fo

a4 poor accaunt (

air-and on the ¢

ity giv
performance. Infact, ven
an are invisible at twilight or in fog. Gins
SFwasa
gats an the

(3ingburg tes gd pilots in a sophisticated aircraft
simulatar that provided a p
een, Pilots

be s¢

ground fram tha ar,

anoramic vigw thraugh the

w simulated missions and

plong's wir

then landed. On half of their landing

fan

in absla

ather plane) blocked the runway, requining the landing 1o
| e each pilot
rting the landing. Even

2T
glore a
though all were experienced jet pilots, they varied in the
hey could spot the ¢

@ three times farther away than did

cameg

@ nbstacle

distance alw
milo

ng diminis

g

5 tial but va
contrast sepsilivity loss, affecting both ox 1
quency) and fine (hgh frequency) patterns. These find-
ings raise the possiblity that some portion of the
gnitive losses shown by Alzheimer's patients results
from diminished vision |Sekuler and Sekuler, 2000)

These are just two examples of CSFs usefulnes
predicting visual performance in everyday setlings
Other wses include pradicting how well varnous visually
impaired people can get around in their environmenis
[Marran and Bailey, 1982), gauging the disa ] 5
of glare from various types of lighting sources (Carlsson
et al, 1984), and enhancing printed matenals for use by
{he visually impaired {Peli and Peli, 1984).

sens patients showed s

e

-
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tial requencies falling within the
f creature's CSF will

s composed of frequencies outside that

visible 1o that creature, Objects lows it e respond correctly on 73 pencent of the i

tormance midway bety urig) perfec-

regardless of their contrast, Thus non. Thi wntriast can be i d for differemt

1 oW 5 i I's CSE. can pred A 5 CIes m
that 2 al w ¢ aable 1 nd what 1t won't be the same way as it 15 for | t
1o sec. But how Jdo you measure the CSF in a nonverbal tally, constitutes a foreed est, and

is 1o deierming tails of this method are covered in the appendix.)

animal such as the cat” The b probler
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FIGURE 5.18 | Anintant's preference for looking at
a pattern can be used to measure the infant's contrast
sensilivity.

infant vision that vou use with coope

adules. To get around this lmitation, reseurchers have ex-

ploited a naturally occumng tendency exhibited by in
fants: they prefer to look at complex rather than duli
s0E] nd this preference can be exploited to measure the
infant’s ability to sez gratings (Atkinson and Braddick,
1998), Here's how it works,

Confronted with a patch of gratng and & patch ofunt
form brightness, an infant prefers to look at the grating,
Iy becanse the presence of the contonurs makes

&

presumal
the grating more interesting than the blank patch {see Fig-
ure 5. 18), During testng, the bars of the grating can be
mide sutficienthy low in contrast that the infant cannot de-
tect the contours and, therefore, cannot tell the difference
between the pateh ol grating and the blank patch, In this
ase, the infant will show no preterence for the grating
ver the uniform field. So, we can estimate the infant’s
contrast threshold for a given spatial frequency by fixing
the grating spatial frequency and varying its contrast over
a series of wials. By doing this, we can discover the min-
mmum eontrast at which the fant exhibits a pre
for looking at the grating—this value defines the infant's
contrast threshold al that spatial frequency, And by re-
reating this procedure al different spatial frequencies, we
can derrve the entive CSF for the infant.

The basic findings are summarized i Figure 5.19,
which shows CSFs for an infant somewhere between 3 1o
o months old and for 4 tepical adult, Note that the infant’s
window of visibility is very dilferent from the adult's, An

¥]

S
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FIGURE 5.19 | Contrast sensitivity functions for an
infant and for an adult.
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infant held on your lap will not be able 10 see fine spatia
details visible to you, In this respect, the infanl more
closely resembles a cat. But unlike a cat, the infant does
not have an advantage over you at low frequencies: You
should be able o see everything the infant can see.
Also, even for spatial frequencies visible to both of vou,
the infant will require more contrast than you do.

The CSF in Figure 5,19 delinuts the range of visible
spatial frequencies visible to the infant, but it doesn't por-
tray what the infant sees
environiment. To get some idea of what the world looks
like through an infant’s eyes, we have simulated infants’
guality of The simulations,
shown m Figure 320, are grounded in measurements of
contrast sensitivity (Teller, 1997).

In & sense, these simulations confirm what some par-
noticed: Their very young infants seem ablivi-
pus o everything except very large, high-contrast objects
{Banks, 1982). Incidentally, the lack of sensitivity to high
frequencies does not stem from optical causes bur from

when looking about the natural

sion dt several different a

ents hay

the fact that the infant’s immature vistal pervoiis systemn
fails 1o encode high [requencies. In effect, infants are best
suited for seeing objects located close to them (recall that
spatial frequency is distance dependent). which makes
sense from a hehavioral standpaint,

The imfant’s CSF improves steadily over the first year
or g0 of its life. However, this improvement stalls at ap im-
mature level if the infant does not recetve normal visual
experiences. Several visual disorders can alter the quality
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CSE imphies about a person’s alnlity 1o see. Suppose an
alderly aunt takes the place of that infant on your lap; you
shoitld be ahle to predict from Figure 5
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steps. First, youl assess Ihe person’s O8]

mrement of tve adaptation enlails seyeral

Ihen, the per-

san views a hiph-comtrast grating for & minule or so

rjUency at 4 gwven on

MISES Inoim ViSLD,

Albrecht, Farra

ted to this

{Movshon and Lennie, 1979
Afler the
or 4 minute of (wo, vou redeterming the CSF (in

grating

and Harmlton, 1984) =rsion has adag

graring

with additional

lerspersi threshald  measurements

tabio n

:["..'.l.i."‘.’! fo ke

v which the person adapied. Note tha

notch carved neach OS5 15 centered about the dadapta-

tioh frequency. So adapting o one spatial freques

it frequency and n

To understand how sele o works, look
again 4t Figure 3220 11 just one of the channels is fa-
tigued by aduaptition. that channel will respond more
weakly v .

means thail

ral freguency

Wasy 4 Oul &¢

would ook som

pearance (Blakemore, Muncey, and Ric

ating that i normally visible

rmal

19731, A low-contrast g

will stimulate the adapted channel so weakly that the
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grating will be below threshold. [n order o attain visibil-
itw, this grating's comrast will bave o be boosted, result
ing in-adip in the CSE The width of this dip depends on
the selectivity of the laligued channel. Presumably, unaf-

fected reg

s of the USF depend on channels that were
not fatigued by the adapati i

You can demonstrate selectve adaptation for your
selll Figure 5.24 shows several differeat low-comrast test
gratungs and one high-contrast sdaptation grating. Before
looking at the adaptation grafing (in the center of the ig
ure), note the apparent cantrast ol the tesl gratings sir-
rounding it. Now inspect the high-contrast grating for
about 2 minute, Dop't stare fixedly, but allow your eyes
roamm around
Wit

¢ circle-in the srating’s center. Then,

delay, look ar one test gralis d note IS sppar

ent cor

rast. Afier lonl

g back at the adapiat

on grating

for another minute, note the apparent contrast of another

The Coantrast Sensitivity, Funchion as a Windaw of ¥isibiliey 17

IRE &.24 | By lullowing the instructions in the text, you can expariance the consequences of selactive

test graling. By adapling and then examining each west
arating i turn, you'll find that adapting alters the ap-
pearafice of only some lest gratings, Now' vou've seen for
yoursell that spatial frequency adaptanon 1s selective

Selective adapiation probably ocans in visual cori-
(Albrecht o, and Harmlton, 19843, Such
¢ selecuve lor spanal frequency (size), but as
Chapter 4 showed, they are also selechve for onentation,
As a result, you might expect grating adaptation to be se
lective for both orientation and spatial Frequency, The

logic behind this assertion resembles that used 1 explain
spatial frequency selective adaptation

You can demonsirate for yoursell that this adapta
tion effect really s selec
book Dy o0 d
the high-contrast gratmg in Figure 5.24, This maneuver

ve for onentation. Rotate tlus
ves (lurn it sidewavs) and then adapr to

will arienl the contours m that grating honzontally. Afer
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adapting {or a minute, quickly return the book to its up-
right position and look at the vertically oriented lest grat-
ings. Unlike before, all of the west gratings should remain
wisible. [n other words, adapting to horizootal has no ef-
fect an the contrast threshold for detecting vertical, re-
pardless of similarities in spatial frequency. This implies
that the cells adapted by the horizontal grating are not at
all involved in detecting vertical contours.

This demonstration is a reminder of ane of the prop-
erties exhibited by visual cortical cells: orientation selec

ecall that anather char stic of cortical cells 15

fvily
their binccularity: Mast of them receive mput from both

eyes, This implies thatif vou adapt just one eye to a grat-
g, vou will be able to observe the consequences of

rough either the adapted eye
and Fox, 1972} You can use

adaptacion while looking
pred eve (Blake
Figure 3,24 1o verily this fact also.

These adaptation effects imply thar different neural
channels are vsed 1o detect different spatial frequencies,
since it is possible to affect the sensitivity of one without
altering the others, And this same conclusion—different
channels for different spatial frequencies
plicd by results obtained using other technigues (see Wil-
son and Wilkinsen, 2004, for a succinct review of those
resultsh, We'll not go into that additional evidence and,
instead, we'll turn to evidence showing that these distinet

or the una

15 also 1m-

channels strongly interact with one another. We'll start
with a demonstration of this interaction and then con-
sider why these interactions are a good idea in wrms of
vistal object perception,

Interaction among Channels and

Contrast Normalization

Laook at Figure 3.25 and see if you can perceive a famil
jar object. Need some help? Try squinting your cyes, a
manenver that blors your vision and thus reduces the
high-frequency details in the retinal image of this picture
you wear glasses, try viewing the photo with g
off). Once those decatls are atenuated, the remaining low
frequency information becomes relatively stronger and
the object becomes conspicuous, Tn effect, the high fre-
quency details contained in the edges of the blocks were
the lower frequency pattern that is present
. (To understand how this block portrait

e Figure

SES

camouflaging
in Figure 3
WS Created, &
T
pointing o the existence of strong mleractions among the
multiple channels revealed by selecuve adaptation. He-
sults using the adaptation procedure point to the same con-

his demonstration is just one picce of evidence

FIGURE 5.25 | Can you tell whatis pictured here?

clusion. Consider, for example, the app:
grating. Adaptation to, say, a set of horizontal contours re-
duces the apparent contrast of gratings of all onentations,
ot ju

Irast; the same is trug when the adaptation and rest gratings
differ in spatial frequency (Snowden and Hammetr, 1996),

t horizontal, when those gratings are high 1o con-

So the perception of patterns at clearly visible levels of

contrast, unlike their appearance at the contrast threshaold
ol visibality, seems o depend on activily across multiple
channels wned to different ordentations and to different
spatial frequencies. This cross-channel interaction oceurs,
however, only among spatial frequencies and orientations
imaged at the same location within the visual field, We
know this because perceived contrast of a pattern at a given
location is not altered by adaptation occurring within an.

other portion of the visual field.

But what purpose do these interactions serve? Cne
idea is that the responses of channels tuned o differsnt
spatial frequencies and orientations within a given, local
region of animage are “normalized”™ based on the overall
contrast among these components (Heeger, 1992), Ac-
cording to this wdea of contrast normalization, visual re-
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sponses are combined lrom all active neurons whose re-

ceptive Delds fall witlun 4 focal nei

al re-

sponses of those detve neurons; this Prosciss Can pecur

ned signal, o e modilies the inc

very guickly. Bul what is the advantage of normaliz

netral responses based on some combined level of re-

sponsiveness” There ure vwo reasons for de

ng this {sum-

in Schwanz and Simoncelh, 2001), The first

reasom has o with maximizing the abulny ol neurons o

parcd 1o the complete rnge of contrst values enc

dhuring ordinary vision, IUis as i the neuror

Visual neurar
contrast varie

range can be dy

FATGN

cally shifted to e efficiently

of contrast The b
the lower part of this ligure show the conlrast-responsa
iglds stimulated
by relatively low contrast images (lefi-hand curve) and by
relatively high contrast images (nght-hand curve),

fthen the prevalling le

G Qrapns in

curves for wis
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ne hirsl reason for

channels. The second reaso y with

mai the stimulus selectivity of visual neurons

Recall thar a given nevron selectively responds ooly toa
narrow range of origntations and a limited range of sizes
amples

ively summarized o the form of a

far spatial frequencies). In Chapler 4 you saw e

of orientation select

peak of the
ith

‘tuning curve” (recall Figure 4.10), where
and the brea

curve signaled the preferred onentatiorn

of the » of onentatons capal

ntations of contours. Now, il the

shapes of the neurons” mning curves were 1o vary de-

e on the contrast of the contours activating those

pends

neurans, the patlerns ol activity produced by el Cofi-

tonr would change depending on the comtour’s contrast,

And that would not be visually desirable. for then we

could mistake changes w contrast for changes in orienta-

ton. Fortunately we don’ mike that mistake, and tl
curves red

And they e

hose nenrons are narmabized |

u s walln

In effect,

0 olerate shght er

W VIsal sy

rors in perceived contrast w0 avo|
percerved orientation.
Contrast normalization also olfers one possthle ex-

planation for why the object i Figore 5.235 is difficult
1o see unless you blur the mage, The sharp edges of the
i nals

ylocks m F

the norma
i, thus,

nals within the low spatial frequen

cOnirasl s

ponents contained in the . By blurning

the mgh spanial frequencies are remov
hution 1w contrast normalizarion s weakened, an
lonw spatial frequency contrast signal is boosted.
orher possible factors involved in this phenomenon, see
Hess, 2004

To sitim Hp. recent &

sual system. [n this view

pends on responses generated in a s¢f of nea

rons uned 10 contours Of partic ular sizes and orienla-

s, Bach set of nedrons is h".|'-u|1~'.'|\]|.' for F.i;_:|1.'|.||||_|__'
the presence of targets on & partichlar scale and orignta-
tinn, Moreover, the responses of thase neurons are ad
justed based on the Jevel of contrast contained within

the region of the image being stimulated by those neu

Farm Discrimination
You've now learned how the CSF defines o window of
visibility within which ohjects can be seén. Our empha-

ermined by an observer's

form detection as

and sp frequency. Now we are

VLY 1O COnt

ready 1o extend ou

LT

another. Before getting into details, though. it will be use-

ful to specif » on within the visual system

14l mu

to miake discriminanon possible
The perception of patier, or spatal structure, d

onses of cells i the visual system. This
p )

pends on the

endence sets limits on whal stimuli will appear dif-

nt andd what stimudi will look alike It stands ro reason

K

! patterns of neoral

Il them apart de-
In Chap-

pends on how dilfe:

al the neural responses

ter & you read that the responst ol dny one cell, say a
ample cell inthe visual cartex, provides gimbiguous mes-
jal features of oh

SUges Bbhout the characteristics of vi
jects i the visual world. In all likelibood, the visoal

nids on the ACTIV

Metamers
Il wou look

each produces preci
systenm, and they will look identical, Bupiwo objects that
are physically different can also have identical neural ef-
tects and, therefore, appear identicul: In other words,

wo e

sates of the same object,

ely the same effects on your visual

things need not be identical to look Wennical. Two objects
that are perceplually indistinguishable from one another
I i ¢ BELIMETs.

In pringy

Y sdmE ne

e of activity upon eitation of e soee 2imul

chcally speaking, ™ ical™ reafly means equivil L

ical sense, thas 15, with instgnificant vaiiatliry




FIGURE 5.28 | The two photographs are identical axcept that Irequencies falling above
led from the rAght-hand photograph

culolf have been elim
—

Wi can lewrn about neural processing in human vision
by determining which visual palterns are melamers and
e nol Metamers exist beciuse two or more stim

which

uhi hotigh different :

are insufficiently differe

g some dimension (e.g., size)

1o produce distinctive responses
he visual nervous sylem—whatever dimension

15 oo subtlé

€ NEUrons re-
imiils. Consequently, we are “bl
the differences between the stimuli, When your visua

f

i ales identical

o

ier
L= L

different; «

appear wdentical, even il they are physically

pt
105¢ bwo objects are sad o be me

meric. The

ple of metamers, in this case a pair of pictures

In Figure 5.28, the two photographs are identical ex-
cept tor the presence of high spatial freguency informa-
1e left-hand photograph. You are prot

he two photos are slightly dilferent because, from

Iy able 1o

this reading distance, these high spatial frequencies are

in other words, the two photographs are not

Butn

W prop he book upon at e and view

these two photographs from a distance of aboul 15 feet.
Now the high frequencies in the lefi-hand photograph will
tall ond the limits of ¥

identical even
it AL the preater

alent

raphs metamenic
theugh the two are phy:
viewing distanee. bath phote

two photographs under dim light dlumimation will also

render them metameric even at ordii

v reading distance
{]

il Figure 5.14, vou sh

Lookine back id umders 5
Incidentally, if a cat 1o view this same pair of
photographs from vour sonnal reading distance under

zood illumin

on (conditions where you

=an tell the pho-

tos apart ). the high frequencies @ the lefl-hand photograph
would he outside of the cat’s window of visibility, Thus,
the two photogrg
paair
viewing distances

would be indistinguishable (o a cat.

§ s

he cal al both

But it's not only light level or distunce that deternunes
whether two stimuli dre metamanie. Any i i

DT

ters the response ol nervois S¥siem can milluence

whether stimull are metamenc, You've alre:

ady seen one

el

examiple of this princple at work, when you expen

w of a low-conir

lermporary i T ing follow
ng adaptation (Figure 3.24). Adaptation momentarily re-
duced the responsiveness of neurons tuned to that sp

lreg [alyod, 10 [ pont ¥

rons were no more active than they are when confronted
with an uncontolred, uniform gray field, The low-contrast
grating, as a consequence of ada

0N, Was temparar
toured ficld.

Let’s consider another visual phenomenon where we
use adapration w aler the responsiveness of the visual

ervous system amd. thereby, 10 change s ih from

metamenc with an unco

metameric to nonmetameric To do this, we turn 10 the
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in sensitivity s llastra

when presented following

The test grat

[requency i'n; i

test grating. Asa result, after
the spautial frequency of the
higher than usual, And this is precisely what huppens
(Blakemore, Nachmias, and Sutton, 19701, On the basis
of this theory. can you predict what swould happen il a
person were o adapt to a spatal frequency higher than
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plation,

hould appear

L your

assure you that this afte
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Cuniteist sensilivity Funcion as a Window af Visibilieg 174

emme 15 the same: 4 lemporary changé in &

To make the effect casier w see

multanco

Tects In opposie

5.30. Look at
of the left

dot,
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hlarl A 1
HACK dol

v the upper and lower panels

side oof the fig
verify that the letters in the text above the line look the
same size as the letrers below

We'll now expls

¢, With your eyes fixed on the |

rent size of these
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tch ol smail S COTTespr

h spatial frequencies, whale the patch of larger, more
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; .
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I'he pomt to be remembered from this discussion of

ihility to dis ob-
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sionds) distinguish those objects. For examp
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left are ever so slightly narrower than the ones an the

These tiny

tween members of each terms reveal

ese pairs of
that the visual nervous sysiem is exquisitely sensitive to

variations i size and in orientation,
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Sull, the central rectangular region can been seen imme-
diately and with no effore—the shape appears to “'pop
out” Irom the backgronnd.

Anne Treisman (1986) and others have exploited this
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time-comsumi e typical display

these kinds of pop-out expeniments are shown in I
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our present discussion, pop-out can be produced by texture

line curvature, line L, and famils
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Blake, 1990). There are, however, |i

texiure-g i shapes, To see this, look at Figar

Cluster ¢

conspacucusly, bt

o vou

may see a secoid ol exture dillerence I escape

your attention, See the cluster of Ts embedded mthe Ts o
it hal i Only by scrutinizing the elements in

another, do

sla &




e (Dy

ard). The athar thrée pan

B compuler keyh

- ooes a

flumbar o

from {ha disirac pe more or

Tou can probubly sce o serof shamp vertical e

the artast was atlern wipture the

shadows h

wen oo 3

b able foosdentity nnnimal testure infe

» proili Kelly's s

o addition ta bounchanes and st

e-cimensionul curvaine of i

ehned Dy

jous whereas olhers req

L2002 Ls

wd Zaely, 2000, Fiewre 5,37 5

fexfurs

the cormug ds e alke
LS 1O RENtWre as Al

This s o pood Tane

ence of disconninties in

Proce:

Crate o vitdtever local feat %

oul thie wisual fielil, Roughly

1 e (l (als

it Matinn oby

VECT paits seem B oy

cluas together o re

requines ssembh

v he [HIETS EE Ty ful whi

l "-.lIE'\ !II!II'. e, look Fieure 5558 Wi




FIGURE 2,36 | "La Combe |" by Ellsworth Kelly (painted in 1950). Note the strong illusory vertical contours alang
ihe endpolints of the thick diagonal bars. The figura shown here Is a black-and-white reproduction of the origina

which is red painl on white carvas. The original is 38 inches by 63.5 inches

FIGURE 5.37 | Computer-generatad image of a FIGURE 5.38 |

E Percaivin
lextured surface that appears to have 20 cormugations,

an object entails
segregating contours into a meaningful whale,
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Putting the Parts Together: Global Comtext and the Gestalt Principles 185

FIGURE 5.40 | Objects close together tend lo Unite pereeptually into groups.
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in action (for a more extensive discussion, see Palmer,
199493, The Web resources for Chaprer 5, available at
www.mhhe.com/blake5, has more material, including
demonstrations, of these principles.

iestalt Principles of Organization

The principle of proximity descrbes the tendency of
nearby objects to group together as a single percepiual
unit, As you can see in panel a of Figure 5,40, no strong,
stable organization seems to predominate when the cir-
cles are equally spaced. Instead, they can be seen some-
times o cluster into rows and other times, into columns,
(You may occasionally even see the cireles grouping into
diagonal strings.) None of these weak organizations per-
sists, however, and none seems compelling. But notice
what happens when the vertical distances among neigh-
boring dots are made larger than the horizontal distances,
25 in panel b of the figure, With this simple modification,
the dots form horizontal strings, or rows. Panel ¢ illus-
trates what happens when the horizontal distances are
made larger than the vertical: Dots group into vertical
strings, or columns. So, sunply varying the proximity of
circles biases the perception in favor of one organization
or the other, Another intriguing example of proximty s
potency is illustrated in Figure 541, Called a Glass pat-
tern {in honor of its inventor, Leon Class, 1969, the dots
in this figure appear to have an overall radial pattern 1o
them. What does proximity have to do with this overall
appearance? The global, radiating pattern comes about
because throughout the figure the individual dots tend to
pair up with a neighbor because of their proximity (tech-
nically each pair is called a “dipole”). And throughout the
entire figure, the implied orentation of these pairs varies
systematically in-a manner implyving a radial shape. And
1Lis proximity that forms the hasis for this global pattern.

FIGURE 5.41 | These dots convey an overall
sanse of a radial patiern, but this global form is defined
solely by the arrangements of local pairs of dots that are
grouped by their proxmity,

Max Wertheimer. a famous Gestalt psychologist
called attention w another mujor orzanizational tendency,
the principle of similarity. "Other things being equal, il
several stimuli are presented together, there 18 a fendency
to see the form in snch a way that the similar items are
arouped together™ (1923/1938, p. 119). The dimensions of
similanty that control grouping include lighiness, orienta-
tion, and size. Examples of these effects are illustrated in
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FIGURE 5.44 |
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Some objecs,

usuaily conspicuous stouctural properny that deserves spe

100 keeping the two curves separare, not grouping (hem into cial comament: thal propany 15 sym y the lendency for
5 single entity. This is further demonstraled by the fact that  those pans of an objec : ven axis to he
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FIGURE 5.49 1 Inthe top portion of the figure, we see the object on the left as a diamond partially cccluded by a
circle. In fact, the occluded portion of that object could be any shape whatsoever. including any of the three shapes
shown at the bottam, Vision favors the diamond because that perceplual inferpretation maintains symmetry,
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symmetry remained as potent as ever. but preference for

comp v iner

person’s prior training,
Preference for symmetr

FIGURE 5.50 | Compound gratings representing
the two preference dimensions Rentschler extracted
fram pecple's judgments of liking. Compounds 1 and 3
examplify bilateral symmetry: compounds 2 and 4

| axamplify visual complexity.

ased or decreased depending upon a

then, depends on a rela-
it the

vistal information
d from simphcity/complexity
At any moment, your prefer-

tively invariant proce:
aesthetic pleasure der
2 depends upon experience.

s ences reflect both the enduring prope
vous system as well as the taste acquired through your
gxperience.

This completes our survey of the spatial properties
that define objects and their parts, and hence, determine
our ability to detect and discriminate those objects. As
we close, think back once more to Spirit slowly travers

s of your ner-

ko e i 7 r— -

! ing the Martian landscape as it surveys whatever 11s cam-
| 3 1 etas encotnter. T Spirit's circnitry ¢an mimic the
i perceptual operations described in this chapter—multi-

scale analysis and shape-from-texture grouping—then
our little robot has taken one giant step in humankind's
attempt to discover the Martian environment, Bur Spirit's

clectronic messages still must be transformed into iden-
tifiable objects. Clues about how that can be accom
plished are the focus of Chapter &.
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