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CHAPTER 23

Saccadic
decision-making

Casimir J.H. Ludwig

Abstract

The generation of a saccade may be considered the outcome of some decision-making process.
Functional models of saccadic decision-making are based on the accumulation of sensory evidence
in favour of various alternative movement programmes in a race to a decision threshold. The
outcome of this race is affected by a number of decision-related variables such as the quality of
sensory evidence, the prior probability of alternative movements, and the reward associated with the
different movements. I review a selection of behavioural and neurophysiological studies on the influ-
ence of these variables on saccadic decisions, and relate these variables to the distinct mechanisms
posited by models of decision-making.

Decision-making may be regarded as that internal process which produces behaviour, as manifest in the
motor output of an organism (Glimcher, 2003b, 2003a). Behaviour may be in response to sensory
stimulation, triggered by non-sensory factors or, most typically, some combination of the two. Motor
responses to sensory stimulation may be anything from what are often thought of as primitive reflexes—
indeed, these were the starting point of the physiological study of decision-making—to more complex
patterns of motor output that are less deterministically linked to the sensory input.

Clearly saccadic eye movement generation is a long way removed from what may be regarded as
‘volitional’ decision-making that we typically associate with human behaviour. Nevertheless, it
is appropriate to view these movements as the consequences of some decision-making process that
is more complicated than those underlying the most direct sensory-motor responses. That is, saccades
may be internally generated on the basis of non-sensory factors (e.g. I can choose to look to the right
and up even in absence of any sensory stimulation), may be withheld altogether even when presented
with a highly salient stimulus, and may be triggered in response to sensory stimulation. The mapping
between sensory stimulation and saccadic eye movement response may be direct (such as in a typical
visually guided saccade task) or more arbitrary and symbolic. Regardless of the complexity of the
sensory-motor mapping, a decision is made: 1) to move the eyes, 2) where to move the eyes to, and
3) when to move the eyes. The limited resolution of human vision dictates that such decisions are
made at regular, relatively short intervals (around 3 or 4 times every second).

In this sense, any chapter in this volume on saccadic eye movements may be regarded as being
about saccadic decision-making. As a result, there will inevitably be some overlap between the topics
addressed in this chapter and issues reviewed elsewhere in the volume. I will restrict the focus of this
review to a discussion of: 1) the functional mechanisms that serve saccadic decision-making; 2) the
representation within the saccadic system of decision-related variables such as sensory evidence,
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prior probability and reward; and 3) whether and how these variables impinge on the mechanisms
identified in models of saccadic decision-making.

Models of saccadic decision-making

Over the past two decades both behavioural and neurophysiological research on the saccadic system
has started to address how saccade targets are selected in situations in which the system is confronted
with a number of possible objects to look at (reviewed in Fecteau and Munoz, 2006; Schall and
Thompson, 1999). Selectivity is studied by examining the accuracy and latency of target selection, as
well as more dynamic variables such as saccade trajectories. The logic is straightforward: a more
difficult selection process will be evidenced by less accurate saccades, triggered with longer latencies,
and executed with more biased trajectories (either towards or away from the competing object loca-
tion; see Chapter 5, this volume, as well as McSorley et al., 2006). Single-cell recordings from primate
superior colliculus (SC) (McPeek et al., 2003; McPeek and Keller, 2002b, 2002a) and frontal
eye fields (FEF) (Bichot et al., 2001; Schall et al., 1995; Thompson et al., 2005) in such paradigms
have reinforced a view of target selection as a competitive process that is gradually resolved over
time. Neurons with visual and/or motor responses in these structures will typically respond to any
item that falls within their receptive or movement field. Over time, responses to non-selected items
are suppressed in favour of neurons coding the selected, target location. This competitive process has
been formalized at the functional level in the form of decision-field models.

Decision-field models

Decision-field models assume that the relevant parameters of movements towards the various
response alternatives are coded in a continuous and dynamic activation field (Arai and Keller, 2005;
Arai et al., 1999; Erlhagen and Schoner, 2002; Kopecz, 1995; Kopecz and Schoner, 1995; Ludwig
et al., 2007; Trappenberg et al., 2001; Wilimzig et al., 2006). For instance, a generic saccadic ‘motor
map’ may be conceptualized as a one or two-dimensional topographic representation of visual space
(e.g. the amplitudes and directions of all different possible eye movements; see Fig. 23.1). Maps in
which neighbouring units code nearby movement vectors are found throughout the saccadic eye
movement system (e.g. in SC and FEF). An input into the system, which may be a localized visual
stimulus or an internally generated movement plan, results in a broadly distributed pattern of activ-
ity. The peak of activity is centred on the movement vector'associated with the input, but neighbour-
ing vectors are also activated in the population code (e.g. Ottes et al., 1986; Goossens and Van Opstal,
2006; C.K. Lee et al., 1988; Mclllwain, 1986). Fig. 23.1 illustrates a simple, two-item input which gives
rise to two separate, broadly distributed activation patterns on the motor map.

The activity on the map evolves over time. For instance, the activity associated with one pattern
may rise faster than that associated with the other, perhaps because of experimental instructions
which may render one type of pattern more relevant than the other (e.g. ‘look for squares’). Such
computations are captured by the f(input) term in Fig. 23.1, where f may represent anything from a
simple linear transducer to more complicated and non-linear transformations of the sensory input.
Units representing distant portions of space may mutually inhibit each other and nearby units may
activate each other, in accordance with neurophysiological evidence from SC (Munoz and Istvan,
1998). In addition, units may ‘leak’ a certain proportion of the activity they are accumulating, which
may be countered by some degree of recurrent self-excitation (Usher and McClelland, 2001; Wang,
2002; Wong and Wang, 2006). Regardless of the precise dynamics, the competition may be thought
of as a parallel race to a response threshold. The saccade is executed soon after the threshold is
reached, its target corresponding to the vector that won the race.

For such models to produce realistic variability in choice, latency and landing position, one or
more sources of noise need to be assumed. For example, the input into the decision tield may vary
upon repeated presentation of the same stimulus configuration, as a result of internal noise in the
transformation of the input. Additional noise is often added to the gradual evolution of activity on
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Fig. 23.1 Decision-field model of saccadic decision-making. An observer is presented with a test
display and told to saccade to the square. The two potential saccade targets are represented by
broadly distributed populations in a two-dimensional decision-field (r,0). Due to the prioritization of
squares over triangles (an operation assumed to occur in f(input)), the units representing the
Jocation of the square receive a stronger input. Over time the activity associated with the non-target
is completely suppressed. The activity distributions in the decision field are based on a mapping of
a 0.5-mm Gaussian activity profile in collicular coordinates to polar coordinates, according to the
model of Ottes et al. (1986). Note that only the right visual field is represented.

the motor map over time. Together, this set of assumptions can account for an impressive array of
data from a range of simple saccade target selection paradigms (Trappenberg et al., 2001). Decision-
field models can provide an excellent functional description of the competitive interactions that take

place throughout the saccadic eye movement system.

Evidence integration models

More abstract evidence integration models are based on a similar principle of the gradual evolution
of noisy activity towards a response threshold (Luce, 1986; Ratcliff and Smith, 2004; Smith and
Ratcliff 2004). Such models have been widely used in cognitive psychology to account for relatively
simple decisions such as whether a string of letters is a word or non-word, whether a test item featured
on a study list presented earlier, etc. Models in this class include a variety of sequential sampling
models that are characterized by temporally dynamic noise (often referred to as ‘wiener noise’ in the
continuous time domain) that is added to each sample. Examples of sequential sampling models are
random walk models (Laming, 1969; Link and Heath, 1975), the widely used diffusion model
(Ratcliff, 1978; Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004), and accumulator models (Usher
and McClelland, 2001; Vickers, 1970). Other evidence integration models do not assume that the
temporal samples themselves are noisy (Brown and Heathcote, 2005, 2008; Carpenter and Williams,
1995). These models are often also referred to as accumulator models, but they are technically not in
the same class as the sequential sampling models. The feature that unites both noisy and ballistic
accumulator models is their absolute stopping rule: the decision process finishes as soon as an accu-
mulator reaches a criterion amount of evidence. In the random walk and diffusion models, the crite-
rion is a relative one: it corresponds to a certain amount of net evidence in favour of one particular
alternative, relative to the other alternative(s).

In the saccadic domain one particularly simple model is the LATER (linear accumulation to
threshold with ergodic rate; Carpenter and Williams, 1995) model developed by Roger Carpenter
and colleagues (see also Sumner, Chapter 22, this volume). LATER assumes that activity associated
with a particular saccade programme (i.e. movement vector) rises gradually towards a threshold.
Importantly, the accumulation rate is assumed to vary randomly from one saccade to the next,
according to a Gaussian distribution. This single noise source is sufficient to account for the latency




428 - Casimir J.H. Ludwig

variability observed in simple visually guided saccade tasks. Application to competitive situations in
which there are multiple items to choose from requires an extension of this basic idea to multiple
accumulators racing against each other. As in the dynamic field models, this competition may
involve lateral inhibition, self-excitation, and leakage, which would make the accumulation paths
non-linear (Brown and Heathcote, 2005; Leach and Carpenter, 2001; Ludwig et al., 2005a; Usher and
McClelland, 2001). Fig. 23.2A illustrates this competitive process, with lateral inhibition, for the
same two-alternative decision that was illustrated in Fig. 23.1. As in that example, the activity associ-
ated with one particular saccade programme (e.g. the one for the square) rises more rapidly than the
activity associated with the competitor and ends up winning the race.

One way to view this accumulator model is as a reduced version of a full decision-field, consisting
of just a small number of units that represent the discrete choices available to the decision-maker.
Each of these units may be thought of as representing the mean activity of the different neural popu-
lations encoding the response alternatives (Wong and Wang, 2006). In many experimental para-
digms the different potential saccade targets are well separated, so that the movements can be clearly
and discretely classified as being directed towards one pattern or another. To model choice and
latency variability in such paradigms then, this simplified representation is sufficient.

Finally, it should be noted that models involving competitive accumulation towards an absolute
threshold are difficult to distinguish empirically from the noisy accumulation of net evidence towards
a relative criterion, as assumed by the bounded diffusion model (Bogacz et al., 2006; Ratcliff and
Smith, 2004). In the diffusion model, as applied to two-choice tasks, there is only a single ‘accumula-
tor’ which moves through a decision space (analogous to the Brownian motion of a particle) towards
one of two boundaries which represent the available response alternatives. The consequence is that
motion towards one particular alternative necessarily implies a shift away from the competing alter-
native. The same inhibitory dynamics may be achieved through lateral inhibition between multiple
accumulators that race to a single, common threshold.

Representation of decision-related variables

Evidence integration models suggest what functional mechanisms may underlie selection from
multiple competing peripheral targets. I will now turn to the question of whether the saccadic eye
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Fig. 23.2 Accumulator model of saccadic decision-making. A) Competition between two potential
saccade targets is resolved over time through lateral inhibition, just as in Fig. 23.1. A saccade is
initiated when one accumulator reaches threshold. The saccade target is determined by the
winning accumulator. B) As reviewed in the ‘Representation of decision-related variables’ varying
the quality of sensory evidence is best represented by changing the rate of accumulation. Weaker
evidence is indicated by the lighter shaded, slower accumulators. C) The effect of varying the prior
probability of a particular movement vector is best represented by changing the starting level of
accumulation. Less probable responses are represented by lower initial levels of activation, as
indicated by the lighter shaded accumulators.
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movement system is capable of representing information that a sensible decision-maker would take
into account. Neurophysiological, and to some extent behavioural, work has focused on three deci-
sion-related variables: strength of sensory evidence, prior probability, and reward (or, more precisely,
relative expected utility). I will discuss each of these three variables in turn and attempt to link them
to the functional mechanisms described in the previous section.

Sensory evidence

Evidence refers to the extent to which the sensory data provide support for one hypothesis relative to
one or more competing hypotheses. In the context of saccadic decisions, the hypotheses correspond
to the different possible saccade targets. The question is then whether the sensory evidence calls for a
saccade to one potential target in favour of the others, and whether the strength of that evidence
affects the decisions made in a predictable and adaptive manner.

Possibly the most straightforward manipulation of sensory evidence is simply to vary the visibility
of a peripheral target (Ludwig et al., 2004; White et al., 2006). Unsurprisingly, in visually guided
saccades to a single target the latency of the saccade decreases as the luminance contrast of the periph-
eral target increases. This is consistent with the idea that improving the sensory evidence enhances
the rate of accumulation, which results in a shorter decision latency (see Fig. 23.2B). However, the
visually guided saccade paradigm does not involve a decision between multiple competing response
alternatives.

To examine saccadic decision-making in such competitive conditions, Ludwig et al. (2005a) (see
also Caspi et al., 2004) presented human observers with two peripheral luminance patterns. The
luminance contrast of both patterns was re-sampled every 25 ms, independently from partly over-
lapping probability distributions, so that one of the patterns had a slightly higher average contrast.
Observers were asked to saccade to this higher contrast pattern. As a result of the temporal noise
in the stimulus sequence, the sensory evidence provided in this paradigm is uncertain. Under
these conditions, temporal integration of the evidence is a good strategy to decide which pattern to
look at.

The sensory uncertainty introduced by the external noise enabled Ludwig et al. (2005a) to identify
over what time window the sensory evidence was taken into account. Imagine a trial on which,
through random sampling, the designated ‘non-target’ pattern (i.e. the one with the lower average
contrast) happened to be a little brighter than the actual target for some brief period of time, shortly
after the onset of the two patterns. If the observer chose to fixate the non-target pattern on that trial,
this would indicate that the sensory evidence provided in this period of time was taken into account
in the decision process. Over the course of many trials, this type of regression of the decisions against
the noise in the stimulus reveals the temporal window of evidence integration.

Surprisingly, given average saccade latencies on the order of ~300 ms, this window was restricted
to approximately the first 100 ms of stimulus presentation. Subsequently, Ludwig (2009) has demon-
strated that the results from this study can be accounted for using the evidence integration frame-
work. In this instance, the evidence is represented by temporally blurred versions of the sequence of
luminance contrast values. The net evidence is computed as the difference between these temporally
filtered internal responses. This difference is integrated over time to one of two boundaries, corre-
sponding to the two decision alternatives. As a result, temporary variations in the strength and direc-
tion of sensory evidence result in corresponding temporary, blurred variations in the rate of
accumulation. This model could account for the overall accuracy of the saccadic decisions, the
latency distributions of correct and error decisions, as well as results from a different experiment in
which the temporal availability of useful sensory evidence was manipulated systematically (Ludwig
et al., 2005b, experiment 2).

Newsome, Shadlen, and colleagues have examined the neural mechanisms underlying the inte-
gration of sensory evidence during perceptual decisions about visual motion (Britten et al.,
1992; Ditterich et al., 2003; Gold and Shadlen, 2003, 2000; Kim and Shadlen, 1999; Newsome et al.,

1989; Palmer et al., 2005; Roitman and Shadlen, 2002). Figure 23.3 illustrates the classic paradigm.
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The observer (mostly non-human primates) fixates a point on the screen and is presented with a
central random dot kinematogram (RDK). This is a pattern consisting of a number of randomly
moving dots. A subset of the dots, however, moves in the same direction. For instance, 10% of the
dots may move coherently to the left, in which case the observer has to make a saccade to the marker
object located left of the central RDK pattern. By varying the proportion of coherently moving dots
(the motion coherence), the strength of the sensory evidence is manipulated. The evidence in favour
of either option is weak when the coherence is close to 0%, but less and less ambiguous for higher
coherence values.

Note that although the task calls for a saccadic decision, the mapping between the available saccade
targets and the sensory evidence used to make the saccadic decision is symbolic and rather arbitrary.
The main focus of these studies is on perceptual decision-making, but saccadic responses are used
because the basic neurophysiological mechanisms underlying saccade generation are relatively well
understood. In terms of the definition of decision-making provided at the start of this chapter, the
saccadic system is treated as a model system to study the neural signature(s) of ‘that internal process
which produces behaviour’. It is important to bear in mind that in more naturalistic conditions, the
sensory evidence in favour of a peripheral saccade target is typically bound to that peripheral loca-

tion. In that regard, it could be argued that the decision-making task of Ludwig et al. (2005b) has
greater ecological validity.
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Fig. 23.3 Visual-saccadic decisions about perceptual motion. A) The observer views a RDK pattern
in which only a subset of the dots move coherently in one direction. After a delay (determined by
the experimenter or by the observer) the motion direction is signalled with a saccade to one of

the two peripheral markers. B-D)Fictitious data showing how choice accuracy (B) and reaction time

(C) vary as a function of motion coherence, and how motion coherence thresholds (D) for direction
discrimination improve with viewing time.
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In the RDK task observers do clearly adjust their behaviour in accordance with various manipula-
tions of the sensory evidence. Their choice accuracy improves monotonically as a function of motion
coherence (see Fig. 23.3B for a hypothetical example). For a typical viewing duration, performance
ranges smoothly from close to chance for weak coherence to nearly perfect for high coherence (typi-
cally >25%j; Gold and Shadlen, 2003). More interestingly, accuracy improves with increasing viewing
duration in that motion coherence thresholds decrease as a function of viewing time (see Fig. 23.3C).
This finding suggests strongly that the observers are taking advantage of the increase in viewing time
by collecting more sensory evidence. Finally, in a reaction time version of the task (in which the view-
ing epoch is terminated by the observer’s saccadic response) the decision time decreases with increas-
ing coherence (Roitman and Shadlen, 2002; see Fig. 23.3B). This result indicates that when the
evidence is weak, observers elect to wait longer and collect more data in order to make a more
informed decision. Behaviourally then, it is clear that the saccadic system is capable of taking sensory
evidence into account.

In terms of the underlying physiological mechanism, it is well established that directionally selec-
tive neurons in primate brain area MT respond to such motion patterns (Britten et al., 1992). A pool
of MT neurons with the same direction preference (say leftward) then provides an ongoing, momen-
tary estimate of the sensory evidence in favour of responding to the marker object that corresponds
to this direction. Of course, a pool with the opposing directional selectivity will encode the evidence
in favour of the alternative choice option. It is important to note that this evidence is momentary:
due to the stochastic nature of the RDK pattern the evidence in favour of one or the other alternative
will fluctuate over time.

Two pieces of evidence suggest very strongly that brain structures that are involved in saccade
generation perform a gradual accumulation of the fleeting sensory evidence. First, micro-stimulation
of the frontal eye fields results in evoked saccades with endpoints that are biased in the direction of
the ensuing target-directed saccade (Gold and Shadlen, 2000). This bias indicates that the evoked
saccade is some weighted combination of the vector coded by the stimulated site and the decision-
related vector (i.e. to the marker that corresponds to the perceptual decision). Critically, the magni-
tude of this bias increases with viewing duration and motion coherence in a similar manner as
behavioural choice accuracy, suggesting that the decision to make a saccade to the peripheral marker
evolved gradually over time. Second, single cell recordings from LIP show that the activity of neurons
coding the decision-related movement gradually increases over time (Gold and Shadlen, 2003; Huk
and Shadlen, 2005; Roitman and Shadlen, 2002). The rate of increase is systematically related to the
motion coherence so that strong evidence results in a faster increase than weak evidence. In the reac-
tion time version of the task it appears that, when aligned to movement onset, neural activity reaches
a critical level that is independent of motion coherence (see also Horwitz and Newsome, 2001; Kim
and Shadlen, 1999, for similar signals in SC and in dorsolateral pre-frontal cortex).

These data can be modelled by assuming that LIP neurons integrate sensory evidence over time up
to a criterion threshold, where evidence is the difference in the sensory response of pools of MT
neurons coding the alternative directions used in the experiment (Ditterich, 2006b, 2006a; Mazurek
et al., 2003). This variable is closely related to the optimal decision variable, namely the (log) likeli-
hood ratio (Gold and Shadlen, 2001; Green and Swets, 1966). Human data from this paradigm are
also successfully modelled under the assumption that the strength of sensory evidence affects the
(mean) rate of evidence accumulation up to a decision threshold (Reddi et al., 2003).

Prior probability

The prior probability of an event or state is the probability of that event occurring, regardless of the
momentary evidence. Consider the domain of medical diagnosis. A set of symptoms (evidence) may
typically be attributed to various different possible underlying causes (hypotheses). Unless the
evidence overwhelmingly points to one particular condition over any other, a sensible diagnosis
takes into account how likely the various conditions are to occur in the first place. This idea is formal-
ized in Bayes rule, which combines the current evidence (likelihood) with the prior probability of
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some event. In the present context, the question is whether the prior probability of a particular
movement vector being required plays a role in saccadic decision making.

In this domain, a straightforward manipulation has been to vary target location (un)certainty. For
instance, in a simple visually guided saccade task variation in the probability of the target appearing in
one location results in a strong modulation of the saccade latency (Carpenter, 2004; Carpenter and
Williams, 1995). Unsurprisingly, saccade latency increases with greater target uncertainty. Using LATER,
the change in the reaction time distributions was best accounted for as a change in the separation
between the starting point of accumulation and the threshold (Carpenter and Williams, 1995): increased
target uncertainty results in an increase in this separation. Note that such a change may be brought
about either by decreasing the starting point or increasing the threshold. However, in the context of a
probabilistic interpretation of this kind of model, it is most natural to assume that variations in prior
probability affect the starting point (see Fig. 23.2C). Saccade vectors that are unlikely to be called for will
start off from a lower level, compared to movement programmes that are relatively more likely to be
executed. It is distinctly possible that this modulation represents a purely local effect (Walthew and
Gilchrist, 2006), in that every time one particular saccade (say leftward) is executed the starting point for
that (left) programme is increased for the next trial. Over the course of a whole experiment then, this
would result in a relatively decreased (mean) starting point for less likely saccade vectors.

Another way to vary target uncertainty is to manipulate the number of choice alternatives. Hick’s
law states that (manual) reaction time increases logarithmically with the number of choice alterna-
tives (Hick, 1952). Hick’s law has been observed with saccadic responses, provided that the task
involves a transformation between the stimulus and saccadic response (e.g. antisaccades in Kveraga
et al., 2002; mapping a colour cue to a location in K.-M. Lee et al., 2005). The latency distributions
from K.-M. Lee et al. (2005) (where the number of alternatives varied from 1-8) were fit with the
LATER model. These fits were—again—more consistent a change in the starting point of accumula-
tion with varying numbers of alternatives.

Basso and Wurtz (1998, 1997) performed a series of similar experiments while recording from SC.
Monkeys were presented with an array of objects arranged around a central fixation point. The size
of the array ranged from 1-8. After a delay one of the items dimmed; this item was the saccade target.
When the central fixation point extinguished the monkey was required to make the target-directed
saccade. The critical interval in this paradigm is that between array onset and target specification.
Build-up neurons in the intermediate layer of the SC showed a reduction in their activity as target
uncertainty increased. Once the target was specified these neurons increased their activity more
when target uncertainty was high, presumably to cover the extra ground needed to reach the common
saccade trigger threshold. Indeed, the immediate, presaccadic burst of both build-up and burst
neurons was not affected by target uncertainty. A similar modulation of activity may be seen in LIP
neurons when a central cue signals which of two targets to saccade to and the prior probability of one
or the response is varied (Platt and Glimcher, 1999).

Both modelling of behavioural results and neurophysiological evidence then suggest that effects of
prior probability are mediated by varying the separation between the starting point of evidence inte-
gration and the decision criterion (see K.-M. Lee and Keller (2008) for tentative evidence for an effect
of prior probability on the threshold of FEF visual-movement neurons). However, a recent study by
Liston and Stone (2008) suggests that prior probability may also affect the sensory response that,
presumably, forms the input into the oculomotor system. In this study, observers performed a two-
AFC saccadic contrast discrimination task. A bias in the location of the higher contrast target influ-
enced the saccadic decisions in a predictable fashion: choice was biased towards the more probable
location and saccade latency was shorter. After completing the saccade a test disc appeared and
observers were asked to indicate whether the previously fixated saccade target or the subsequent test
stimulus was brighter. The perceptual decision task essentially probed the perceived contrast of the
saccade target. If the bias induced by the prior probability variation affects the sensory response to
the target, this should be manifest in the perceptual judgement. Indeed, Liston and Stone (2008)
reported that increased estimates of contrast gain and internal noise for the more likely target loca-
tion. These results are consistent with a multiplicative weighting mechanism that amplifies the noisy
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internal sensory response, before being transmitted to the oculomotor system. In the context of
accumulating sensory evidence, this scheme is more consistent with an effect of prior probability on
the rate of accumulation.

Finally, even in the absence of any real variation in the prior probability of certain locations becom-
ing behaviourally relevant, humans (Anderson et al., 2008; Carpenter, 2001) and monkeys (Fecteau
and Munoz, 2003) frequently develop idiosyncratic motor biases in that a particular response is
favoured (e.g. a preference for successive movements in the same direction; Anderson et al., 2008).
Such biases may be interpreted as internally generated, misguided estimates of prior probability and
seem to be best accounted for in terms of an offset in the starting point of accumulation (Gold et al.,
2008). Again, it is possible this offset is the result of a purely local mechanism that generates trial-by-
trial adjustments of the starting point.

Reward

As with movements that are a priori more likely to be commanded, responses that are associated with
larger expected rewards may also be expected to be weighted more heavily in the saccadic decision-
making process. Indeed, the effect of reward magnitude on LIP activity is very similar to that of prior
probability in the cued saccade paradigm of Platt and Glimcher (1999). Early activity (i.e. before
specification of the movement target and the associated pre-motor ramp to threshold) is higher for
neurons representing higher value choices, even when the prior probability of both responses is
equal (see also Dorris and Glimcher, 2004).

These neurons also appear to be involved in tracking local variations in reward in a free-choice
paradigm (Sugrue et al., 2004). In this paradigm the monkey is presented with two choice alterna-
tives of different colours and is free to choose to look at either target. In blocks of 100-200 trials the
response alternatives were associated with different rewards, which changed unpredictably.
Behaviourally, the challenge is to match choice to the relative rewards. The monkey’s performance
was modelled by computing the expected relative reward from the different options, through leaky
integration of the recent reward history (see also Corrado et al., 2005). This quantity, termed ‘local
fractional income’, guides decision-making on the current trial. Importantly, LIP activity during the
delay between the onset of the targets and a subsequent ‘go’ signal was correlated on a trial-by-trial
basis with local fractional income: activity was higher for the option that was more generously
rewarded in a relatively short window of recent choices. Interestingly, unlike in the cued saccade
paradigm (Platt and Glimcher, 1999) this modulation evolved gradually over time during the delay
period. That is, the LIP response to the onset of the two targets was independent of local fractional
reward (perhaps because the reward was related to the colour of the peripheral target, rather than the
location), but this dependency manifested itself gradually and lasted up to the onset of the saccade.

Reward-related modulations of neural activity can be found in a variety of brain areas (Sugrue
etal., 2005), but in the context of saccadic decision-making the basal ganglia are a structure of partic-
ular interest. The basal ganglia are important for motor control in general. The caudate nucleus (CN)
in the dorsal striatum and the substantia nigra pars reticulara (SNr) are involved in saccade genera-
tion. Briefly, the SNr tonically inhibits the SC motor map. For a saccade to occur the SC needs to be
disinhibited, which is mediated by the inhibitory projection from CN to SNr (Hikosaka and Wurtz,
1989; Hikosaka et al., 2006). Activation of the CN, in turn, is achieved through cortical inputs from a
variety of areas, including the FEF and LIP. The modulation of SC build-up neurons with prior prob-
ability reviewed above (Basso and Wurtz, 1998, 1997) appears to be preceded by a pause in SNr activ-
ity, the extent of which is also related to the level of target uncertainty (Basso and Wurtz, 2002).

In a similar vein, CN neurons are responsive to reward magnitude in that larger rewards trigger
greater levels of CN activity (Lauwereyns et al., 2002). In a visually guided saccade task with unequal
rewards associated with different target locations, the CN neurons coding ‘richer’ target locations
showed elevated levels of activity before the target is presented (i.e. in the delay between fixation
point onset and target presentation). Given the inhibitory connection between CN and SNr, it
appears that the increase in CN activity would manifest itself as increased oculomotor readiness at
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the collicular level, similar to that seen in manipulations of prior probability. Indeed, the latency of
saccades to the high-reward target location is typically reduced. It has been hypothesized that the
reward-modulation of CN neurons is shaped through dopaminergic inputs into the CN that modu-
late the synaptic efficacy of the cortical inputs (Hikosaka et al., 2006). These dopamine neurons
appear to encode a quantity related to the difference between predicted and obtained rewards

(Hollerman and Schultz, 1998): a larger obtained reward than expected results in an increased

response and a smaller than expected reward results in response suppression. As a result, these

neurons may be regarded as computing a prediction error term that enables learning of the reward

structure of an environment (Nakahara et al., 2004; Schultz, 1998).

These physiological data seem to point towards reward affecting the oculomotor readiness, which
corresponds to the functional mechanism of the starting point of evidence accumulation. However,
human behavioural evidence on this issue is scarce. The study reviewed in the previous section by
Liston and Stone (2008) also included a manipulation of reward frequency to induce a saccadic
motor bias. Like the variation in prior probability in that study, the bias in reward frequency associ-

ated with different locations affected the internal perceptual response, which a priori is more consist-
ent with an effect on the rate of accumulation.

Conclusions

It should be noted that many of the reviewed studies on decision-related variables in the oculomotor
system are not so much concerned with the saccadic system itself, but use the system in order to learn
about more general principles of decision-making that may apply to more complex decision-
problems and more complex patterns of motor behaviour. Nevertheless, what these studies show is
that variables such as evidence, prior probability and (expected) reward are represented in neural
mechanisms that play a role in saccade planning and generation. Moreover, the behavioural effects
of these variables can be mapped onto functional mechanisms posited by decision-field and evidence
integration models of saccadic decision-making. These models are based on the idea of accumulating
sensory evidence up to a response threshold. Neurophysiological and behavioural work indicates
that the (momentary) strength of sensory evidence acts upon the rate at which activity rises to the
response threshold. Variations in prior probability and reward appear to act predominantly upon

the starting level of accumulation, giving more likely and rewarding saccade targets a head-start in
the race to threshold.
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