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Abstract 

The contributions of separate sympathetic and parasympathetic pathways to pupillary 

dilation during a sustained processing task were studied through environmental and 

pharmacological manipulations.  In Experiment 1,  22 healthy volunteers (11 female) performed 

a serial Subtract 7 task while pupil diameter was recorded both during moderate room light and 

in darkness.  In a control for verbalization, subjects performed an easier Add 1 task.  In all 

conditions, pupil diameter increased significantly during the response period as compared to a 

pre-verbalization baseline period.  Pupillary dilation was increased for the difficult task, and 

further increase in dilation was associated with recording in light.  This suggests a major 

differential contribution to task difficulty mediated through inhibition of the parasympathetic 

pathway.  In Experiment 2, a subgroup of 12 volunteers (7 female) repeated all conditions at 

three additional sessions in which one eye was instilled with tropicamide (to block the 

parasympathetic sphincter muscle), dapiprazole (to block the sympathetic dilator muscle) or 

placebo.  All pharmacological conditions resulted in overall dilation during task performance.  

Differential performance similar to the placebo condition was seen only in the dapiprazole 

condition, when parasympathetic activation was intact.  The findings suggest that sustained 

performance during a difficult task is modulated by cortical inhibition of the parasympathetic 

pathway at the oculomotor nucleus.  Moreover, modulation of both ambient light intensity and 

pharmacological blockade of the final pupillary musculature were observed to provide 

converging approaches for quantifying the activity of identifiable central autonomic pathways. 
 

Keywords: Pupillary dilation; sustained processing; sympathetic and parasympathetic 

pathways; pharmacology 
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1. Introduction 

Many cognitive processes result in dilation of the pupil (Beatty, 1982b; Janisse, 1977; 

Loewenfeld, 1993).  Experimental studies relating cognitive activity to pupillary changes have 

often used discrete stimuli, resulting in characteristic waveforms associated with reception and 

processing activities (e.g., Friedman et al., 1973, Steinhauer and Zubin, 1982).  When task 

demand is increased over time (e.g., with increasing numbers of stored items in the digit span 

task) the pupil is observed to increase following presentation of each stimulus (Kahneman and 

Beatty, 1966; Peavler, 1974; Granholm et al., 1996).  In such situations, the pupil decreases in 

diameter as stored information is then reported by the subject (Beatty and Kahneman, 1966).  

When overall diameter throughout the course of a task is examined, pupil diameter is larger as 

overall task demand is increased (see, for example, Karatekin, in press). 

If processing demands are continuous, then pupil dilation is maintained (Beatty, 1982a).  

Such dilation is likely to be associated with brain regions having the ability to sustain attention 

and ongoing processing of information.  Frontal cortical regions have been implicated as 

subserving such functions as indicated indirectly by neuropsychological deficits in patients with 

frontal damage (Sarter et al., 2001), and more directly by concurrent pupillometry and functional 

neuroimaging studies (Siegle et al., 2003).  Yet, the extent to which cognitive activity is uniquely 

associated with sympathetic or parasympathetic activity is unclear.  This is of importance 

because current knowledge regarding the neurophysiological systems that contribute to cognitive 

activities can be evaluated by monitoring pupillary dynamics; differential activation of these 

pathways can provide quantitative measurements of activation underlying central nervous system 

mechanisms. 
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Methodological Approaches for Dissociating Autonomic Pathways in the Pupil: Though 

a variety of invasive approaches can be used to explore relative parasympathetic and sympathetic 

contributions to pupillary motility in animal models, the possibility of utilizing similar 

approaches to study higher cognitive function in humans is necessarily limited.  The specific 

problem is in determining the extent of contributions by the sympathetic and parasympathetic 

divisions of the autonomic nervous system to pupillary dilation.  The sympathetic branch, 

mediated by posterior hypothalamic nuclei, produces enlargement of the pupil by direct 

stimulation of the dilator muscles.  The contribution of the parasympathetic pathway is mediated 

by central inhibition of the Edinger-Westphal complex of the oculomotor nucleus (n. III) in the 

midbrain, which is the motor center for parasympathetic pathway.  Inhibition of this complex 

results in relaxation of the sphincter muscles and thus, dilation. Two paradigms for exploring 

these relative autonomic contributions have been suggested (Steinhauer and Hakerem, 1992). 

Differential Effects of Recording in Dark and Light Adapted Conditions:  One method 

for manipulating the parasympathetic pathway is to modulate ambient light intensity.   In 

darkness, active parasympathetic tone is minimal.  Neural and muscular systems typically exhibit 

a resting level of activity even in the absence of specific stimulation.  A tonic level of activity is 

present in the pupillary sphincter, so that even in the dark adapted pupil, there is still minimal 

constriction of the pupillary sphincter (Loewenfeld, 1993).  Consequently, active inhibition of 

the parasympathetic center will have the least residual effect of dilation due to relaxation of the 

sphincter muscles for recordings obtained in darkness.  In contrast, stimulation of the dilator 

should be present.  Dilation occurring in response to cognitive activation during dark adapted 

conditions is well documented (Friedman et al., 1973; Steinhauer and Hakerem, 1992; 
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Steinhauer and Zubin, 1982).   Such findings indicate a significant sympathetic contribution to 

dilation in response to specific cognitive events. 

As ambient light intensity is increased, the sphincter muscle is stimulated, resulting in a 

smaller overall diameter.  When central activity now reaches the same Edinger-Westphal sites, 

the effect is to result in relaxation of the sphincter muscle as an additional component of dilation.  

The extent of this dilation should be related to the initial stimulation of the pupil, i.e., brighter 

light and a smaller diameter should provide greater dilation amplitude mediated by the 

parasympathetic pathway, thus allowing differential measurement of sympathetic and 

parasympathetic contributions.  This method is employed in Experiment 1. 

Pharmacological Dissociation of Sympathetic and Parasympathetic Innervation: The 

second method for dissociating the pathways involves direct pharmacological blockade of the 

musculature.  It is possible to use topical administration of standardly employed 

ophthalmological agents to produce transient blockade of the iris neuromusculature.  Blocking 

the sympathetically-mediated alpha-adrenergic receptor of the dilator allows parasympathetic 

contributions to be measured uniquely.  In contrast, blocking of the muscarinic receptor of the 

sphincter muscles limits pupillary activity to the sympathetically mediated dilator muscles.  

What is critical to this approach is that neither blockade results in any changes to central neural 

activation related to cognitive tasks that may be conducted.  This method is employed in 

Experiment 2. 

There are numerous neuropsychological tests that involve continuing mental load, 

including continuous performance tests of vigilance as well as mathematical processing 

paradigms.  Among these, we selected the serial seven subtraction task.  This task is widely used 

to impose a difficult cognitive load, both in mental status examinations and in the psychology 
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and psychophysiology laboratories.  The task remains demanding even over repeated test 

sessions, making it useful for repeated measures designs as employed in the current study.   

2. Experiment 1: Materials and Methods 

2. Subjects 

The subject group for Experiment 1 consisted of 22 healthy volunteers (11 female), with 

a mean age of 30.6 years (s.d. = 7.9), education 15.2 years (s.d. = 2.1), 21 Caucasian, 1 African-

American, with three left-handed.  All subjects signed informed consent approved by the VA 

Pittsburgh Healthcare System and University of Pittsburgh IRBs.  Subjects were screened to 

exclude history of DSM-IV AXIS I psychiatric disorder or other major medical disorder (e.g., 

head trauma, diabetes, heart disease). No ophthalmologic problems (other than correctable 

vision) were reported by any of the subjects.   

2.2. Methods 

Subjects were seated in a darkened chamber. Three red LEDs masked by pinholes at 

optical infinity formed a small triangle for fixation.  Background luminance in darkness was not 

detected above 0.03 cd/m2.  Background room illumination in light was measured at 0.59 cd/m2.  

Head position was maintained by a head and chin rest. 

Each subject was tested under a number of different experimental conditions, including 

those reported here, either first in light or first in darkness, randomized across subjects. 

There were two experimental conditions compared in the current study: Sustained 

performance on the difficult serial subtraction task (Subtract 7), and an easy control task 

designed to elicit verbalizations (Add 1), also presented randomly under each lighting condition. 

For each task, subjects were first given a randomly generated seed number between 100 

and 900.  They were then told that they either should sequentially subtract 7 and continue until 

told to stop, or that they should slowly add 1 and continue until told to stop.  The Add 1 
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condition was expected to provide a control for the verbalization aspect of the task, although 

typically subjects reported more often in the Add 1 than in the Subtract 7 condition. 

Because of variability in pupil diameter measured in the light when there is no task 

demand, it was difficult to obtain an accurate “no task” baseline for these experiments.  

Consequently, subjects were requested not to begin responding until they heard a single auditory 

tone (100 ms, 800 Hz , 70 dB).  Pupillary recording was initiated 5 s before the cue, to provide a 

non-response baseline, and continued for 60 s after the cue, for a total duration of 65.1 s.  Data 

for the four conditions were obtained: Add 1 – Light, Add 1 – Dark, Subtract 7 – Light, Subtract 

7 – Dark. 

2.3. Pupillary Measurement 

An ISCAN, Inc., Model RK-406 Pupillometer was used to record pupil diameter.  

Resolution of individual measurements was better than .05 mm.  An infra-red light source 

permitted measurement of the pupil in either light or complete darkness.  The analog output was 

digitized at 62.5 Hz (16 ms intersampling time) and stored.  A remote control system was used to 

keep the eye within recording limits during any small head movements produced by 

verbalizations.  

2.4. Data Analysis 

Off-line, individual trial data were filtered using a 9.2 Hz two-pass digital filter and 

scaled to mm.  Each 65.1 s recording was displayed on a video monitor, evaluated for blinks, and 

edited if necessary.  The automatic editing algorithm attempted to define beginning and end 

points for blinks, which could be modified by the experimenter.  A linear interpolation was then 

applied.  

Baseline diameter was defined as the average diameter during the five s interval 

preceding the auditory cue to respond.  Response diameter was defined as the average diameter 

over the entire 60 s response period.   
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In Experiment 1, data were analyzed as a repeated measures design for the factors of task 

condition (Add 1 vs. Subtract 7) x light condition (dark vs. light).  Baseline was first examined 

separately, followed by changes across the baseline and response periods. 

3. Experiment 1: Results 

Baseline Pupil Diameter: Pupil diameter measured during the five s period before the 

subject began to respond was significantly smaller during recording in light than during 

recording in darkness (as expected, due to the normal effect of light; Figure 1) (F1,21 = 30.6, p < 

0.001, η2 = 0.593).  In addition, there was a significant main effect for Task, with larger 

diameters during the Subtract 7 task than during the Add 1 task (F1,21 = 4.6, p = 0.043, η2 = 

0.181).  

________________________________________________________________ 

Insert Figure 1 about here 

________________________________________________________________ 

Pupil Diameter During Response Period Compared to Baseline:  Given the effects seen 

for baseline, a three way ANOVA was then conducted examining interval (Baseline vs. 

Response), Task, and Light condition.  There was a significant main effect for dilation during the 

response period above baseline (F1,21 = 388.4, p < 0.001, η2 = 0.949).  All conditions resulted in 

dilations above baseline diameter, ranging from .53 to .62 mm (Figure 2).  In addition, the main 

effects observed for the individual baseline periods were still present across both periods (Light: 

F1,21 = 35.1, p < 0.001, η2 = 0.626; Task: F1,21 = 8.7, p = 0.008, η2 = 0.292).   

There was also a significant interaction of Task x Light (F1,21 = 5.5, p = 0.029, η2 = 

0.208).  Simple effects analysis indicated no significant differential effects between tasks in 

darkness, but a significantly greater pupil diameter in light for the Subtract 7 than Add 1 

condition (F1,21 = 7.8, p = 0.011, η2 = 0.271).   

________________________________________________________________ 

Insert Figure 2 about here 

________________________________________________________________ 
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4. Discussion, Experiment 1 

Pupil diameter was increased when a demanding task was imposed (Subtract 7) as 

compared to a simple addition and verbalization requirement (Add 1).  The increase in diameter 

was observed in both the baseline and response periods.  This suggests that as soon as the nature 

of the task was told to the subject, differential preparation and processing were already 

occurring, and were responsible for the primary effects associated with task difficulty.  The 

modulation of light intensity resulted in increased diameter over baseline levels during 

performance of both tasks.   

In both light and darkness, pupil diameter was increased with the onset of the task.  It 

suggests that at least part of the change in diameter is associated with the sympathetic pathway.  

The increased extent of dilation for recordings in light also suggests a specific contribution to 

dilation resulting from central inhibition of the parasympathetic pathway.  Moreover, the further 

increase of diameter in the light, observed only for the Subtract 7 condition, suggests the 

presence of an additional component of parasympathetic inhibition that is present only in the 

cognitively demanding situation.  The specificity of these likely contributions was explored by 

repeating the experiment during selective isolation of the final autonomic pathways in 

Experiment 2. 

5. Method, Experiment 2 

Subjects for Experiment 2 were 12 of the subjects (7 female) who participated in 

Experiment 1, with mean age =  28 years, (s.d. = 5.7),  education 15.7 years (s.d. = 1.6), all 

Caucasian, one left-handed.  Before further participation, an ophthalmologic screening was 

conducted to exclude the presence of the condition called narrow angle, since use of mydriatics 

such as tropicamide can lead to increased intraocular pressure in the presence of narrow angle, 

resulting in acute narrow angle glaucoma.  No subject was excluded on this basis.  

Each subject participated in three additional sessions involving administration of drops in 

the left eye by nursing or medical staff.  Otherwise, the laboratory session was identical to 
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Experiment 1: subjects were tested in both light and darkness, on both the Add 1 and the Subtract 

7 tasks at each session. 

At one session, ophthalmologic saline (Muro 128® 2%) was employed as a placebo 

condition.  At a second session, 1.0% tropicamide (Mydriacil®) was used to provide temporary 

blockade of the sphincter muscle.  At a third session, 0.5% dapiprazole HCl (Rev-Eyes®) was 

used to provide temporary blockade of the dilator muscle.  The order of instillation by session 

was randomized across subjects.  The concentrations of mydriacil and dapiprazole are those 

normally employed in the ophthalmology clinic.  Each agent produces temporary blockade for up 

to several hours.  At least 2 days intervened between drug testing sessions. 

At each session, resting diameter was first measured in darkness and light.  Next, a single 

drop of saline, tropicamide, or dapiprazole was placed onto the lower limbus of the left eye by 

nursing or medical staff.  The subject was instructed to move his/her eye around to facilitate 

absorption. To verify stabilization of resting diameter in the treated eye, pupil diameters of both 

eyes were monitored at 5-10 minute intervals in light and darkness for approximately 25 

minutes, at which time recording was initiated.  Based on pilot testing, 23-25 minutes after 

administration was found to be optimal for maximal blockade of the sphincter and dilator.  No 

attempt was made to provide absolute blockade through use of additional drops.  Other than the 

expected effects of a possible brief sting when the drop was first placed in the eye and reddening 

of the sclera after dapiprazole, no additional side effects were reported by any of the subjects. 

Data were initially analyzed as a repeated measures design for the factors of drug (3 

levels: placebo, dapiprazole, or tropicamide) x measurement period (baseline vs. response) x task 

condition (Add 1 vs. Subtract 7) x light condition (dark vs. light).  Greenhouse-Geisser corrected 

probability levels are reported for ANOVAs where appropriate when comparing across the three 

drug conditions, as indicated by fractional degrees of freedom.  

 

6. Results, Experiment 2 
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Effects of drug administration are depicted for each experimental condition for both 

baseline and response period diameters  (Figure 3) and extent of pupillary dilation (response 

minus baseline, see Figure 4).  As previously noted, use of tropicamide to block the post-synaptic 

receptor site of the sphincter muscle (Loewenfeld, 1993) results in activity that is attributable to 

the sympathetically-mediated dilator muscle.  Conversely, use of dapiprazole to block the alpha-

adrenergic receptor site of the dilator muscle (Larson et al., 1996) results in activity that is 

attributable to the parasympathetically-mediated sphincter muscle.   

Baseline Diameter vs. Response Period: As anticipated on the basis of pharmacological 

properties, a strong effect was observed related to differences in overall diameter related to drug 

effects (see Figure 3), with smallest diameters after dapiprazole when the dilator muscle was 

blocked (circles), larger diameters in the placebo condition (squares), and largest diameters after 

tropicamide when the sphincter muscle was blocked (triangles) (F1.3,13.9 = 35.9, p <  0.001, η2 = 

0.766).   Simple effects analyses indicated that overall diameters among all three conditions 

differed significantly from each other. 

 

________________________________________________________________ 

Insert Figure 3 about here 

________________________________________________________________ 

 

Across all conditions, there was significant dilation during the response period (heavy 

lines, filled symbols) compared to the baseline period (thin lines, open symbols) (F1,11 = 365.1, p 

<  0.001, η2 = 0.971).   Note that dilation occurred both when the parasympathetic system was 

blocked by tropicamide, resulting in dilation attributable to sympathetic activation, and also 

when the sympathetic system was blocked by dapiprazole, resulting in dilation attributable to 

inhibition of the parasympathetic pathway.   

As in Experiment 1, there also was a significant effect related to larger diameters in 

darkness than light (F1,11 = 39.3, p <  0.001, η2 = 0.781), and larger diameters associated with the 
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Subtract 7 than the Add 1 conditions in both the baseline and response periods (task: F1,11 = 15.9, 

p =  0.002, η2 = 0.590).  However, an interaction of measurement period and task indicated 

greater dilation between baseline and response period to the Subtract 7 than the Add 1 task ((F1,11 

= 12.9, p =  0.004, η2 = 0.541). 

The only significant interaction involving pharmacological administration was related to 

drug x light condition ((F1.7,18.8 = 14.3, p <  0.001, η2 = 0.565).  In order to examine the nature of 

this interaction, paired comparisons of the pharmacological conditions were examined for 

remaining interactions with drug administration.  When placebo and dapiprazole were compared, 

the drug x light interaction was not significant.  However, the drug by light interaction remained 

when comparing tropicamide to placebo (F1,11 = 11.23, p =  0.007, η2 = 0.503) and tropicamide 

to dapiprazole (F1,11 = 41.9, p <  0.001, η2 = 0.792).  In both of the latter comparisons, it is the 

decreased responsivity to variation of light after tropicamide administration, apparent in Figure 

3, which accounts for the significant interaction. 

 

Pupil Diameter During Response Interval compared to Baseline:  As in Experiment 1, the 

extent of dilation during the response period was examined after subtraction of baseline 

diameter, in order to evaluate the change during response period more clearly.  Amplitude of 

dilation is plotted in Figure 4.  There were no significant differences in overall amplitude of 

dilation by drug administration (p = .285), as also indicated in the previous set of analyses.  

There was a significant task effect (F1,11 = 15.4, p =  0.002, η2 = 0.583), and a significant task x 

light interaction (F1,11 = 7.61, p <  0.019, η2 = 0.409). 

There also was a marginal drug x task interaction (F1.6,17.6 = 3.8, p =  0.052, η2 = 0.254).  

Given the interest on drug effects, this interaction was followed by simple effects analyses.   

________________________________________________________________ 

Insert Figure 4 about here 

________________________________________________________________ 
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In paired comparisons, there were no significant differences in dilation between placebo 

and dapiprazole conditions, nor were there any interactions of drug condition with task or light 

effects.  Task remained significant (Subtract 7 > Add 1,  F1,11 = 14.8, p = 0.003, η2 = 0.574), as 

was the interaction of Task x Light, due to enhancement of the response to Subtract 7 in the light 

as compared to the dark (F1,11 = 7.8, p = 0.017, η2 = 0.415).  That is, effects of task interacted 

with lighting condition whenever the parasympathetic pathway was intact. 

When dapiprazole and tropicamide were contrasted, a significant drug x task effect was 

observed (F1,11 = 13.6, p = 0.004, η2 = 0.554).  A similar but non-significant pattern was 

observed for the drug x task interaction when placebo and tropicamide were contrasted (F1,11 = 

13.6, p = 0.116, η2 = 0.209).  These effects appear associated with the relative lack of differential 

dilation across conditions in the tropicamide condition.   

When the tropicamide data were examined alone, there were no significant differences in 

dilation associated with either task or light condition, or in the interaction of task and light.  Note 

the dilation amplitudes across all conditions still showed significant increases as compared to 

baseline, as determined in the earlier analysis of baseline to response period changes. 

 

7. Discussion 

Two approaches for isolating contributions of the sympathetic and parasympathetic 

pathways to pupillary dilation indicated differential contributions of these pathways during a 

sustained processing task.  Increasing task complexity was associated with greater pupillary 

diameter and dilation.  Moreover, manipulations of light intensity indicated an enhanced effect 

mediated through inhibition of the parasympathetic system, which was best observed when light 

intensity was increased, and was most marked for the difficult task.   

A significant but relatively constant amplitude effect was present in the sympathetic 

pathway, leading to activation of the dilator muscle.  There was little differential activation to the 

two tasks when recordings in darkness were compared in Experiment 1 and the placebo 

condition of Experiment 2.  Furthermore, blockade of the sphincter muscle by tropicamide, while 
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still resulting in overall dilation attributable to the dilator muscle, still showed little differential 

effect of task condition. 

In contrast, multiple effects of task demands were indicated by activity in the 

parasympathetic pathway.  In Experiment 1, when lighting was increased, there was differential 

dilation to the more demanding task, as well as larger initial diameter in light during this task 

than to simple addition.  The contribution of this pathway was defined more clearly when the 

sympathetic dilator was blocked by dapiprazole: the pattern of dilation was most similar to the 

placebo response, but with greater differential reactivity between dark and light conditions for 

the Subtract 7 task.  By isolating the activity of the parasympathetic pathway, significant effects 

for lighting condition, task requirements, and an interaction between lighting and task were 

clearly indicated. 

The pattern of findings indicates contributions of both the sympathetic and 

parasympathetic pathways to dilation during sustained processing.  However, more than one 

aspect of dilation due to inhibition in the parasympathetic pathway was indicated.  The 

requirement to attend and verbalize was sufficient to activate inhibitory processes reflected in 

pupillary dilation in all conditions.  When greater task demand was imposed, additional 

inhibitory influence was observed as an even greater dilation during light-adapted recording. 

The findings parallel previous data indicating that cognitive load utilizing the same tasks 

has a differential inhibitory effect on the light reaction, which is modulated through the Edinger-

Westphal complex (Steinhauer et al., 2000).  In that study, as compared to a simple light reflex in 

the dark, pupil diameter was increased by the Add 1 manipulation, but no decrement of the light 

reaction was observed.  However, imposition of the Subtract 7 task resulted in even greater 

dilation, as well as significant reduction of the light reaction. 

From those as well as the present findings, it is clear that multiple pathways impinge on 

the Edinger-Westphal complex, resulting in pupillary dilation through inhibition of the 

parasympathetic pathway.  Demanding cognitive load, most likely associated with frontal 

cortical functioning, contributes heavily to this inhibitory process; both direct cortical and 
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indirect cortico-thalamic-hypothalamic pathways producing inhibition at the Edinger-Westphal  

region have been described (Lowenstein, 1955).  The general increase in inhibition across all 

task conditions may well include contributions of reticular pathways contributing to arousal, 

which also impinge on the Edinger-Westphal complex (Bonvallet and Zbrozyna, 1963).  In 

contrast, sympathetic contributions to dilation during sustained activity appear to be less 

differentially affected by task activity. 

It is notable that similar amplitudes of dilation were seen among all three drug conditions.  

This may seem counterintuitive at first: if there is dilation associated with relaxation of the 

parasympathetic system, as well as dilation associated with the sympathetic system, it might be 

expected that the extent of these dilations should be additive, resulting in greater overall dilation 

amplitude in the placebo condition.  However, in the normal eye, there is tonic activity of both 

the constrictor (sphincter) and dilator muscles, making the resultant more complex.  Thus, under 

normal stimulation, there is always some opposition of these muscles, so that what is being 

reflected at any time is a combination of the tonic effects of pupillary constriction via the 

parasympathetic pathway, and dilation via the sympathetic pathway.  With the administration of 

tropicamide, the dilator muscle remains unopposed, but the lack of differential activity could 

reflect either a general response that is non-differential for the tasks conditions, or it may reflect 

a ceiling effect for pupillary diameter.  When dapiprazole has been administered, tonic levels of 

constriction are unopposed, so that the beginning diameter is substantially smaller, and all 

increases in diameter must be related only to central inhibition at the oculomotor nucleus. 

One of the major observations of the study was that pupil diameter increased more even 

during the baseline period for a difficult task than for an easy task.  This appears to reflect brain 

activity associated with the immediate demands for preparing to perform a challenging mental 

operation.  Neuroimaging data suggest that the dorsolateral prefrontal cortex is more active 

following instructions to complete a difficult as compared to easy task, even before the task 

begins (MacDonald et al, 1999). As pupil dilation has been observed to increase with 
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dorsolateral prefrontal cortex activity (Siegle et al, 2003), increased pupil dilation preceding the 

difficult task may reflect preparatory and dorsolateral prefrontal cortex activity. 

One difficulty encountered during sustained processing tasks is the establishment of a 

non-task control condition.  Merely asking a subject to fixate without any instructions, especially 

during light adaptation, results in highly variable pupil diameters over time.  Thus, confidence in 

such “pure” baseline conditions is somewhat suspect, and no attempt was made to use a pure 

baseline in the present study.  The current findings indicated, in fact, that as soon as any 

instructions are given, processing load related to the task is immediately reflected in the pupil. 

Finally, this study demonstrates converging findings provided by two experimental 

approaches for examining autonomic activity in the pupillary system.  Direct pharmacological 

blockade was able to isolate activity within each pathway.  As a complementary method, 

comparison of pupillary dynamics in darkness and in light provided differential evidence for 

contributions of the parasympathetic component of pupillary dilation.  The latter procedure may 

be especially appropriate to study of cognitive dynamics in patient populations, without requiring 

even the mild administration of mydriatic or miotic agents to the eye of the subject. 
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List of Figures 

 

Figure 1: Absolute pupil diameter (all figures indicate mean +/- 1 s.e.) during 5 s baseline 

(dashed-open squares) and 60 s response periods (solid line- filled squares). 

 

Figure 2: Change in diameter from baseline to response period, by task, in darkness and light. 
 

Figure 3: Absolute pupil diameter (mean +/- 1 s.e.) during 5 s baseline and 60 s response periods 

for all conditions, separately for placebo (solid line-square), tropicamide (dotted-triangle) 

and dapiprazole (dashed-circle) treatment sessions.  Baseline measures are indicated by 

open symbols, response period measures are indicated by filled symbols and thicker lines. 
 

Figure 4: Change in pupil diameter (mean +/- 1 s.e.) from baseline to response period for all 

conditions, separately for placebo (solid line-square), tropicamide (dotted-triangle) and 

dapiprazole (dashed-circle) treatment sessions. 
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Figure 1: Absolute pupil diameter (all figures indicate mean +/- 1 s.e.) during 5 s baseline 

(dashed-open squares) and 60 s response periods (solid line- filled squares). 
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Figure 2: Change in diameter from baseline to response period, by task, in darkness and light. 
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Figure 3: Absolute pupil diameter (mean +/- 1 s.e.) during 5 s baseline and 60 s response periods 

for all conditions, separately for placebo (solid line-square), tropicamide (dotted-triangle) 

and dapiprazole (dashed-circle) treatment sessions.  Baseline measures are indicated by 

open symbols, response period measures are indicated by filled symbols and thicker lines. 
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Figure 4: Change in pupil diameter (mean +/- 1 s.e.) from baseline to response period for all 

conditions, separately for placebo (solid line-square), tropicamide (dotted-triangle) and 

dapiprazole (dashed-circle) treatment sessions. 
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