

Heimstra Laboratories University of South Dakota

Visual Entropy and Drivers' Eye Gaze Complexity as a Function of Age and SubsidiaryTask Load

Frank Schieber & Jess Gilland

HFES – September 2008 New York, NY Given that driving is highly dependent upon visual-spatial processing...It's logical to assume that eye movement behavior might change systematically with increases in driver mental workload.

Indeed, Recarte & Nunes (2000) demonstrated that the distribution of driver eye glances became spatially restricted when visual-spatial demands were experimentally increased.

Literature Search for Global Measures of EM Complexity yielded 2 Candidates

Spectral Analysis

- Based upon Fourier Theorem
- Global measure of temporal complexity
- Discards spatial component of behavior

Entropy

- Based upon Information Theory
- Global measure of spatial complexity (1/redundancy)
- Discards temporal variations in behavior

At least two previous studies have reported findings suggesting that **ENTROPY** measures of eye movement data covary with visual task load:

Tole, Stephens, Vivaudou, Ephrath & Young (1983).

Visual scanning behavior and pilot workload. NASA Contractor Report 3717. Cambridge, MA: Massachusetts Institute of Technology.

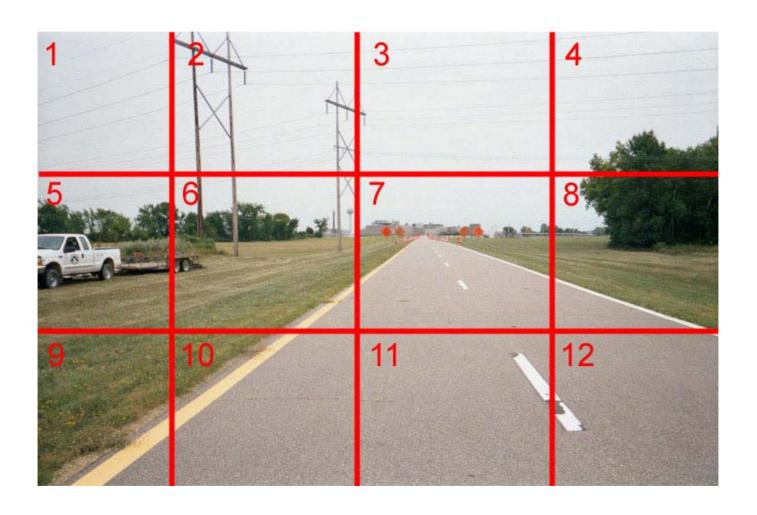
Ellis (1986). Statistical dependency in visual scanning. *Human Factors*, 28(4), 421-438.

Operational Definition: Complexity [within the context of Information Theory]

The amount of information required to specify the behavior of a system.

The more information required....
The greater the <u>complexity</u> of the system.

Information theory (Shannon, 1946) provides a theoretical and computational basis for quantifying the amount of information required to characterize a system.


This metric has become known as "Shannon entropy", or more simply, as **entropy**.

Computation of an entropy metric requires one to define:

- (1) a state-space representing the system; and
- (2) the respective **probabilities** for each element in that state-space.

Development of a state-space to represent driver eye gaze behavior can be done either arbitrarily or theoretically.

Example of an arbitrary state-space

We chose to define the driver's eye gaze state-space on the basis of two theoretically derived heuristics:

Donges' (1978) near vs. far dual visual process model of vehicular guidance

<u>Leibowitz & Owens' (1977)</u> focal-ambient dichotomy of driver visual processing

Driver Eye Gaze Behavior (Static) State-Space

(near distance criterion < 1.8 sec preview time) (focal area criterion = within driver's lane)

1st-order Markov Chain Entropy Metric

Computes entropy (1/redundancy) based upon the conditional probabilities of eye gaze transitions from state, to state,

$$H(Y|X) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(Y_{ij}|X_i) \log_2 p(Y_{ij}|X_i) p(X_i)$$

(see van der Lubbe, 1997)

Prior State	Present State $p(Y_{ii} X_i)$						
$(\mathbf{X_i})$	1	2	3	4	5	6	7
1		0.166	0.166	0.166	0.166	0.166	0.166
2	0.166		0.166	0.166	0.166	0.166	0.166
3	0.166	0.166		0.166	0.166	0.166	0.166
4	0.166	0.166	0.166		0.166	0.166	0.166
5	0.166	0.166	0.166	0.166		0.166	0.166
6	0.166	0.166	0.166	0.166	0.166		0.166
7	0.166	0.166	0.166	0.166	0.166	0.166	

a. X _i	b. $-\sum_{j=1}^{m} p(Y_{ij} X_i) \log_2 p(Y_{ij} X_i)$	$\frac{\mathbf{c.}}{\mathbf{p}(\mathbf{X}_{i})}$	d. product
1	2.58	0.143	0.369
2	2.58	0.143	0.369
3	2.58	0.143	0.369
4	2.58	0.143	0.369
5	2.58	0.143	0.369
6	2.58	0.143	0.369
7	2.58	0.143	0.369
	$-\sum_{i=1}^{n}\sum_{j=1}^{m}p(Y_{ij} X_{i})\log_{2}p(Y_{ij} X_{i})$	p(X _i) =	= 2.58 bits

Computational Example:

(bits per glance transition)

Probability matrix representing RANDOM gaze transition behavior.

MAXIMUM ENTROPY occurs in the special case of random behavior (equiprobability).

Relative Entropy = entropy/Max

Eye Movement Entropy Model (Markov Length = 2) has <u>42</u> states

-1,1	2,1	3,1	4,1	5,1	6,1	7,1
1,2	2,2	3,2	4,2	5,2	6,2	7,2
1,3	2,3	3,3	4,3	5,3	6,3	7,3
1,4	2,4	3,4	4,4	5,4	6,4	7,4
1,5	2,5	3,5	4,5	5,5	6,5	7,5
1,6	2,6	3,6	4,6	5,6	-6,6-	7,6
1,7	2,7	3,7	4,7	5,7	6,7	$\frac{7,7}{}$

(Markov Length = 3) Entropy Model has <u>252</u> unique transition states

```
1,2,1

1,2,2

1,2,3

1,2,4

1,2,5

1,2,6

1,2,7
```

The Experiment

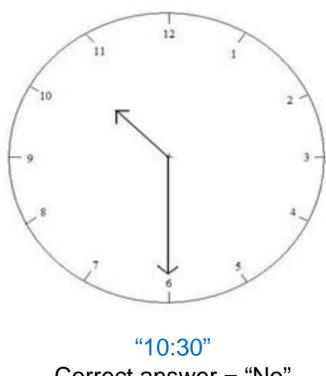
- Eye movements recorded during 10 min drives on rural 2-lane highway (55 MPH)
- 3 driving conditions:

Baseline Memory Load Task Visual-spatial Load Task

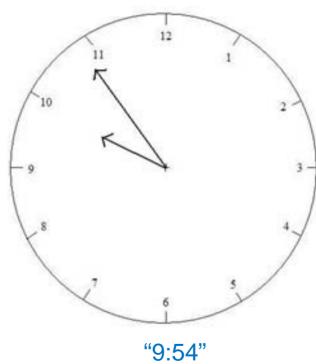
2 Age Groups:

Young (n=10; mean age = 27) Old (n=6; mean age = 75)

Memory Load Subsidiary Task:


- 1-Back Task
- Quasi-random string of numerical digits
- Auditory presentation (subjective level adj.)
- Interstimulus interval = 4 sec
- Answer Yes/No question for each stimulus:
 Same as the previous stimulus?
- Responses recorded for off-line analysis

(2-Back control group not discussed in this report)

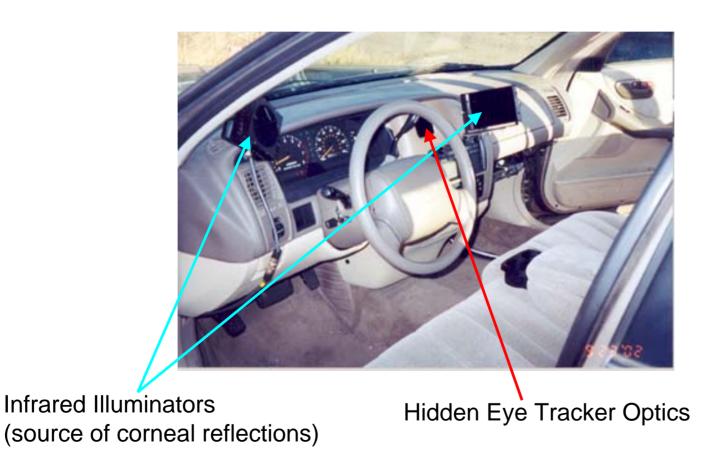

Visual-Spatial Subsidiary Load Task: (The Clock Task)

- Audio presentation of time-of-day stimulus (ISI = 8 sec)
- Form visual image of the time on the face of an imaginary analog clock
- Answer Yes/No Question:

Is ANY angle formed by the hands of the clock < 90-deg?

Correct answer = "No"

Correct answer = "Yes"


175 Amp Alternator **Eye Camera** Module **Rooftop GPS** Antenna Scene LCD Display Camera Kbd/Trackball **Monitor** Data Genlock Logging **VCR** Computer **Battery Dual-Processor** Power **NT Computer** Inverter ETS-PC Interface

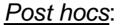
USD Instrumented Research Vehicle

ASL ETS-PC Eye Tracker

ASL ETS-PC Driver Eye Tracking System

Hypotheses

Eye gaze behavior will become less complex (more redundant) under the visual-spatial load condition...i.e., <u>Visual entropy</u> will decrease.

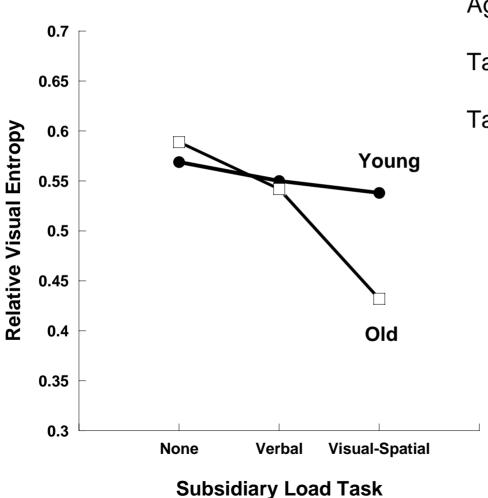

This effect will be exacerbated among the older drivers due to previously demonstrated declines in visual information processing efficiency/resources.

Main Results

 Gaze data from each 10-min driving segment used to generate the conditional probability matrix needed to compute the visual entropy metric

• (2) Age by (3) Subsidiary Task Load ANOVA performed on the relative entropy data [Relative entropy = entropy / max. entropy]

Significant Age x Task Load Interaction


Age @ Visual-Spatial

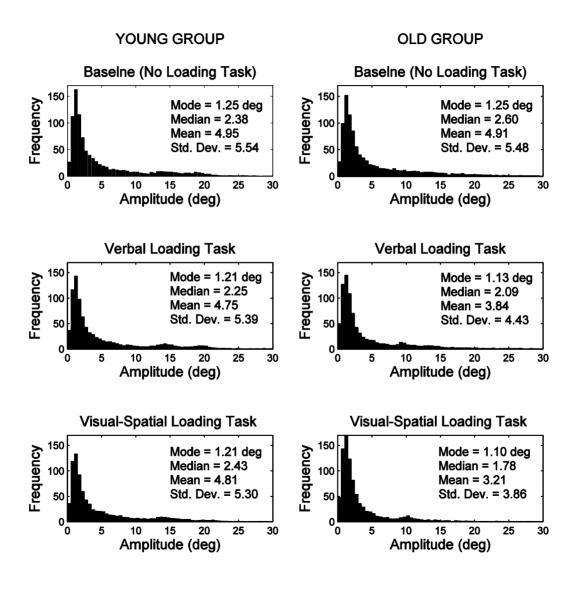
Task Load @ Young

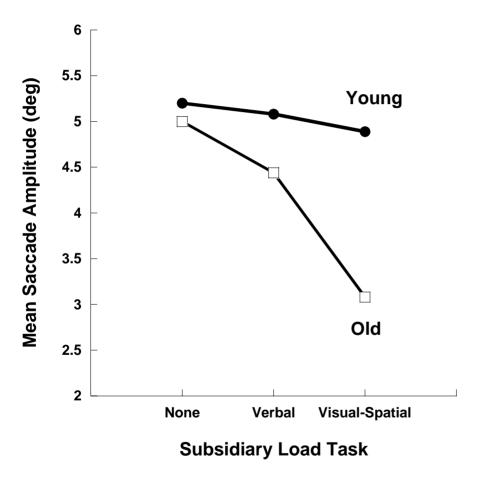
Task Load @ Old Visual-Spatial vs. Baseline (0.002)

> Visual Entropy Results

Memory Task vs. Baseline (n.s.)

Some Closing Comments

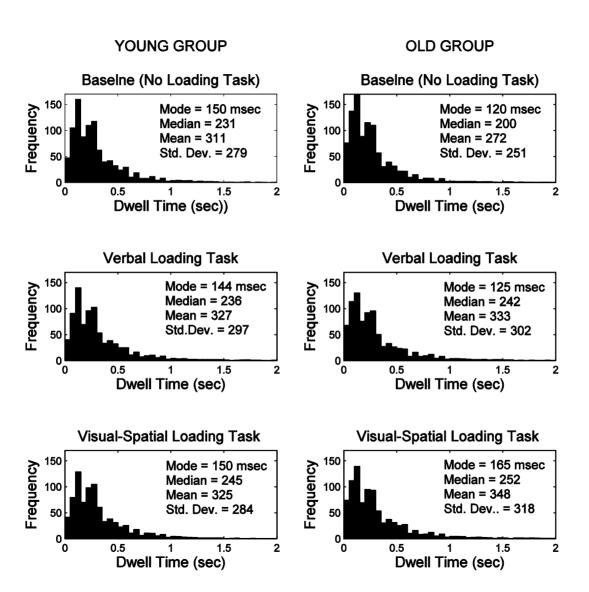

- Need to explore improved sensitivity of entropy measure as a function of modifications in the <u>state-space model</u>
- Need to improve flexibility of our on-road eye tracking capabilities (Valid data could be collected from less than half of our older participants (bifocals; ptosis; etc.).

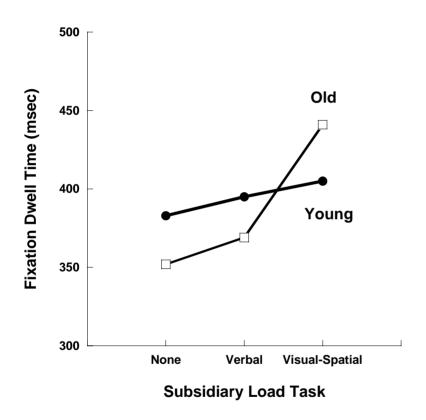

Thanks for attending!

For additional information: schieber@usd.edu

APPENDIX

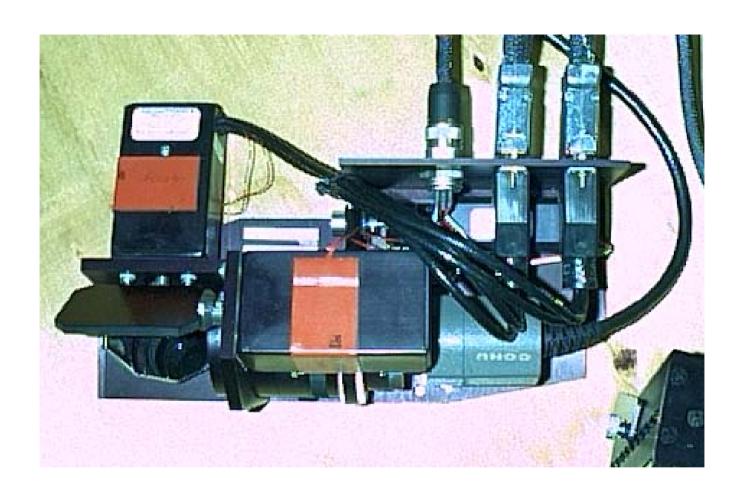
Saccadic Amplitude Distributions

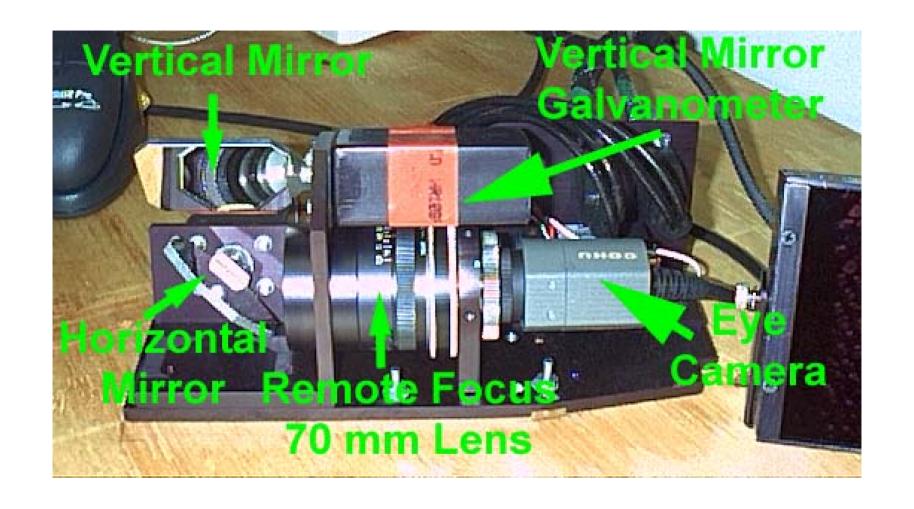

Significant Age by Task Interaction


Post hocs:

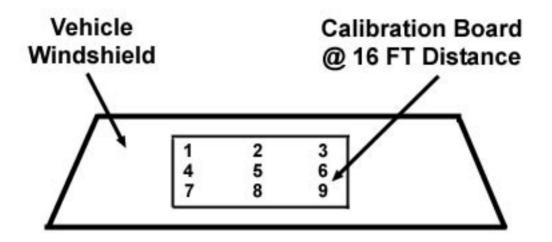
No age difference at any task level

Visual-spatial > Baseline (Old only)

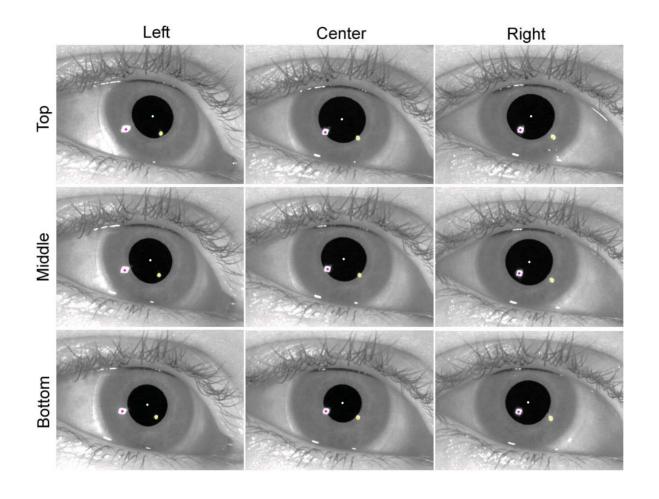

Dwell Time Distributions



Significant Age by Task Interaction


Post hocs: Visual-Spatial > Baseline (Old only)

Bird's Eye View ASL ETS-PC Optics Module



ASL ETS-PC Optics Module

Calibration Target #2.
Reading Distant Highway Signs

Calibration Scenario

Position of Corneal Reflections Changes across Gaze Location