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Affect is inextricably related to human cognitive processes and ex-
presses a great deal about human necessities (Picard, 1997); affect signals 
what matters to us and what we care about. Furthermore, affect impacts 
our rational decision-making and action selection (Picard, 2010). Provid-
ing computers with the capability to recognize, understand, and respond 
to human affective states would narrow the communication gap between 
the highly emotional human and the emotionally detached computer, en-
hancing their interactions. Computer applications in learning, health care, 
and entertainment stand to benefit from such capabilities.

Affect is a conceptual quantity with fuzzy boundaries and with sub-
stantial individual difference variations in expression and experience 
(Picard, 1997). This makes measuring affect a challenging task. This chap-
ter does not intend to present a comprehensive survey of the methods 
used to measure affect but instead provides a roadmap through a selection 
of the principal approaches and technologies. Section “Affect, Emotions, 
and Measurement” introduces the concepts and background behind affect 
measurement. Section “Gathering Data: Approaches and Technologies” 
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presents approaches and technologies, explaining the type of data gath-
ered from each, its characteristics, and its pros and cons. Section “Data 
Handling: Sampling, Filtering, and Integration” describes the stages of 
data handling, which include data sampling, data filtering, and data inte-
gration from a variety of sources. Section “Data Analysis” describes tools 
and techniques for data analysis that correlate affect measurements with 
stimuli, and presents examples of the application of these tools in the anal-
ysis of data samples collected in experimental studies.

AFFECT, EMOTIONS, AND MEASUREMENT

Affect is a construct of neural activity and psychological reactions; it is 
used as an encompassing term to describe emotion, feelings, and mood 
because they are so closely related and almost simultaneous in occurrence. 
Although emotion and mood are states of mind and, as such, are indica-
tors of experiencing feeling or affect, the terms emotion and affect are fre-
quently used interchangeably because they are so closely related.

Some theories propose that emotions are states embodied in the periph-
eral physiology and assume that a prototypal electro-physiological response 
exists for each emotion. Therefore, emotions can be detected by analyzing 
electrophysiological changes and identifying patterns associated with a par-
ticular emotion. Automatic affect recognition is a two-step process. First, data 
is gathered from electrophysiological manifestations of affect using sensing 
devices; these devices range from brain–computer interfaces (BCI), eye-track-
ing systems, text-based recognition, and cameras for facial gesture and body 
language recognition to physiological sensors that collect data regarding skin 
conductance, heart rate variability (HRV), and voice features, among others. 
Second, the vast amount of data gathered by the sensors is processed with the 
aim of inferring affective states by applying machine learning and data mining 
algorithms; commonly used machine learning and data mining algorithms 
include rule-based models, support-vector machines, Bayesian networks, 
hidden Markov models, and neural networks, as well as k-nearest neighbors, 
decision trees, and Gaussian mixture models (Calvo and D’Mello, 2010).

Using several sources of data, either to recognize a broad range of emo-
tions or to improve the accuracy of recognizing a single emotion, is re-
ferred to as multimodal affect recognition. Multimodality requires a third 
step, integrating the information. This step either integrates the data from 
a number of sensing devices before running the inference process or inte-
grates the inferences made from each device’s data separately. An analysis 
of integration approaches and methods is presented in Novak et al. (2012). 
Fig. 11.1 summarizes the three steps in multimodal affect recognition.

The integration of inferences requires the adoption of a model that 
describes the relationships between those inferences, each usually 
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representing an individual emotion. These models are called emotional 
models (Gilroy et al., 2009). The classification of emotions is an ongoing 
aspect of affective science and experts still struggle to reconcile competing 
emotional models. To date, two emotional models have come to the fore: 
the discrete model and the continuous dimensional model.

The discrete model assumes emotions are discrete values with only a 
finite number of possible values, and that they are fundamentally differ-
ent constructs (Ekman, 1992). A limitation of this model is that it focuses 
on strong emotions (such as disgust, sadness, happiness, fear, anger, and 
surprise) and it cannot accommodate a variety of closely related emotions 
or combinations of emotions.

The continuous dimensional model asserts that affective states are con-
tinuous values in one or more dimensions, and conceptualizes emotions by 
defining where they lie in that dimensional space. Russell (1980) proposed a 
two-dimensional model that links arousal with pleasure. Arousal measures 
intensity, or how energized or soporific one feels, ranging from calmness to 
excitement. Pleasure measures how pleasant or unpleasant one feels, rang-
ing from positive to negative. For instance, while both boredom and frus-
tration are unpleasant emotions, frustration has a higher level of arousal. 

FIGURE 11.1  Multimodal affect recognition three-step process. Source: A modified ver-
sion of Fig. 1 from Gonzalez-Sanchez, J., Atkinson, R., Burleson, W., Chavez-Echeagaray, M.E., 2011. 
ABE: An agent-based software architecture for a multimodal emotion recognition framework. Pre
sented at the Proceedings of the 2011 Ninth Working IEEE/IFIP Conference on Software Architecture. 
IEEE Computer Society, Washington, DC, USA, pp. 187–193.
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Mehrabian (1996) proposed expanding the two-dimensional model to three 
dimensions by adding another axis: dominance. Dominance represents 
how controlling and dominant versus how controlled or submissive one 
feels. For instance, while both frustration and disagreement are unpleasant 
emotions, disagreement is a dominant emotion and frustration is submis-
sive. Fig. 11.2 shows the three-dimensional model and plots some emotions 
with their pleasure–arousal–dominance (PAD) vectors.

Since continuous values characterize the measure of affect during human 
interactions, Mehrabian’s model, also known as the PAD model, has been 
recommended for real-time emotion recognition. Gilroy et  al. (2009) de-
scribe a case study using the PAD model in real-time for an art installation.

GATHERING DATA: APPROACHES 
AND TECHNOLOGIES

Having reviewed the conceptual background to affect measurement, 
our roadmap starts by describing some popular, inexpensive, easy to in-
stall, and widely available sensing approaches and technologies that we 
have been using in our research over the last 4 years. For each of them, we 

FIGURE 11.2  Pleasure-Arousal-Dominance dimensional model. Source: From Gonzalez 
Sanchez, J., 2016. Affect-Driven Self-Adaptation: A Manufacturing Vision with a Software Product 
Line Paradigm. Doctoral dissertation. Arizona State University, Arizona, United States.
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describe the data gathered and its characteristics, as well as outlining its 
pros and cons.

Brain–Computer Interfaces

BCI is a physiological instrument that uses brainwaves as data sources. 
Most BCIs work under the principles of electroencephalography (EEG), 
recording electrical activity along the scalp produced by the firing of neu-
rons within the brain. BCI devices of varying accuracy and cost are widely 
available. Three devices that we have had the opportunity to work with 
are described below:

1.	 NeuroSky biosensor. This device facilitates low-cost EEG-linked 
research using one dry sensor, situated at the forehead (Fig. 11.3A), 
which provides a very easy and almost nonintrusive setup. It provides 
raw data at a sampling rate of 512 Hz. Its software is able to extract 
constructs for attention, meditation, and eye blinking, as well as delta, 
theta, low alpha, high alpha, low beta, high beta, and gamma waves.

2.	 Emotiv EPOC headset. Emotiv raw data output includes 14 values, 7 
channels for each brain hemisphere. Electrodes for these channels are 
situated and labeled according to the CMS/DRL configuration: AF3, 
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 (American 
Electroencephalographic Society, 1990), as shown in Fig. 11.3B. 
Additionally, two accelerometers track head movements; they are 
reported as AccX and AccY. Accelerometer values can be used to 
identify nodding, headshaking, or yes/no indication. Its setup is 
straightforward and can be accomplished in as little as 2–3 min with 
one caveat: users with thick or curly hair may present a challenge. 
The device requires that the electrodes be coated in a multipurpose 
solution. They normally remain wet for about 1 h before needing 
to be remoistened. While using this headset, it is important that 

FIGURE 11.3  BCI devices range from simple to complex; from (A) 1 channel at the fore-
head, NeuroSky; to (B) 14 CMS/DRL channels, Emotiv EPOC; to (C) standard international 
10-20 configuration, ABM B-Alert X-Series.
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the user does not chew gum since chewing generates noise signals. 
The device reports raw data at a sampling rate of 128 Hz, reporting 
packets of 128 samples each time. This system is able to infer five 
emotional constructs (engagement, boredom, excitement, frustration, 
and meditation) and to detect a wide range of facial gestures (blink, 
wink left and right, look left and right, raise brow, furrow brow, smile, 
clench, smirk left and right, and laugh). Emotional constructs and 
facial gestures are reported at a sampling rate of 8 Hz.

3.	 ABM B-Alert X-Series EEG systems. B-Alert X-Series systemsa are 
appropriate for the high-quality, nonmedical wireless acquisition of 
EEG and physiological signals. It generates validated cognitive state 
metric and cognitive workload metric computations in real-time or 
during offline analyses. It applies sensors according to the standard 
international 10–20 system, as shown in Fig. 11.3C. It reports data 
at a sampling rate of 256 Hz. Its setup requires the application of 
conductive foam between the electrodes and the scalp. Similar to the 
Emotiv system, thick or curly hair can represent a challenge to fitting 
the electrodes. The setup of the headset includes an impedance test 
(5 min) to test each node’s connection with the scalp, as well as a 
baseline test (15–20 min) to normalize the system for each individual 
user. The latter comprises a vigilance task, in which the user responds 
to visual stimuli, and an audio task, in which the user reacts to audio 
tones. A user’s baseline test results can be saved and reused. Due 
to the sensitivity of this headset, the B-Alert User Manual (version 
2.0 from 2011) recommends ensuring that the user is well rested 
(not sleepy) and that the user did not consume nicotine or caffeine 
immediately prior to the experiment.

Table 11.1 contains an example of raw data collected from a BCI, spe-
cifically an extract of a dataset collected using the Emotiv EPOC head-
set. Note that a timestamp is included for each row. The timestamp is a 
15-digit string in which each consecutive pair of numbers respectively in-
dicates the year, month, day, hour, minute, and second value, and the final 
three digits indicate the millisecond value. For instance, the timestamp in 
the first row in Table 11.1 is 141116112544901, which denotes November 
16, 2014 at 11:25:44.901 a.m. This format is followed in all data reports 
presented in this chapter. The Emotiv EPOC headset reports raw data in 
packets of 128 samples and all samples in a packet are labeled with the 
same timestamp. Thus, for this device, a change in the timestamp occurs 
every 128 rows.

Table 11.2 shows a sample dataset of the affective constructs produced 
by Emotiv software. Notice that the construct values are expressed as prob-
abilities (values ranging from 0 to 1). The construct excitement is reported 

ahttp://www.biopac.com/B-Alert-X10-Analysis-Software

http://www.biopac.com/B-Alert-X10-Analysis-Software
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TABLE 11.1  Extract of Raw Data Collected Using the Emotiv EPOC Headset

Timestamp AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 AccX AccY

141116112544901 4542.05 4831.79 4247.18 4690.26 4282.56 4395.38 4591.79 4569.23 4360 4570.77 4297.44 4311.28 4282.56 4367.18 1660 2003

141116112544901 4536.92 4802.05 4243.08 4673.85 4272.31 4393.33 4592.82 4570.26 4354.87 4570.26 4292.31 4309.74 4277.95 4370.77 1658 2002

141116112545010 4533.33 4798.97 4234.87 4669.74 4301.03 4396.92 4592.31 4570.77 4351.28 4561.03 4281.54 4301.54 4271.28 4363.59 1659 2003

141116112545010 4549.23 4839.49 4241.03 4691.28 4333.85 4397.95 4596.41 4567.18 4355.9 4556.41 4286.15 4306.15 4277.95 4369.74 1659 2003

141116112545010 4580 4865.64 4251.79 4710.26 4340 4401.54 4603.59 4572.82 4360 4558.46 4298.97 4324.62 4296.41 4395.9 1657 2004

141116112545010 4597.44 4860 4252.82 4705.64 4350.26 4412.31 4603.59 4577.44 4357.44 4555.9 4295.38 4329.23 4296.41 4414.36 1656 2005

141116112545010 4584.62 4847.69 4246.67 4690.26 4360 4409.23 4597.44 4569.74 4351.79 4549.74 4278.97 4316.92 4272.82 4399.49 1656 2006

141116112545010 4566.15 4842.05 4238.46 4684.1 4322.05 4389.74 4592.82 4566.67 4351.79 4549.74 4274.36 4310.26 4262.05 4370.77 1655 2005

141116112545010 4563.59 4844.62 4231.79 4687.69 4267.69 4387.69 4594.36 4580 4361.03 4556.41 4278.97 4310.77 4274.36 4370.77 1653 2006

141116112545010 4567.18 4847.18 4233.33 4688.72 4285.13 4409.23 4602.05 4589.23 4368.21 4560 4280.51 4310.77 4281.54 4390.26 1655 2004
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twice: once as short-term excitement, reflecting an immediate change, and 
then as long-term excitement, using the cumulative readings over time to 
calculate a value that reflects the overall change. Timestamps confirm a 
sampling rate for affective constructs at 8 Hz (one sample every 125 ms).

In general, BCIs are easy to use and portable. However, it is worth not-
ing that they require time for setup and calibration (from an average of 
10 min for the Emotiv headset to an average of 40 min for the ABM B-
Alert), and variables, such as the battery level of the headset, the noise in 
the environment, and the connection between the electrodes and the scalp 
should be monitored continuously. Furthermore, the headset can only be a 
limited distance from the host computer, and the number of headsets that 
can operate in the same room without creating interference is also a lim-
ited. The presence of other wireless devices using the same bandwidth can 
also produce interference. Ongoing research includes the development 
of EEG devices that use dry electrodes; these are becoming more readily 
available and overcome the limitations of scalp preparation and wet gels. 
Cognionics and Wearable Sensing are examples of companies working on 
improving this aspect of this device.

Facial Gestures

Emotion recognition systems based on facial gesture enable real-time 
analysis, tagging, and inference of cognitive affective states from a video 
recording of the face. It is assumed that facial expressions are triggered for 
a period of time when an emotion is experienced and so emotion detection 
can be achieved by detecting the facial expression related to it. From each 

TABLE 11.2  Extract of Affective Constructs Reported by the Emotiv EPOC Headset

Timestamp
Short-term 
excitement

Long-term 
excitement Engagement Meditation Frustration

141116091145065 0.447595 0.54871 0.834476 0.333844 0.536197

141116091145190 0.447595 0.54871 0.834476 0.333844 0.536197

141116091145315 0.447595 0.54871 0.834476 0.333844 0.536197

141116091145440 0.487864 0.546877 0.834146 0.339548 0.54851

141116091145565 0.487864 0.546877 0.834146 0.339548 0.54851

141116091145690 0.487864 0.546877 0.834146 0.339548 0.54851

141116091145815 0.487864 0.546877 0.834146 0.339548 0.54851

141116091145940 0.521663 0.545609 0.839321 0.348321 0.558228

141116091146065 0.521663 0.545609 0.839321 0.348321 0.558228

141116091146190 0.521663 0.545609 0.839321 0.348321 0.558228
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facial expression, a set of facial action units is extracted, each facial action 
unit identifying an independent motion of the face. Movements in facial 
muscles are perceived as changes in the position of the eyes, nose, and 
mouth. Computer systems implement this approach by capturing images 
of the user’s facial expressions and head movements. Those systems de-
tect changes in the position of the eyes, nose, and mouth as changes in the 
position of dots in a coordinate system. Then, by analyzing those changes, 
the occurrence of a facial action unit can be determined. The Facial Action 
Coding System (FACS) documents 46 possible facial action units (Ekman 
et al., 1980). For instance, happiness is associated with the occurrence of 
action units 6 and 12 (cheek raiser and lip corner puller), and sadness is as-
sociated with the occurrence of action units 1, 4, and 15 (inner brow raiser, 
brow lowerer, and lip corner depressor). Fig. 11.4 schematizes the process.

Diverse methodologies are used to infer affect from facial images, some of 
which are summarized in Table 1 of Calvo and D’Mello (2010). Examples of 
emotion recognition systems based on facial gesture that conduct real-time 
frame-by-frame facial expression recognition from a video stream include:

1.	 MindReader (Kaliouby and Robinson, 2005) uses a standard 30 fps USB 
webcam to capture the user’s face. It also takes into account an analysis 
of head and shoulder movements. It provides results at a sampling 
rate of 10 Hz and is able to infer the affective states of agreement, 
concentration, disagreement, interest, thought, and unsureness.

2.	 iMotion FACETb uses a standard 30 fps USB webcam to capture 
the user’s face. It provides results at a sampling rate of 30 Hz and 
is able to infer nine states: seven basic emotions (joy, anger, fear, 
sadness, disgust, surprise, and contempt) and two complex emotions 
(confusion and frustration).

Table 11.3 shows a sample dataset for affect constructs provided, in re-
al-time, by MindReader software. The constructs are probabilities (values 

FIGURE 11.4  Movements of individual facial muscles are encoded as action units. For 
instance, lip corner depression is coded as action unit 15, jaw drop as action unit 26, and 
mouth stretch as action unit 27.

bhttp://imotionsglobal.com

http://imotionsglobal.com/
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TABLE 11.3  Extract of Affective Constructs Reported by MindReader

Timestamp Agreement Concentration Disagreement Interest Thought Unsureness

141116112838516 0.001836032 0.999917000 0.000179000 0.164854060 0.571142550 0.045950620

141116112838578 0.001447654 0.999951600 0.000129000 0.163106830 0.595892100 0.042706452

141116112838672 0.000597000 0 0.000150000 0.449962940 0.455276130 0.007896970

141116112838766 0.000246000 0 0.000175000 0.774456860 0.321447520 0.001418217

141116112838860 0.000101000 0 0.000204000 0.935119150 0.211671380 0.000253000

141116112838953 0.000041800 0 0.000238000 0.983739000 0.132086770 0.000045200

141116112839016 0.000017200 0 0.000278000 0.996077400 0.079410380 0.000008070

141116112839110 0.000007100 0 0.000324000 0.999062660 0.046613157 0.000001440

141116112839156 0.000002920 0 0.000377000 0.999776540 0.026964737 0.000000257

141116112839250 0.000001210 0 0.000440000 0.999946700 0.015464196 0.000000046
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ranging from 0 to 1). The timestamp column shows an approximate sam-
pling rate of 10 Hz (one sample every 100 ms).

The use of emotion recognition systems based on facial gesture has a 
number of advantages. They are largely nonintrusive because they do not 
involve attaching sensors to the user and are inexpensive because they 
do not require expensive hardware. They also have reasonable accuracy, 
although the accuracy is challenged when the user’s movements cause 
the face to turn away from the camera’s line of sight, such as when a user 
lies back in the chair or looks down to read or write. Cohn and De la Torre 
(2014) describe in more detail the challenges associated with automated 
facial image analysis.

Eye Tracking

Eye-tracking systems measure eye position, eye movement, and pupil 
size to detect zones in which the user has a particular interest at a specific 
time. There are a number of methods for measuring eye movement. The 
most popular are optical methods, in which light, typically infrared, is 
reflected from the eye and sensed by a camera or some other specially 
designed optical sensor. The data is then analyzed to extract eye rotation 
from changes in the reflections. Optical methods are widely used for gaze 
tracking and are favored for being noninvasive and inexpensive. An ex-
ample of a commercial optical eye-tracking system is the Tobii T60XL Eye 
Tracker. The Tobii Eye Tracker reports data at a sampling rate of 60 Hz, 
and the reported data includes attention direction as a gaze point (x and y 
coordinates), duration of fixation, and pupil dilation.

Pupil diameter has been demonstrated to be an indicator of emotional 
arousal, as seen in Bradley et al. (2008), who found that pupillary chang-
es were larger when viewing emotionally arousing pictures, regardless 
of whether these were pleasant or unpleasant. Pupillary changes during 
picture viewing covaried with skin conductance changes, supporting the 
interpretation that sympathetic nervous system activity modulates these 
changes.

A sample dataset from a Tobii T60XL Eye Tracker is shown in Table 11.4. 
Gaze point values (GPX and GPY columns) range from 0 to the size of the 
display; pupil (left and right) is the size of the pupil in millimeters; valid-
ity (left and right) is an integer value ranging from 0 to 4 (0 if the eye is 
found and the tracking quality is good and 4 if the eye cannot be located 
by the eye tracker); and fixation zone is a sequential number correspond-
ing to one or a set of predefined zones in which special interest exists. 
Timestamps in the table confirm a sampling rate of 60 Hz (approximately 
one sample every 16 ms).

Eye-tracking systems can be fixed (embedded in a display), mobile 
(able to be connected and mounted in diverse displays), or wearable 
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TABLE 11.4  Extract of Data Collected Using Tobii T60XL Eye Tracker

Timestamp GPX GPY Pupil left Validity L Pupil right Validity R Fixation zone

141124162405582 636 199 2.759313 0 2.88406 0 48

141124162405599 641 207 2.684893 0 2.855817 0 48

141124162405615 659 211 2.624458 0 2.903861 0 48

141124162405632 644 201 2.636186 0 2.916132 0 48

141124162405649 644 213 2.690685 0 2.831013 0 48

141124162405666 628 194 2.651784 0 2.869714 0 48

141124162405682 614 177 2.829281 0 2.899828 0 48

141124162405699 701 249 2.780344 0 2.907665 0 49

141124162405716 906 341 2.853761 0 2.916398 0 49

141124162405732 947 398 2.829427 0 2.889944 0 49
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(embedded in a pair of glasses). Regardless of the type of system, the set-
up process is fairly easy. The calibration process includes having the user 
follow an object around the display area with their eyes (for embedded 
and mobile systems), or having them stare at a particular point (for wear-
able glasses). The calibration for embedded and mobile systems requires 
time to ensure that the eyes of the user are within the line of sight of the 
infrared and optical sensors and that nothing is producing glare for the 
camera, which could affect the reflection and thus the tracking of eye 
movements. The reliability of embedded and mobile systems is reduced 
by glare on the cameras, the incorrect position of the user’s face, and the 
presence of framed glasses or eye disorders, such as strabismus. In the 
case of systems in glasses, important things to consider are the interfer-
ence of other wireless devices and the distance that the glasses can be from 
the host computer.

Physiological Sensor: Skin Conductance

Electrodermal activity (EDA) is the continuous variation in the electri-
cal characteristics of the skin, which varies with the moisture level. The 
moisture level depends on the sweat glands and blood flow, which are 
controlled by the sympathetic and parasympathetic nervous systems. Al-
though the electrical variation alone does not identify a specific emotion, a 
relationship has been established between this and emotional arousal, that 
is, how energized or soporific the user feels. A skin conductance device 
senses EDA by measuring the conductance of the skin. To measure skin 
conductance, the electrical resistance between two electrodes, normally 
attached to the skin about an inch apart, when a very weak current is 
steadily passed between them is measured. Skin conductance is perhaps 
the most inexpensive method discussed here in terms of the hardware 
and software required. Examples of skin conductance sensors used in our 
research are:

1.	 A wireless Bluetooth device that reports data at a sampling rate of 
2 Hz, designed by MIT Media Lab (Strauss et al., 2005) and modified 
in-house at Arizona State University. The data reported includes 
the battery level, a floating-point value ranging from 0 to 5, and the 
conductance, a floating-point value with a lower value of 0, which 
increases in proportion to the increase in the skin conductance.

2.	 The Shimmer3 GSR+c monitors skin conductance using two reusable 
electrodes attached to two fingers (middle and ring). It is able to 
report data at a variable sampling rate in the range of hundreds of 
hertz. Additionally, the Shimmer3 GSR+ provides an estimated heart 

chttp://www.shimmersensing.com

http://www.shimmersensing.com/
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rate calculated from a photoplethysmogram signal captured by a 
wired ear or finger clip electrode.

A sample dataset from our in-house developed skin conductance de-
vice is shown in Table 11.5. The timestamp confirms a precise sampling 
rate of 2 Hz. Feature selection and extraction approaches for this measure-
ment can be consulted in Strauss et al. (2005) and Cooper et al. (2009).

The setup for a skin conductance device does not require calibration 
and as long as its battery has sufficient power, the data will be gathered 
accurately.

Physiological Sensor: Heart Rate Variability

Heart rate is defined as the number of heartbeats occurring per minute 
and the average resting heart rate for an adult human is between 60 and 
90 beats. The heart rate goes up when activity in the sympathetic nervous 
system (which controls the body’s involuntary responses to a perceived 
threat) increases. The heart rate goes down when activity in the sympa-
thetic nervous system decreases. Conversely, the heart rate goes up when 
parasympathetic nervous system activity (which controls the body’s in-
voluntary responses at rest) decreases (because there is less inhibition). 
The heart rate goes down when parasympathetic nervous system activity 
increases (because there is more inhibition). Although HRV is influenced 
by numerous physiological and environmental factors, the influence of 
the autonomic nervous system on cardiac activity is particularly promi-
nent and of psychophysiological importance. HRV analysis is emerging 

TABLE 11.5  Extract of Data Collected Using an in-House Built Skin Conductance 
Device

Timestamp Voltage Conductance

141116101332262 2.482352941 1.030696176

141116101332762 2.482352941 1.023404165

141116101333262 2.482352941 1.019813274

141116101333762 2.482352941 1.041657802

141116101334247 2.482352941 0.998280273

141116101334747 2.482352941 0.991181142

141116101335247 2.482352941 0.980592229

141116101335747 2.482352941 0.998280273

141116101336247 2.482352941 1.012586294

141116101336762 2.482352941 1.012586294
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as an objective measure of a regulated emotional response. HRV measures 
the variation in the time intervals between heartbeats and has been related 
to emotional arousal. Experimentation and theory support the usefulness 
of HRV as an objective index of the brain’s ability to organize regulated 
emotional responses and as a marker of individual differences in emotion 
regulation capacity (Appelhans and Luecken, 2006).

One recommendation for this device’s use is that the sensor should be 
placed on the nondominant hand or ankle to minimize noise caused by 
movement. We are currently introducing this method to our toolkit using 
a Shimmer3 GSR+ sensor and looking forward to a comparative analysis 
of the results against other sensing systems.

Body Language: Pressure

Like facial gestures, body language is a potential channel of emotional 
expression. Body language can be more challenging to identify than facial 
gestures. However, several approaches have been developed to overcome 
this challenge. One uses pressure sensors. Pressure sensors allow the amount 
of pressure applied to an object, such as a mouse, a game controller, or a key-
board, to be detected. Pressure has been correlated to levels of frustration (Qi 
and Picard, 2002). Qi and Picard created a device in which pressure sensors 
reporting data at a sampling rate of approximately 6 Hz were embedded in 
a mouse. The six sensors were situated in the right, left, and middle front 
and rear parts of the mouse. The raw data from the six pressure sensors was 
processed and correlated to levels of frustration (Cooper et al., 2009). The 
raw pressure data is represented by integer values in the range of 0 to 1024, 
where 0 represents the highest pressure. The machine learning approach for 
inferring affect based on measurements from such pressure values can be 
consulted in Qi and Picard (2002) and Cooper et al. (2009).

A sample dataset from an in-house version of Qi and Picard’s device 
with six pressure sensors is shown in Table 11.6. The timestamp shows a 
sampling rate of approximately 6 Hz.

Pressure sensors are nonintrusive since the user does not have to wear 
any equipment and the device does not require any calibration. In addi-
tion, the functionality of the target object is not affected by the introduc-
tion of the pressure sensors, although the pressure sensors in the object 
must be connected to the computer using a serial or USB port.

Body Language: Posture

Another approach to body language analysis is posture detection. One 
approach that we use to achieve this consists of using a low-cost, low-
resolution pressure sensitive seat cushion and back pad. Sensors are em-
bedded in the seat cushion and back pad so that they are imperceptible 
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to the user. They are positioned in a triangle configuration in the middle, 
right, and left. An example of this device was developed at Arizona State 
University based on the design of a more expensive high-resolution unit 
from the MIT Media Lab (Mota and Picard,  2003). The data from three 
pressure sensors in the back, three in the seat, and the two accelerometers 
is processed to obtain the net seat change, net back change, and sit for-
ward features. Those features are then used to infer a level of interest. The 
machine learning approach for inferring affect related measures from such 
values is described in Mota and Picard (2003) and Cooper et al. (2009).

A sample dataset from a posture device is shown in Table 11.7. As is the 
case with the pressure sensor, the values range from 0 to 1024; however, in 
this instance 1024 represents the highest pressure.

Posture sensing using a seat cushion enhanced with pressure sensors 
is an inexpensive, easy to implement, and nonintrusive measurement, al-
though, like the pressure sensor, the seat cushion must be connected to 
the computer using a serial or USB port. Moreover, these devices do not 
require any calibration.

Language Processing: Writing Patterns

Text-based human interaction often carries important emotional signif-
icance. In the context of computer-mediated communication, some meth-
ods for text-based emotion recognition have been developed, such as the 
one described in Krcadinac et al. (2013). They work at the sentence level 

TABLE 11.6  Extract of Data Collected Using a Mouse Enhanced With Pressure 
Sensors

Timestamp Right rear Right front Left rear Left front
Middle 
rear

Middle 
front

140720113306312 1023 1023 1023 1023 1023 1023

140720113306468 1023 1023 1023 1023 1023 1023

140720113306625 1023 998 1023 1002 1023 1023

140720113306781 1023 1009 1023 977 1023 1023

140720113306937 1023 794 1023 982 1023 1023

140720113307109 1023 492 1022 891 1023 1023

140720113307265 1023 395 1021 916 1019 1023

140720113307421 1023 382 1021 949 1023 1023

140720113307578 1023 364 1022 983 1023 1023

140720113307734 1023 112 1021 1004 1023 1023
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and implement a recognition technique founded on a refined keyword 
spotting method, which employs a set of heuristic rules, a WordNet-based 
word lexicon, and a lexicon of emoticons and common abbreviations. 
Their approach is implemented through a software system named Synes-
ketch, released as a free, open source software library. Synesketch analyses 
the emotional content of text sentences in terms of emotional types (happi-
ness, sadness, anger, fear, disgust, and surprise), weights (how intense the 
emotion is), and valence (positive or negative).

Other approaches go beyond word- or sentence-level analysis and per-
form a semantic analysis of the text. These approaches move toward senti-
ment analysis and opinion mining, which use natural language process-
ing, text analysis, and computational linguistics to identify and extract 
subjective information from source materials. They aim to determine the 
attitude of a writer with respect to some topic or the overall contextual po-
larity of a document. The attitude may be the writer’s emotional state, or 
the intended effect the writer wishes to have on the reader. A summary of 
diverse approaches to inferring affect from text analysis are summarized 
in Table 4 in Calvo and D’Mello (2010).

No calibration is required for emotion recognition from writing pat-
terns since it does not involve any particular hardware or device; this is 
fully implemented through software. To our knowledge, currently avail-
able options are limited to the English language. Even though Synesketch 
is open source and free, commercial implementation may be expensive as 
it is comparable in cost to facial recognition systems.

TABLE 11.7  Extract of Data Collected Using a Seat Cushion Enhanced With 
Pressure Sensors

Timestamp
Right 
seat

Middle 
seat

Left 
seat

Right 
back

Middle 
back

Left 
back

Net 
seat 
change

Net 
back 
change

Sit 
forward

140720074358901 1015 1019 1012 976 554 309 12 152 0

140720074359136 1008 1004 1012 978 540 305 22 20 0

140720074359401 1015 1012 1008 974 554 368 19 81 0

140720074359636 1001 1004 1016 975 548 306 30 69 0

140720074359854 1015 1011 1003 967 559 418 34 131 0

140720074400120 1011 1008 1001 968 620 358 9 122 0

140720074400354 1011 1011 1013 968 541 413 15 134 0

140720074400589 1012 1010 1006 974 565 314 9 129 0

140720074400839 1016 1014 1012 972 668 290 14 129 0

140720074401089 1012 1012 1004 858 108 2 14 962 0
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DATA HANDLING: SAMPLING, FILTERING, 
AND INTEGRATION

Section “Gathering Data: Approaches and Technologies” presents a se-
lection of the broad range of technologies and approaches for sensing and 
gathering data correlated with affective state changes, which are becom-
ing increasingly more accessible and robust. Our roadmap now turns to 
explore the problems and methodologies associated with sampling, filter-
ing, and integrating affective data.

Sampling

The first challenge when dealing with multiple sources of data relates 
to the sampling rate. Sampling rates for different sources vary from a few 
samples per second (2 Hz for skin conductance sensing) to over a hundred 
samples per second (128 Hz for raw brain wave data). Thus, a decision 
must be made regarding how to synchronize and integrate the data; com-
mon options include:

1.	 sampling at the lowest rate;
2.	 sampling at the highest rate; and
3.	 determining a suitable sampling rate between the computed lower 

and higher limits, prioritizing specific trade-offs.

Using the lowest rate means losing data and potentially forfeiting ac-
curacy; however, it involves less computer strain, more latency, and using 
less hard drive space. While using higher rates potentially provides great-
er accuracy, it does involve more computer strain, less latency, and more 
hard drive space. The higher sampling rate is more appropriate if the goal 
is to create a model for off-line analysis. For real-time analysis, it may be 
preferable to determine a suitable sampling rate according to the system 
requirements and the computational resources. In real-time systems emo-
tions experienced by the user for substantial periods of time are usually 
the priority, rather than emotions that occur briefly.

Filtering

One of the most relevant goals of filtering data is noise reduction. Noisy 
data are unwanted readings that might impact the efficiency of the data 
processing. Ways in which sensors can report noisy data include:

1.	 MindReader facial recognition software reports a value of −1 when an 
affective state inference cannot be achieved; this usually occurs when 
the face moves out of the camera’s line of sight.

2.	 Eye tracker reports gaze point values as negative or greater than the 
screen resolution values when light conditions are bad or the user’s 
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head movements interfere with the reading. The validity attribute 
indicates how reliable an eye tracker sample is. Usually, samples with 
a validity value of 0 to 3 (high and medium quality) are retained and 
samples with a validity value of 4 are discarded.

3.	 BCIs, such as the Emotiv headset, report low-quality data when the 
electrodes become dry and when nearby electronic devices affect the 
EEG signal. Since a baseline of 4000 is defined, noise values can be 
detected and excluded.

4.	 For skin conductance devices, the battery level is important. Low 
battery power reduces the quality of the conductance readings.

Various techniques are employed to reduce noise by cleaning unwant-
ed values from the data. Common filtering approaches for denoising data 
are further discussed by Manolakis et al. (2000). These techniques include:

1.	 Low-pass filtering. This ignores signals with a frequency lower than 
a certain cutoff value and attenuates signals with frequencies higher 
than the cutoff value to understand the main signal behavior.

2.	 Moving average filtering. This analyzes data points by creating a 
series of averages for different subsets of the full data set.

3.	 Median filtering. This denoises data in a similar way to moving 
average filtering but uses the median value rather than an average. In 
some cases, these results are more robust because the median value is 
less likely to be affected by outlying (unusual) values.

Integration

Integration is required when a multimodal approach is implemented 
since it takes into account the diverse sources of data that contribute to the 
inference process. Since each source may capture data of a different type 
at a different sampling rate, it is a challenge to combine the data to create 
a single enhanced dataset combining all records into one, with a column 
for each feature and a row for each timestamp. A row contains the values 
recorded for any source that corresponds with that timestamp. Examples 
of integration methods include sparse data, state machine, interpolation, 
and mapping to a coordinate model, each of which is presented briefly 
below:

Sparse data. If no value exists from a given source for a given timestamp, 
the cell remains empty. For instance, in the first row of Table 11.8, for the 
timestamp 141014135755652, there was no data from the eye tracker but 
there was data from the Emotiv EPOC headset and the skin conductance 
sensor. A similar situation occurred in the second row, where only eye 
tracker data exists for the timestamp 141014135755659. The presence of 
numerous empty cells in the dataset is referred to as sparse data. Applying 
a high sampling rate usually results in sparse data.
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TABLE 11.8 I ntegration of Measurements (From an Eye Tracker, an Emotiv EPOC Headset, and a Skin Conductance Device) Using a Sparse 
Data Approach

Timestamp Fixation GPX GPY
Short-term 
excitement

Long-term 
excitement

Engagement/
boredom Meditation Frustration Conductance

141014135755652 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755659 213 573 408

141014135755668 0.436697 0.521059 0.550011 0.335825 0.498908

141014135755676 213 566 412

141014135755692 213 565 404

141014135755709 213 567 404

141014135755714

141014135755726 213 568 411

141014135755742 213 568 409

141014135755759 213 563 411

141014135755761

141014135755776 213 574 413

141014135755792 213 554 402

141014135755809 214 603 409

141014135755824

141014135755826 214 701 407

141014135755842 214 697 403

141014135755859 214 693 401

141014135755876 214 700 402

141014135755892 214 701 411

141014135755909 214 686 398

141014135755918

141014135755926 214 694 399

141014135755942 214 694 407

141014135755959 214 698 404

141014135755964

141014135755976 214 704 398

141014135755992 214 693 415

141014135756009 214 696 411

141014135756025 215 728 406

141014135756027 0.436697 0.521059 0.150011 0.335825 0.998908
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TABLE 11.8 I ntegration of Measurements (From an Eye Tracker, an Emotiv EPOC Headset, and a Skin Conductance Device) Using a Sparse 
Data Approach

Timestamp Fixation GPX GPY
Short-term 
excitement

Long-term 
excitement

Engagement/
boredom Meditation Frustration Conductance

141014135755652 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755659 213 573 408

141014135755668 0.436697 0.521059 0.550011 0.335825 0.498908

141014135755676 213 566 412

141014135755692 213 565 404

141014135755709 213 567 404

141014135755714

141014135755726 213 568 411

141014135755742 213 568 409

141014135755759 213 563 411

141014135755761

141014135755776 213 574 413

141014135755792 213 554 402

141014135755809 214 603 409

141014135755824

141014135755826 214 701 407

141014135755842 214 697 403

141014135755859 214 693 401

141014135755876 214 700 402

141014135755892 214 701 411

141014135755909 214 686 398

141014135755918

141014135755926 214 694 399

141014135755942 214 694 407

141014135755959 214 698 404

141014135755964

141014135755976 214 704 398

141014135755992 214 693 415

141014135756009 214 696 411

141014135756025 215 728 406

141014135756027 0.436697 0.521059 0.150011 0.335825 0.998908
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State machine. Instead of considering an affective state to exist only in 
the period of time equivalent to the sample, this method assumes that the 
state persists until a new state is obtained; thus, a source is in a state until 
it changes from that state to another. An example is shown in Table 11.9. 
There it is evident that, due to the sampling rate difference between the 
eye tracker (60 Hz), the Emotiv system (8 Hz), and the skin conductance 
device (2 Hz) in the interval between 57:55.652 and 57:56.027, there are 23 
values reported from the eye tracker, 3 from the Emotiv system, and only 
1 from the skin conductance device. Using the state machine approach, the 
values are repeated for each time stamp until a new value is obtained and 
there are no empty cells. The state machine approach is a good choice for 
real-time integration analysis.

Interpolation. This is a method for constructing new data points within 
the range of a discrete set of known data points. It is commonly used to 
deal with missing values by predicting them. Missing value computation 
is an active research topic and there are several successful techniques for 
handling the missing values in the literature (Little and Rubin, 2002).

Mapping to a coordinate model. This works with affective constructs 
and consists of mapping constructs to a coordinate vector and then 
adding all the coordinate vectors together. This approach has been 
suggested for systems that perform emotion recognition in real-time 
and use their inferences to trigger adaptive changes in a target system. 
Gilroy et  al. (2009) suggested the use of the PAD three-dimensional 
coordinate model. The process of mapping the data from row 2 in 
Table 11.9 to the PAD three-dimensional coordinate model is described 
later. To simplify our example, only constructs from the Emotiv EPOC 
headset and the skin conductance device are used, that is, data from 
the eye tracker is ignored. Also, assuming a focus on real-time sys-
tems, short-term excitement is used here and long-term excitement is 
ignored.

Each construct value is mapped to a PAD coordinate vector as follows:

1.	 Excitement corresponds to [+P, +A, −D], thus a value of 0.436697 can 
be mapped to the coordinate vector [0.436697, 0.436697, −0.436697].

2.	 Engagement and boredom are reported in the same column. 
Engagement corresponds to [+P, +A, +D] and boredom corresponds 
to [−P, −A, −D]. A value of 0.5 means equilibrium, values below 
0.5 are indicators of boredom, and values above 0.5 are indicators of 
engagement; thus, engagement/boredom can be mapped, in a scale 
of −1 to 1, to [(value − 0.5)*2, (value − 0.5)*2, (value − 0.5)*2]. Then a 
value of 0.550011 is mapped to [0.100022, 0.100022, 0.100022], which is 
positive and thus corresponds to a low level of engagement.

3.	 Meditation corresponds to [+P, −A, +D]; thus, a value of 0.335825 can 
be mapped to the vector [0.335825, −0.335825, 0.335825].
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TABLE 11.9 I ntegration of Measurements (From an Eye Tracker, an Emotiv EPOC Headset, and a Skin Conductance Device) Using a State 
Machine Approach

Timestamp Fixation GPX GPY
Short-term 
excitement

Long-term 
excitement

Engagement/
boredom Meditation Frustration Conductance

141014135755652 213 574 414 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755659 213 573 408 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755668 213 573 408 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755676 213 566 412 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755692 213 565 404 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755709 213 567 404 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755714 213 567 404 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755726 213 568 411 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755742 213 568 409 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755759 213 563 411 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755761 213 563 411 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755776 213 574 413 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755792 213 554 402 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755809 214 603 409 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755824 214 603 409 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755826 214 701 407 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

(Continued)
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Timestamp Fixation GPX GPY
Short-term 
excitement

Long-term 
excitement

Engagement/
boredom Meditation Frustration Conductance

141014135755842 214 697 403 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755859 214 693 401 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755876 214 700 402 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755892 214 701 411 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755909 214 686 398 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755918 214 686 398 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755926 214 694 399 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755942 214 694 407 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755959 214 698 404 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755964 214 698 404 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755976 214 704 398 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135755992 214 693 415 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135756009 214 696 411 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135756025 215 728 406 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628

141014135756027 215 728 406 0.436697 0.521059 0.150011 0.335825 0.998908 0.401690628

TABLE 11.9 I ntegration of Measurements (From an Eye Tracker, an Emotiv EPOC Headset, and a Skin Conductance Device) Using a State 
Machine Approach (cont.)
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4.	 Frustration corresponds to [−P, +A, −D]; thus, a value of 0.498908 can 
be mapped to the vector [−0.498908, 0.498908, −0.498908].

5.	 Skin conductance is not mapped to an affective construct but to 
arousal; thus, a normalized value of 0.401690628 can be mapped as 
zero pleasure, positive arousal, and zero dominance, that is, to the 
vector [0, 0.401690628, 0].

Adding the vectors gives a resultant vector of [0.373636, 1.101492628, 
−0.499758], a vector in the zone of [+P, +A, −D], that is, a level of excite-
ment. This vector represents the cumulative affective state at timestamp 
141014135755659 (Oct 14, 2014 13:57:55.659).

DATA ANALYSIS

Once time sampling has been accounted for, noise has been removed, 
missing data values have been addressed, and the data has been integrat-
ed, data analysis can start. There is a vast body of literature available on 
the topic of data analysis. This section describes the overall process, and 
exemplifies techniques for data analysis in general and for the correla-
tion of affect measurements with stimuli. Two examples of correlating af-
fect and stimuli off-line using data collected in experimental studies are 
presented using two free tools. Advanced methods for data analysis are 
surveyed in Novak et al. (2012).

The overall strategy for data analysis is depicted in Fig. 11.5 and can be 
summarized as follows:

1.	 Feature extraction. This step starts with a set of clean data and builds 
derived values (called features) intended to be informative and 

FIGURE 11.5  Steps for data analysis: feature extraction, feature selection, data mining, 
and interpretation and evaluation.
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nonredundant. The extracted features are expected to contain the 
relevant information from the input data, so that subsequent steps can 
be performed using this reduced representation instead of the entire 
initial set of data. With dimensionality reduction or transformation 
methods, the effective number of variables under consideration can be 
reduced, or invariant representations for the data can be found.

2.	 Feature selection. This step entails the process of selecting a subset 
of relevant features for use in the construction of a model. The 
central premise of using a feature selection technique is that the data 
contains many features that are either redundant or irrelevant, and 
can thus be removed without incurring much loss of information. 
Feature selection techniques allow: (1) the simplification of models 
for ease of interpretation, (2) shorter training times, and (3) enhanced 
generalization by reducing overfitting.

3.	 Data mining. This step involves the selection of a mining approach to 
identify patterns of interest. Common approaches include classification 
rules or trees, regression, and clustering. The selection process takes into 
account: (1) the parameters that are going to be used and which model 
might be appropriate for them, for instance, models for categorical data 
are different to models for vectors; and (2) the overall criteria of the 
knowledge discovery process, for instance, understanding the model or 
achieving outstanding predictive capabilities.

4.	 Interpretation and evaluation. Interpretation involves the visualization 
of the extracted patterns and models, or the visualization of the 
data given the extracted models. Evaluation is the application of the 
knowledge by incorporating it into another system for further actions, 
or simply documenting it and reporting it to interested parties.

The following two subsections outline and exemplify two approaches 
for data analysis, regression and classification, using two freely available 
tools, Eureqa and Weka, respectively.

Regression Example

For regression or reverse engineering data searches, we use Eureqad. 
Eureqa is used to compute mathematical expressions for structural relation-
ships in the data records (Dubcakova, 2011). Typically, the records hold in-
formation about the actions or behaviors and affective states of a user who 
was engaged in an experimental setting. For instance, consider exploring 
the relationships between affective states and the tendency to make mis-
takes. We collected data from participants engaged in playing the video 
game Guitar Hero. The goal of the game is to press one or more colored but-
tons at the same time as moving target lights of the same color cross a line 

dhttp://www.nutonian.com/products/eureqa/

http://www.nutonian.com/products/eureqa/
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on the screen. In each 1-h session, the first 15 min were allocated to practice, 
followed by a 45-min session in which participants played four songs of 
their choice, one of each level: easy, medium, hard, and expert. The data col-
lected included the errors made and constructs for engagement, excitement, 
meditation, and frustration. For this example, a partial dataset was fed to 
the Eureqa tool and used to create a model expressed as a mathematical 
equation, showing possible relationships between attributes, where sensor 
readings are the independent variables and errors, the number of mistakes 
that are likely to happen in a timeframe, are the target variable.

Eureqa automatically splits the dataset in two for training and valida-
tion, respectively. The training data is used to build the models, and the 
validation data is used to test how well models generalize to new data. 
The models and their evaluation are displayed in the Eureqa graphical 
user interface, as shown in Fig. 11.6. Obviously there is no guaranty that a 
model with a good correlation exists or can be found for a given data set. 
However, the approach and this tool provide a good way to explore the 
collected data and identify possible relationships that can be investigated 
further later on, such as

= +A Berrors  * frustration errors=A * frustration+B

FIGURE 11.6  Eureqa tool during the analysis of a dataset investigating the relation-
ship between affect measurements and the error-making tendency while playing a video 
game.
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or

= − −A B Cerrors (  * frustration  * meditation )/engagement

The letters A, B, and C represent constant values weighting the vari-
ables frustration, meditation, and engagement. This nonconclusive explo-
ration of mistakes made by a player of the Guitar Hero video game sug-
gest a proportional relationship between the tendency to make a mistake 
and the levels of frustration and meditation, but an inversely proportional 
one with the level of engagement.

Classification Example

Wekae is a tool that implements a collection of machine learning algorithms 
for data mining tasks; these explore data composition and relationships and 
extract useful information by means of clustering and classification ap-
proaches (Hall et al., 2009). To exemplify the classification approach, let us 
consider a research study run to predict the level of difficulty for solving 
four puzzles. Each puzzle has a different difficulty level ranging from easy 
to hard. The Tobii Eye Tracker and the Emotiv headset were used to collect 
data from 44 users solving each puzzle; both raw EEG data and emotional 
constructs from the Emotiv headset were taken into account. With that data, 
the intention was to construct a prediction model to show if observed sensor 
data can provide information about the puzzle difficulty level. A model was 
created to understand and predict cognitive load (level of difficulty expe-
rienced in solving a problem), where sensor readings are the independent 
variables and puzzle difficulty level is the target variable (Joseph,  2013). 
Since both raw data and constructs were taken into account, this example al-
lows the description of the complete set of steps presented before, as follows:

1.	 Preprocessing. For the eye-tracking data and Emotiv emotional 
constructs, no preprocessing was performed because it was assumed 
that they were already derived values and they are not as sensitive as 
EEG raw data. For the raw EEG data, median filtering was applied to 
reduce signal noise.

2.	 Feature extraction. For Emotiv constructs and pupil data, extracted 
features consisted of measures of variability, including variance, the 
minimum and maximum values, and skewness and kurtosis, as well 
as measures of central tendency, including mean and median. These 
features provide information about the characteristics of the signal 
distribution. For the raw EEG data, feature extraction consisted of 
transforming raw data into wave-frequency domains using a fast 
Fourier transform (FFT) algorithm and by band-pass filtering the 
signals within specific frequency ranges for alpha (8–12 Hz), beta 

errors=(A * frustration−B * 
meditation−C)/engagement

ehttp://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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(13–30 Hz), and theta (4–7 Hz) waves. EEG alpha activity reflects 
attention demands, beta activity reflects emotional and cognitive 
processes, and theta activity has been related to consciousness.

3.	 Feature selection. From the 30 features extracted from the 5 Emotiv 
constructs and pupil data (5 measures of variability for each), 10 
features were selected according to the process described by Tuv et al. 
(2009). Those features have P values less than 0.05; a small P value 
means corresponding variable values change significantly for different 
puzzle difficulty levels. Features, importance, and P values for each 
feature are listed in Table 11.10. Alpha, beta, and theta waves were 
retained as EEG features.

4.	 Data mining algorithm. The mining approach used for searching patterns 
that predict the puzzle being solved, that is, differentiating the puzzle 
type (difficult level), was classification with trees. A first approach 
was to train a decision tree using the Weka tool. The decision tree 
algorithm used was J48 (Quinlan, 1993). Fig. 11.7 shows a sample tree 
(not actual results) to exemplify a decision tree using only the features 
calculated from Emotiv constructs shown in Table 11.10. For instance, 
Fig. 11.7 shows that long-term excitement has taken a minimum value 
greater than 0.467 for 25 subjects while solving puzzle 4 (a higher level 
of difficulty), indicated by the branches on the right. Looking at the 
branches on the left, minimum long-term excitement values are less than 
0.169 for 39 subjects while solving puzzle 1 (lower level of difficulty).

Trees are useful for understanding the patterns, but for some objectives 
a single tree suffers from problems with generalization—they tend to 
overfit. To avoid this, an approach with multiple trees can be introduced 

TABLE 11.10  Features Calculated From Emotiv Affective Constructs and Their P 
Values for Predicting Puzzle Difficulty Level

Feature Importance P value

Long-Term Excitement_min 100% <0.001

Long-Term Excitement_variance 98.13% <0.001

Meditation_kurtosis 86.86% <0.001

Engagement/Boredom_skew 60.82% 0.012

Engagement/Boredom_min 56.68% <0.001

Frustration_variance 42.81% 0.004

Engagement/Boredom_mean 34.66% <0.001

Engagement/Boredom_max 32.96% <0.001

Short-Term Excitement_variance 25.66% <0.001

Engagement/Boredom_variance 9.09% <0.001
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in a randomized way; this approach is called Random Forest (Liaw and 
Wiener, 2002). Using trees for interpretation purposes and Random Forest 
for prediction is an option that we have explored with outstanding results.

SUMMARY

This roadmap aims to provide the reader with a better understanding 
of the technologies and approaches available for affect measurement, as 
well as an insight into how to process and analyze the data acquired. Some 
final thoughts are presented here along with a summary of each section.

The first section describes how a wide range of diverse approaches and 
technologies are being used and explored to recognize and quantify af-
fective states. Emotions are complex constructs fused with physiological 
and electrical activity in our bodies. Sensing physiological and electrical 
activity, looking for changes, and finding patterns in them enables us to 
identify the affective state that is behind those changes.

The capabilities of the various approaches and technologies surveyed 
in the first section are summarized in Table 11.11. The data gathered by 

FIGURE 11.7  Weka tool during the analysis of a dataset investigating the relationship 
between affect measurements and the level of difficulty solving puzzles – a J48 decision 
tree generated by the tool.
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TABLE 11.11  Summary of Approaches and Technologies for Affect Measurement

Device Software Input Output (raw data and constructs) Rate

Emotiv EPOC 
headset

Emotiv SDK Brain waves EEG activity: reported in 14 channels: AF3, F7, F3, FC5, T7, 
P7, O1, O2, P8, T8, FC6, F4, F8, and AF4

Face activity: blink, wink (left and right), look (left and 
right), raise brow, furrow brow, smile, clench, smirk (left 
and right), and laugh

Emotions: excitement, engagement/boredom, meditation, 
and frustration

128 Hz (raw 
data) and 8 Hz 
(constructs)

Standard 
webcam

MIT Media 
Lab Mind-
Reader

Facial expres-
sions

Emotions: agreement, concentration, disagreement, interest, 
thought, and unsureness

10 Hz

Tobii Eye 
Tracker

Tobii SDK Eye movements 
and pupil 
size

Gaze points (x, y), fixation, and pupil dilation 60 Hz

Skin conduc-
tance sensor

USB driver Skin 
conductivity

Arousal 2 Hz

Heart rate sensor USB driver Heart rate Arousal Variable

Pressure sensor USB driver Pressure One pressure value per sensor allocated into the input/
control device, which can be related to frustration

6 Hz

Posture sensor USB driver Pressure Pressure values in the back and the seat cushions (in the 
right, middle, and left zones) of a chair that can be related 
to interest

6 Hz

NA Synesketch Text Happiness, sadness, anger, fear, disgust, and surprise Variable
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them is diverse and they can be used individually or in combination, de-
pending on the goal of the study or the research questions being investi-
gated. All technologies produce raw data but only some have a built-in 
capacity to infer constructs. In addition to each device’s technical speci-
fications, cost is also a key factor when deciding on a device or approach 
appropriate to a project. BCI devices, particularly the ABM B-Alert 
X-Series systems, are costlier in comparison to other systems discussed 
here. These are closely followed by eye-tracking systems embedded in 
glasses, the mobile and embedded eye-tracking systems, and the Emotiv 
EPOC headsets. For the face-based recognition systems the cost depends 
not on the hardware but the software, and there are a number options on 
the market. The least expensive systems are the skin conductance sensors, 
the pressure sensors, and the posture sensors, because these can feasibly 
be assembled in-house following blueprints available from many sources, 
such as those referenced above.

The second section describes the first steps in dealing with the data 
obtained, involving sampling, filtering, and integration. Diverse sources 
have diverse sampling rates; the first challenge is to synchronize these. A 
second challenge involves noise reduction or filtering, meaning the elimi-
nation of samples with no useful values (out of range as a result of faults in 
the hardware or the environment, low battery power, interference, glare, 
target out of the camera’s line of sight, etc.). Last but not least, integration 
is the combination of data from diverse sources to improve the inference 
of affective states.

Finally, the last section explains an overall strategy for data analy-
sis that consists of four steps: feature extraction, feature selection, data 
mining, and interpretation and evaluation. This section shows two ex-
amples with freely available tools, one using a regression and the other 
a classification approach, respectively dealing with the prediction of 
mistakes in videogames and puzzle solving. None of these examples are 
intended to present research results or conclusions. Instead, they pro-
vide an exemplary exploration of experimental date for demonstration 
purposes.
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