PIETER DESMET

CHAPTER 9

MEASURING EMOTION: DEVELOPMENT AND APPLICATION OF AN INSTRUMENT TO MEASURE EMOTIONAL RESPONSES TO PRODUCTS

1. INTRODUCTION

Emotions enrich virtually all our waking moments with either a pleasant or unpleasant quality. Cacioppo and his colleagues wrote,

"emotions guide, enrich and ennoble life; they provide meaning to everyday existence; they render the valuation placed on life and property" (Cacioppo et al. 2001 p. 173).

These words illustrate that our relationship with the physical world is an emotional one. Clearly, the 'fun of use,' i.e. the fun one experiences from owning or using a product, also belongs to the affective rather than rational domain. The difficulty in studying affective concepts as 'enjoyment of use' and 'fun of use' is that they seem to be as intangible as they are appealing. Even more, rather than being an emotion as such, 'having fun' is probably the outcome of a wide range of possible emotional responses. Imagine, for example, the fun one has when watching a movie. This person will experience all kinds of emotions, such as fear, amusement, anger, relief, disappointment, and hope. Instead of one isolated emotion, it is the *combination* of these emotions that contributes to the experience of fun. It is not implausible that the same applies to other instances of fun, whether it is sharing a joke, using a product, or interacting with a computer.

So far, little is known about how people respond emotionally to products and what aspects of design or interaction trigger emotional responses. In order to support the study of these responses, a measurement instrument was developed that is capable to measure combinations of simultaneously experienced emotions: the Product Emotion Measurement Instrument (PrEmo). This chapter discusses the development of PrEmo in the context of existing instruments. In addition, an illustrative cross-culture study is reported, in which emotions evoked by car models have been measured in Japan and in The Netherlands.

2 APPROACHES TO MEASURE EMOTION

Before one can measure emotions, one must be able to characterise emotions and distinguish them from other states. Unfortunately, although the concept of emotion

111

Mark A. Blythe, Andrew F. Monk, Kees Overbeeke and Peter C. Wright (eds.), Funology: From Usability to Enjoyment, 111—123.

© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

appears to be generally understood, it is surprisingly difficult to come up with a solid definition. In the last 100 years, psychologists have offered a variety of definitions, each focussing on different manifestations or components of the emotion. As there seems to be no empirical solution to the debate on which component is sufficient or necessary to define emotions, at present the most favoured solution is to say that emotions are best treated as multifaceted phenomena consisting of the following components: behavioural reactions (e.g. retreating), expressive reactions (e.g. smiling), physiological reactions (e.g. heart pounding), and subjective feelings (e.g. feeling amused). Each instrument that is claimed to measure emotions in fact measures one of these components. As a consequence, both the number of reported instruments and the diversity in approaches to measure emotions is abundant. In this chapter, the basic distinction is made between non-verbal (objective) instruments

2.1 Non-verbal instruments to measure emotions

This category comprises instruments that measure either the expressive or the physiological component of emotion. An expressive reaction (e.g. smiling or frowning) is the facial, vocal, and postural expression that accompanies the emotion. Each emotion is associated with a particular pattern of expression (Ekman, 1994): for example, anger comes with a fixed stare, contracted eyebrows, compressed lips, vigorous and brisk movements and, usually, a raised voice, almost shouting (Ekman & Friesen, 1975). Instruments that measure this component of emotion fall into two major categories: those measuring facial and those measuring vocal expressions. Facial expression instruments are based on theories that link expression features to distinct emotions. Examples of such theories are the Facial Action Coding System (FACS; Ekman & Friesen, 1978), and the Maximally Discriminative Facial Moving Coding System (MAX; Izard, 1979). Generally, visible expressions captured on stills or short video sequences are analysed. An example is the Facial Expression Analysis Tool (FEAT; Kaiser & Wehrle, 2001), which automatically codes videotaped facial actions in terms of FACS. Like the facial expression instruments, vocal instruments are based on theories that link patterns of vocal cues to emotions (e.g. Johnstone & Scherer, 2001). These instruments measure the effects of emotion in multiple vocal cues such as average pitch, pitch changes, intensity colour, speaking rate, voice quality, and articulation.

A physiological reaction (e.g. increases in heart rate) is the change in activity in the autonomic nervous system (ANS) that accompanies emotions. Emotions show a variety of physiological manifestations that can be measured with a diverse array of techniques. Examples are instruments that measure blood pressure responses, skin responses, pupillary responses, brain waves, and heart responses. Researchers in the field of affective computing are most active in developing ANS instruments, such as IBM's emotion mouse (Ark, Dryer, & Lu, 1999) and a variety of wearable sensors designed by the Affective Computing Group at MIT (e.g. Picard, 2000). With these instruments, computers can gather multiple physiological signals while a person is

experiencing an emotion, and lear emotion.

The major advantage of non-ve independent, they can be used in dif are unobtrusive because they do not addition, these instruments are often instruments because they do not re emotional experience. For the currer has several limitations. First, these in of 'basic' emotions (such as anger recognition accuracy of around 6 Cacioppo et al. 2001). Moreover, th simultaneously experienced emotion use this approach for measuring emo

2.2 Verbal instruments to measure e

The limitations of non-verbal instr verbal self-report instruments, wh component of emotions. A subjective is the conscious awareness of the emotional experience. Subjective fee The most often used self-report in emotions with the use of a set of ratin

The two major advantages of the assembled to represent any set of combinations of emotions. The main between cultures. In emotion research difficult because for many emotion v available. Between-culture comparis overcome this problem, a handful recently been developed that use picto responses. An example is the Self-A SAM, respondents point out the pu emotion. Although applicable in bet also have an important limitation, emotions but only generalised emotion such as pleasantness and arousal). Con emotions evoked by products was advantages of existing non-verbal ar distinct emotions and combinations of to verbalise their emotions.

orisingly difficult to come up with a solid sts have offered a variety of definitions, or components of the emotion. As there ate on which component is sufficient or most favoured solution is to say that henomena consisting of the following etreating), expressive reactions (e.g. counding), and subjective feelings (e.g. claimed to measure emotions in fact sequence, both the number of reported measure emotions is abundant. In this en non-verbal (objective) instruments

ns

easure either the expressive or the xpressive reaction (e.g. smiling or ession that accompanies the emotion. attern of expression (Ekman, 1994): ntracted eyebrows, compressed lips, nised voice, almost shouting (Ekman component of emotion fall into two hose measuring vocal expressions. ries that link expression features to e the Facial Action Coding System nally Discriminative Facial Moving v, visible expressions captured on example is the Facial Expression 001), which automatically codes the facial expression instruments, patterns of vocal cues to emotions nts measure the effects of emotion pitch changes, intensity colour,

trate) is the change in activity in anies emotions. Emotions show a measured with a diverse array of e blood pressure responses, skin eart responses. Researchers in the loping ANS instruments, such as and a variety of wearable sensors I (e.g. Picard, 2000). With these ogical signals while a person is

experiencing an emotion, and learn which pattern is most indicative of which emotion.

The major advantage of non-verbal instruments is that, as they are language-independent, they can be used in different cultures. A second advantage is that they are unobtrusive because they do not disturb participants during the measurement. In addition, these instruments are often claimed to be less subjective than self-report instruments because they do not rely on the participants' own assessment of the emotional experience. For the current application however, this class of instruments has several limitations. First, these instruments can only reliably assess a limited set of 'basic' emotions (such as anger, fear, and surprise). Reported studies find a recognition accuracy of around 60-80% for six to eight basic emotions (see Cacioppo et al. 2001). Moreover, these instruments cannot assess combinations of simultaneously experienced emotions. Given these limitations, it was decided not to use this approach for measuring emotions evoked by products.

2.2 Verbal instruments to measure emotions

The limitations of non-verbal instruments as discussed above are overcome by verbal self-report instruments, which typically assess the subjective feeling component of emotions. A subjective feeling (e.g. feeling happy or feeling inspired) is the conscious awareness of the emotional state one is in, i.e. the subjective emotional experience. Subjective feelings can only be measured through self-report. The most often used self-report instruments require respondents to report their emotions with the use of a set of rating scales or verbal protocols.

The two major advantages of the verbal instruments is that rating scales can be assembled to represent any set of emotions, and can be used to measure combinations of emotions. The main disadvantage is that they are difficult to apply between cultures. In emotion research, translating emotion words is known to be difficult because for many emotion words a one-to-one, 'straight' translation is not available. Between-culture comparisons are therefore notoriously problematic. To overcome this problem, a handful of non-verbal self-report instruments have recently been developed that use pictograms instead of words to represent emotional responses. An example is the Self-Assessment Manikin (SAM; Lang, 1985). With SAM, respondents point out the puppets that in their opinion best portray their emotion. Although applicable in between-culture studies, these non-verbal scales also have an important limitation, which is that they do not measure distinct emotions but only generalised emotional states (in terms of underlying dimensions such as pleasantness and arousal). Consequently, a new instrument for measuring the emotions evoked by products was developed. This instrument combines the advantages of existing non-verbal and verbal self-report instruments: it measures distinct emotions and combinations of emotions but does not require the participants to verbalise their emotions.

3. THE PRODUCT EMOTION MEASUREMENT INSTRUMENT

Does my question annoy him? Is she amused by my story? In the face-to-face encounters of everyday life we constantly monitor and interpret the emotions of others (see Ettcoff & Magee, 1992). This interpretation skill was the starting point for the development of PrEmo. PrEmo is a non-verbal self-report instrument that measures 14 emotions that are often elicited by product design. Of these 14 emotions, seven are pleasant (i.e. desire, pleasant surprise, inspiration, amusement, admiration, satisfaction, fascination), and seven are unpleasant (i.e. indignation, contempt, disgust, unpleasant surprise, dissatisfaction, disappointment, and boredom). Instead of relying on the use of words, respondents can report their emotions with the use of expressive cartoon animations. In the instrument, each of the 14 measured emotions is portrayed by an animation by means of dynamic facial, bodily, and vocal expressions. Figure 1 shows the measurement interface.

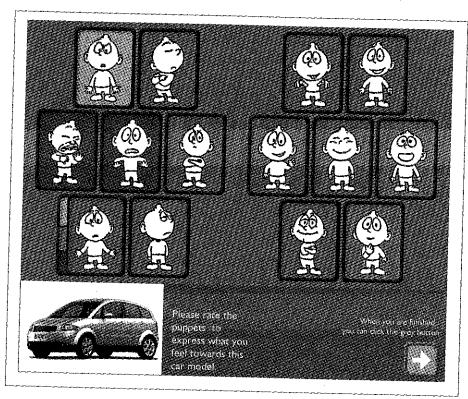


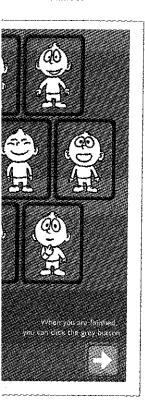
Figure 2. Product Emotion Measurement instrument interface

The procedure of a PrEmo experiment is self-running. The computer screen displays instructions that guide respondents through the procedure, which includes an explanation of the experiment and an exercise. The program's heart is the

measurement interface, which was top section of this interface depactompanied by a (hidden) three-pratings: "I do feel the emotion," "to feel the emotion expressed by this at the animation frames. A scale appet the animation is activated by clicking interface displays a picture of the experiment, the respondents are subsequently instructed to use the the product. While they view an an question: "does this animation experiment, the respondents are subsequently instructed to use the the product. While they view an an question: "does this animation experiment, the respondents are subsequently instructed to use the the product. While they view an an question: "does this animation experiment, the product of the animation colour of the animation of the animatic of the animatic of the animatic of the animation of the animatic of the animati

Note that earlier PrEmo version (e.g. Desmet, Overbeeke, & Tax 20 Hekkert 1998). See www.Designing and information regarding PrEmo us

3.1 Emotions measured by PrEmo


The 14 measured emotions were sel all emotions that can be elicited multistage method was used. First sufficiently extensive to represent a emotions. This set of 347 emotion reported lists of emotions. In the emotions on the dimensions 'pleadimensions of the 'Circumplex of dimensions were rated on a three-pomoderate-excited respectively. In adwhich they were not familiar. On the divided in eight categories (see Table neutral is not included. It is left out category in the Circumplex model. unfamiliar were omitted from the set

In order to further reduce the set emotions that are most often elicited used a rating procedure to indicate not often experience in response to for each of the eight emotion sets. O selected that are evoked regularly emotions were significantly higher th

115

NT INSTRUMENT

story? In the face-to-face interpret the emotions of skill was the starting point self-report instrument that duct design. Of these 14 te, inspiration, amusement, upleasant (i.e. indignation, on, disappointment, and pondents can report their In the instrument, each of y means of dynamic facial, ement interface.

ment interface

computer screen displays lure, which includes an program's heart is the measurement interface, which was designed to be simple and intuitive in use. The top section of this interface depicts stills of the 14 animations. Each still is accompanied by a (hidden) three-point scale. These scales represent the following ratings: "I do feel the emotion," "to some extent I feel the emotion," and "I do not feel the emotion expressed by this animation." The rating scales are 'hidden behind' the animation frames. A scale appears on the side of the animation frame only after the animation is activated by clicking on the particular still. The lower section of the interface displays a picture of the stimulus and an operation button. During an experiment, the respondents are first shown a (picture of a) product and subsequently instructed to use the animations to report their emotion(s) evoked by the product. While they view an animation, they must ask themselves the following question: "does this animation express what I feel?" Subsequently, they use the three-point scale to answer this question. Visual feedback of the scorings is provided by the background colour of the animation frame.

Note that earlier PrEmo versions have been discussed in previous publications (e.g. Desmet, Overbeeke, & Tax 2001; Desmet, Hekkert, & Jacobs 2000; Desmet & Hekkert 1998). See www.DesigningEmotion.nl for a dynamic animation example and information regarding PrEmo usage.

3.1 Emotions measured by PrEmo

The 14 measured emotions were selected to represent a manageable cross-section of all emotions that can be elicited by consumer products. For this selection, a multistage method was used. First, a set of emotions was assembled that is sufficiently extensive to represent a general overview of the full repertoire of human emotions. This set of 347 emotions was compiled by merging and translating reported lists of emotions. In the first study, participants (N = 20) rated these emotions on the dimensions 'pleasantness' and 'arousal,' which represent the dimensions of the 'Circumplex of Affect' developed by Russell (1980). Both dimensions were rated on a three-point scale: pleasant-neutral-unpleasant, and calm-moderate-excited respectively. In addition, participants marked emotion words with which they were not familiar. On the basis of these ratings, the set emotions was divided in eight categories (see Table 1). Note that one combination, i.e. moderate-neutral is not included. It is left out because it is not considered to be an emotional category in the Circumplex model. Emotions that were ambiguous or marked as unfamiliar were omitted from the set.

In order to further reduce the set, the second study was designed to select those emotions that are most often elicited by products. In this study, participants ($\underline{N} = 22$) used a rating procedure to indicate which emotions they often, and which they do not often experience in response to product design. They were instructed to do this for each of the eight emotion sets. On the basis of the sum scores, 69 emotions were selected that are evoked regularly by product design (the sum scores of these emotions were significantly higher than the average score).

Table 1. Emotion categories

Category	Amount of included emotions	Category	Amount of included
Excited pleasant	30	C-1:: 1	emotions
Moderate pleasant	53	Calm unpleasant	34
Calm pleasant	- -	Moderate unpleasant	61
	24	Excited unpleasant	46
Calm neutral	<u>14</u>	Excited neutral	20

Subsequently, in the third step, the set was further reduced by eliminating those emotions that are approximately similar to others in the set. Participants (N = 40) rated the similarity of the emotions in pairs. With the use of a hierarchical cluster analysis, the set of 69 emotions was reduced to a set of 41 emotions. In a final study, participants (N = 23) rated all 41 emotions on a five-point scale (from 'very relevant to product experience' to 'not relevant to product experience'). On the basis of the mean scores, the final set of 14 emotions was selected. Although, evidently, products can elicit more than these 14 emotions, these are the ones that can be considered to occur most frequently. Moreover, PrEmo requires a set that can be surveyable. The set of 14 is regarded as a workable balance between comprehensive and surveyable. Note that a detailed report of the selection procedure can be found in Desmet (2002).

3.2 Dynamic cartoon animations

The idea to use expressive portrayals of the 14 emotions was based on the assumption that emotional expressions can be recognized reliably. Ekman (1994) found that facial expressions of basic emotions (e.g. fear and joy) are not only recognised reliably, but also univocally across cultures. As the emotions measured by PrEmo are subtler than the basic emotions, more information than merely the facial expression is needed to portray them reliably.

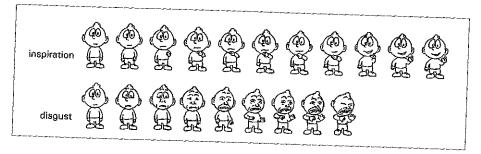


Figure 3. Two animation sequences

Our approach to this problemovement, and vocal expression. these are often particularly efficachieved with abstracting which Abstracted portrayals can make the because the amount of irrelevant Moreover, with cartoon character expressive cues that differ between

A professional animator desexpressions. A vocal actor syncanimator to create clear portrayals four professional actors (two male the 14 emotions as expressive as recorded on videotape and analyse this analysis, the animator create shows the animation sequences of

3.3 Validity and reliability

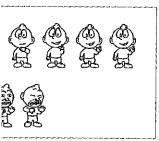
The validity of PrEmo, i.e. the deit was designed to measure, was as to examine the validity of the anin should be applicable in different included participants from four dif State citizens, 33 Finnish, and 29 l animations and asked which of th three animations shown, one was other two portrayed other emoti arousal). The animation that wa considered valid when it was select A strict significance level (i.e. p identify also slightly inaccurate concluded that in order to be disappointment needed further dev invalid in Japan and therefore adj actors.

The validity of the instrument study, both PrEmo and a verbal sc chairs. The level of association be obtained with the verbal scales v scores measured with the two met but one (i.e. *amusement*) were sigmeasures MANOVA was perform model and instrument (i.e. either voa significant interaction effect between

Amount of included emotions

sant 34
pleasant 61

46


20

easant

ra1

reduced by eliminating those he set. Participants (N = 40) use of a hierarchical cluster 41 emotions. In a final study, int scale (from 'very relevant erience'). On the basis of the lected. Although, evidently, see are the ones that can be no requires a set that can be ance between comprehensive ion procedure can be found in

emotions was based on the ized reliably. Ekman (1994) fear and joy) are not only s. As the emotions measured information than merely the

nces

Our approach to this problem was to incorporate total body expression, movement, and vocal expression. It was decided to use a cartoon character because these are often particularly efficient in portraying emotions. This efficiency is achieved with abstracting which reduces the emotional expression to its essence. Abstracted portrayals can make the task of recognizing emotional expressions easier because the amount of irrelevant information is reduced (Bernson & Perret 1991). Moreover, with cartoon characters it is possible to amplify (or exaggerate) the expressive cues that differ between emotional expressions (see Calder et al. 1997).

A professional animator designed the character and created the animated expressions. A vocal actor synchronized the vocal expressions. To enable the animator to create clear portrayals, a study with actors was conducted. In this study, four professional actors (two males, two females) were instructed to portray each of the 14 emotions as expressive and precise as they could. These portrayals were recorded on videotape and analysed by the author and the animator. On the basis of this analysis, the animator created the animations. By ways of example, Figure 2 shows the animation sequences of *inspiration* and *disgust*.

3.3 Validity and reliability

The validity of PrEmo, i.e. the degree to which it accurately measures the emotions it was designed to measure, was assessed in a two-step procedure. The first step was to examine the validity of the animations. An important requirement was that PrEmo should be applicable in different cultures or language areas. Therefore, the study included participants from four different countries (N = 120; 29 Japanese, 29 United State citizens, 33 Finnish, and 29 Dutch participants). Participants were shown three animations and asked which of these three best portrayed a given emotion. Of the three animations shown, one was designed to portray the given emotion, and the other two portrayed other emotions (yet similar in terms of pleasantness and arousal). The animation that was supposed to portray the given emotion was considered valid when it was selected more often than could be expected by chance. A strict significance level (i.e. p < .001) was applied because it was important to identify also slightly inaccurate animations. On the basis of the results, it was concluded that in order to be valid, the animations portraying desire and disappointment needed further development. These two animations were found to be invalid in Japan and therefore adjusted on the basis of a study with four Japanese

The validity of the instrument was examined in a second study (N = 30). In this study, both PrEmo and a verbal scale were used to measure emotions evoked by six chairs. The level of association between the results obtained with PrEmo and those obtained with the verbal scales was analysed. The correlations between emotion scores measured with the two methods were high (r varied from .72 to .99) and all but one (i.e. *amusement*) were significant (r < .05). For each emotion a repeated measures MANOVA was performed to examine interaction effects between chair model and instrument (i.e. either verbal scale or PrEmo). None of the analyses found a significant interaction effect between chair and instrument. In agreement with the

high correlation, these findings indicate that the participants did not respond differently to each of the chairs as a result of the measurement instrument applied. Based on these results, it was concluded that PrEmo is satisfactory with respect to its convergent validity. Moreover, participants reported in a questionnaire that they preferred using the animations to using words for reporting their emotional responses. The animations were found to be more intuitive in use and, importantly, much more enjoyable.

CROSS-CULTURAL APPLICATION

The application possibilities of PrEmo have been explored with a between-culture study in which emotions evoked by six car models (see Figure 3) were measured both in Japan ($\underline{n} = 32$) and in The Netherlands ($\underline{n} = 36$). It was decided to use cars because in previous studies we found that car models that vary in appearance can elicit strongly different emotions (see e.g. Desmet, Hekkert, & Jacobs 2000). Participants were matched on gender and age (20-60 years old). In a written introduction, it was explained that the purpose of the experiment was to assess emotional responses to the car designs. After the introduction, participants were shown a thumbnail display that gave an overview of all the models. Subsequently, photos of the six car models were presented in random order. After looking at a photo, participants reported their response with the 14 PrEmo animations.

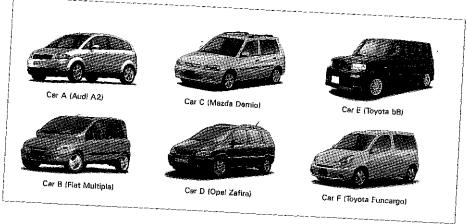


Figure 4. Stimuli used in the application study

In order to obtain a graphical representation of the results a correspondence analysis was performed with two factors: Emotion (14 levels) and Car combined with Culture (12 levels). Correspondence analysis is a technique for describing the relationship between nominal variables, while simultaneously describing the relationship between the categories of each variable. It is an exploratory technique, primarily intended to facilitate the interpretation of the data. Figure 4 shows the two-

dimensional solution of the ana 'product & emotion space.'

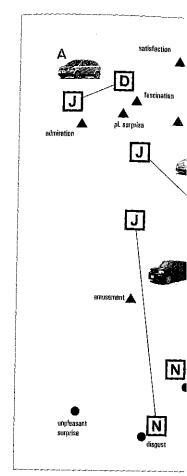


Figure 5. 'Product & emotion sp

This product & emotion space and the reported emotional retriangle and unpleasant with a indicated with a 'J,' and those of car models reflect the relationshift to each other). Similarly, the direflect the relationship between close to each other evoked sim

the participants did not respond measurement instrument applied. no is satisfactory with respect to its orted in a questionnaire that they is for reporting their emotional intuitive in use and, importantly,

PLICATION

explored with a between-culture els (see Figure 3) were measured = 36). It was decided to use cars odels that vary in appearance can smet, Hekkert, & Jacobs 2000). (20-60 years old). In a written of the experiment was to assess e introduction, participants were of all the models. Subsequently, andom order. After looking at a 14 PrEmo animations.

lication study

esults a correspondence analysis evels) and Car combined with a technique for describing the simultaneously describing the . It is an exploratory technique, ne data. Figure 4 shows the two-

dimensional solution of the analysis, which explains 90.3~% of the total variance: the 'product & emotion space.'

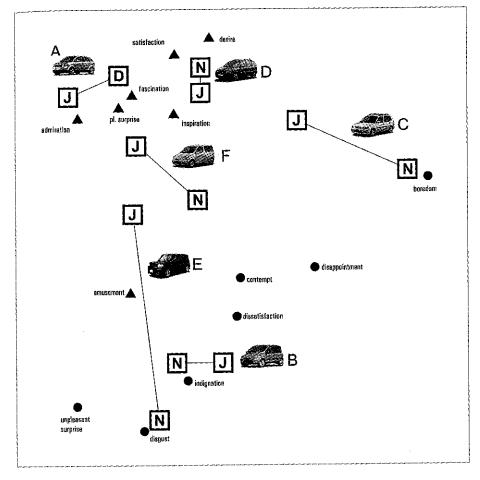


Figure 5. 'Product & emotion space' of Dutch and Japanese participants for six car models

This product & emotion space visualises the associations between the car models and the reported emotional responses. Pleasant emotions are indicated with a triangle and unpleasant with a circle. The results of the Japanese participants are indicated with a 'J,' and those of the Dutch with an 'N.' The distances between the car models reflect the relationships between them (with similar models plotted close to each other). Similarly, the distances between the car models and the emotions reflect the relationship between them. This means that car models that are plotted close to each other evoked similar emotions, whereas those plotted at a distance

from each other evoked different emotions. Cars A and D, for example, evoked similar emotions, whereas Cars A and B evoked noticeably different emotions.

In the product & emotion space some effects catch the eye. Clearly, the degree to which car models differ from each other also varies. The difference between Cars A and D, for example, is smaller than the difference between Cars A and B. Moreover, some car models appear to have elicited mainly pleasant emotions (e.g. Car D), some mainly unpleasant (e.g. Car B), and some both pleasant and unpleasant (e.g. Car F). In addition, two between-culture effects can be observed. First, the degree to which the emotional responses of the cultures differ depends on the car model. The space indicates that cultural differences are greatest for Cars E and C. Cars, A, B, and D, on the other hand, appear to have elicited similar emotions in Japan and in The Netherlands. Secondly, the product & emotion space indicates that the Japanese experienced generally higher ratings on pleasant emotions than the Dutch. The three car models that showed the largest cultural differences elicited more pleasant emotions in Japan than in The Netherlands.

4.1 Between-culture differences

The correspondence analysis is an exploratory technique, primarily intended to facilitate the interpretation of the data. Because it is not appropriate to draw conclusions, the observed between-culture effects have been examined in more depth, with an analysis of variance. For each emotion a two-way repeated measures MANOVA was performed with Car (six levels) as within-participants factor, Culture (two levels) as between-participant factor, and the emotion as dependent variable. Some interesting culture effects have been found. For three emotions, cultural differences independent of car model were found. Japanese participants showed higher mean scores on the following emotions: admiration, satisfaction, and fascination (p < .01). This may point to a cultural difference in how car models are experienced: apparently Japanese people are generally more admiring of, satisfied, and fascinated by car models than the Dutch. Some Car x Culture interaction effects indicated that there are also cultural differences in responses with respect to the particular car models used in the study. Interaction effects were found for disgust, unpleasant surprise, dissatisfaction, amusement, admiration, and satisfaction. For example, the Dutch participants were not amused by the same car models as the

A notable finding was that, contrary to expectations, cultural differences cannot be explained by product-familiarity. For instance, for Car B (Fiat Multipla) no significant cultural differences were found with respect to the emotions it elicited. This was not expected, because the Dutch participants were familiar with this model, and the Japanese were not. These findings confirm the idea that in product development, cultural differences must be recognized, and that these differences are both difficult to predict and to explain. Companies involved in 'global marketing' should be aware of these differences and should perhaps develop various design strategies for different cultures, instead of attempting to market identical products in different countries.

The unique strength of PrEmo is emotions and it can be used cross verbalise their emotions. In additions, more than one emotion experimental expensive equipment of respondents reported that the metangoyable. A limitation for the apple 14 measured emotions represent static product design. It is not satisfactorized towards dynamic humover-represented, whereas others is measurement of emotions evoked product) it must be determined if animations should be adjusted.

What is the point of measur programs? More interesting than of by a set of stimuli, is to under emotions. This information can be pre-defined emotion profiles. Her theoretical propositions about how appearance and interaction, and the emotions. In cognitive emotion ps appraisal processes. According to I appraises a stimulus as important can be any goal, standard, attitude feeling safe, or respecting the en argues that when we appraise a experience positive emotions and t when we appraise a stimulus as c negative emotions and try to avoi have different concerns. As a reproduct differently. As different ty appraisals, appraisals can be used Collins 1988). For the 14 emotion the specific appraisal patterns u patterns could guide designers in designs.

A second application possib communicate emotional responses can be difficult to discuss because emotion space' that results from emotional responses tangible. In vabe a valuable support to discuss e addition, designers found it to be e and D, for example, evoked bly different emotions.

ne eye. Clearly, the degree to e difference between Cars A en Cars A and B. Moreover, sant emotions (e.g. Car D), leasant and unpleasant (e.g. bserved. First, the degree to bends on the car model. The Cars E and C. Cars, A, B, ar emotions in Japan and in e indicates that the Japanese is than the Dutch. The three ces elicited more pleasant

que, primarily intended to s not appropriate to draw e been examined in more two-way repeated measures within-participants factor. the emotion as dependent ound. For three emotions, und. Japanese participants dmiration, satisfaction, and ence in how car models are nore admiring of, satisfied, Culture interaction effects conses with respect to the cts were found for disgust, tion, and satisfaction. For e same car models as the

cultural differences cannot Car B (Fiat Multipla) no to the emotions it elicited. e familiar with this model, the idea that in product I that these differences are lved in 'global marketing' as develop various design tarket identical products in

5. DISCUSSION

The unique strength of PrEmo is that it combines two qualities: it measures distinct emotions and it can be used cross-culturally because it does not ask respondents to verbalise their emotions. In addition, it can be used to measure mixed emotions, that is, more than one emotion experienced simultaneously, and the operation requires neither expensive equipment nor technical expertise. And, also important, respondents reported that the measurement task with PrEmo is pleasant or even enjoyable. A limitation for the application in human computer interaction is that the 14 measured emotions represent a cross-section of emotions experienced towards static product design. It is not said that this set also represents emotions that are experienced towards dynamic human product interaction. Some emotions may be over-represented, whereas others may be missing. Before PrEmo is applied for the measurement of emotions evoked by interacting with a computer (or any other product) it must be determined if the 14 emotions are adequate and, if not, the set animations should be adjusted.

What is the point of measuring emotions evoked by products or computer programs? More interesting than discovering which particular emotions are evoked by a set of stimuli, is to understand why those stimuli evoke these particular emotions. This information can be used in the development of new products, to elicit pre-defined emotion profiles. Hence, the interpretation of PrEmo results requires theoretical propositions about how product emotions are related to the product's appearance and interaction, and the characteristics of the person who experiences the emotions. In cognitive emotion psychology, emotions are regarded as outcomes of appraisal processes. According to Frijda (1986), emotions are elicited when a subject appraises a stimulus as important for the gain of some personal concern. A concern can be any goal, standard, attitude, or motive one has in life, e.g., achieving status, feeling safe, or respecting the environment. In following Arnold (1960), Frijda argues that when we appraise a stimulus as beneficial to our concerns, we will experience positive emotions and try to approach this particular stimulus. Likewise, when we appraise a stimulus as conflicting with our concerns, we will experience negative emotions and try to avoid it. As concerns are personal, different subjects have different concerns. As a result, individual subjects will appraise a given product differently. As different types of emotions are evoked by different kinds of appraisals, appraisals can be used to differentiate emotions (e.g., Ortony, Clore, & Collins 1988). For the 14 emotions measured by PrEmo, Desmet (2002) described the specific appraisal patterns underlying each emotion. Understanding these patterns could guide designers in controlling the emotional responses to their designs.

A second application possibility of PrEmo is to use it as a means to communicate emotional responses to products. The emotional aspects of a design can be difficult to discuss because they are often based on intuition. The 'product & emotion space' that results from a PrEmo experiment makes the intangible emotional responses tangible. In various design workshops, the space has proven to be a valuable support to discuss emotional aspects of design in a design team. In addition, designers found it to be effective when used as a means to communicate,

argue, and defend their ideas to non-designers who are also involved in the product development (e.g. marketing, engineering, etcetera).

The decision to design an instrument that measures both pleasant and unpleasant emotions was based on the notion that unpleasant responses are as interesting as the pleasant. What are the characteristics that make one product more enjoyable or attractive than another? Some of us find riding a roller coaster fun, whereas others would not want to be found dead in one. Some consider the fear experienced when thrown from a bridge with elastic tied to one's ankles to be fun whereas others prefer to play a game of bridge. Whatever the interpersonal differences in what we find to be fun, it would clearly be incorrect to assume that that fun is related only to pleasant emotions. Frijda and Schram (1995) stated that art often elicits paradoxical emotions, that is, positive and negative emotions simultaneously, and that it is precisely these paradoxical emotions that we seek and enjoy. In the words of Frijda (p. 2) "we enjoy watching tragic miseries, and we pay fair amounts of money to suffer threat and suspense." It may be interesting for designers and design. researchers to investigate the possibilities of designing such paradoxical emotions. Eventually, these efforts may result in products that are unique, innovative, rich in their interaction, interesting, and fun to use.

ACKNOWLEDGEMENTS

This research was funded by Mitsubishi Motor R&D, Europe GmbH, Trebur, Germany. Paul Hekkert (Delft University), Jan Jacobs, and Kees Overbeeke are acknowledged for their contribution to this research.

7. REFERENCES

- Ark, W., Dryer, D.C., & Lu, D.J. (1999). The emotion mouse. Proceedings of HCI International '99,
- Arnold, M.B. (1960). Emotion and Personality: vol 1. Psychological aspects. New York: Colombia
- Bernson, P.J., & Perrett, D.I. (1991). Perception and recognition of photographic quality facial caricatures: implications for the recognition of natural images. European Journal of Cognitive
- Cacioppo, J.T., Berntson, G.G., Larsen, J.T., Poehlmann, K.M., & Ito, T.A. (2001). The psychophysiology of emotion. In M. Lewis & J.M. Haviland-Jones (Eds.), Handbook of Emotions (2nd ed.) (pp. 173-191). New York: The Guilford Press.
- Calder, A.J., Young, A.W., Rowland, D., & Perrett, D.I. (1997). Micro-expressive facial actions as a function of affective stimuli: Replication and extension. Personality and Social Psychology Bulletin,
- Desmet, P.M.A. (2002). Designing Emotions. Unpublished doctoral dissertation.
- Desmet, P.M.A., & Hekkert, P. (1998). Emotional reactions elicited by car design: A measurement tool for designers. In D. Roller (Ed.), Automotive Mechatronics Design and Engineering (pp. 237-244).
- Desmet, P.M.A., Hekkert, P., & Jacobs, J.J. (2000). When a car makes you smile: Development and application of an instrument to measure product emotions. In: S.J. Hoch & R.J. Meyer (Eds.), Advances in Consumer Research (vol. 27, pp. 111-117). Provo, UT: Association for Consumer

- Desmet, P.M.A., Overbeeke, C.J., & Tax value; development and application 4(1), 32-47.
- Ekman, P. (1994). Strong evidence for un critique. Psychological Bulletin, 115
- Ekman, P., & Friesen, W.V. (1975). Unn cues. Englewood Cliffs, NJ. Prentico Ekman, P., & Friesen, W.V. (1978). Facilities.
- facial movement. Palo Alto, CA: Con Ettcoff, N.L., & Magee, J.J. (1992). Cate Frijda, N.H. (1986). The emotions. Camb
- Frijda, N. H., & Schram, D. (Eds.). (1995 Izard, C.E. (1979). The Maximally Discri
- Instructional Recourses Centre, Univ Johnstone, T., & Scherer, K. R. (2001). V (Ed.), Handbook of Emotions (Secon
- Kaiser, S., & Wehrle, T. (2001). Facial ex Schorr, & T. Johnstone (Eds.), Appra University Press.
- Lang, P.J. (1985). The cognitive psychoph Hillsdale, NJ: Lawrence Erlbaum.
- Ortony, A., Clore, G.L., & Collins, A. (19 Cambridge University Press.
- Picard, R. W. (2000). Towards computer Journal, 39(3/4),
- Russell, J.A. (1980). A circumplex model 1161-1178.

ho are also involved in the product a).

sures both pleasant and unpleasant responses are as interesting as the e one product more enjoyable or roller coaster fun, whereas others onsider the fear experienced when les to be fun whereas others prefer nal differences in what we find to that that fun is related only to d that art often elicits paradoxical is simultaneously, and that it is and enjoy. In the words of Frijda pay fair amounts of money to sting for designers and design ming such paradoxical emotions. at are unique, innovative, rich in

IENTS

R&D, Europe GmbH, Trebur, acobs, and Kees Overbeeke are

oceedings of HCI International '99,

cal aspects. New York: Colombia

of photographic quality facial . European Journal of Cognitive

Ito, T.A. (2001). The Jones (Eds.), Handbook of Emotions

licro-expressive facial actions as a mality and Social Psychology Bulletin,

ıl dissertation.

d by car design: A measurement tool sign and Engineering (pp. 237-244).

kes you smile: Development and S.J. Hoch & R.J. Meyer (Eds.), , UT: Association for Consumer Desmet, P.M.A., Overbeeke, C.J., & Tax, S.J.E.T. (2001). Designing products with added emotional value; development and application of an approach for research through design. *The Design Journal*, 4(1), 32-47.

Ekman, P. (1994). Strong evidence for universals in facial expressions: a reply to Russell's mistaken critique. *Psychological Bulletin*, 115(2), 268-287.

Ekman, P., & Friesen, W.V. (1975). Unmasking the face: A guide to recognizing emotions from facial cues. Englewood Cliffs, NJ: Prentice-Hall.

Ekman, P., & Friesen, W.V. (1978). Facial Action Coding System: A technique for the measurement of facial movement. Palo Alto, CA: Consulting Psychologists Press.

Ettcoff, N.L., & Magee, J.J. (1992). Categorical perception of facial expressions. *Cognition, 44*, 227-240. Frijda, N.H. (1986). *The emotions*. Cambridge: Cambridge University Press.

Frijda, N. H., & Schram, D. (Eds.). (1995). Special issue on emotion and cultural products.

Izard, C.E. (1979). The Maximally Discriminative Facial Movement Coding System (MAX). Newark: Instructional Recourses Centre, University of Delaware.

Johnstone, T., & Scherer, K. R. (2001). Vocal communication of emotion. In M. L. J. M. Haviland-Jones (Ed.), Handbook of Emotions (Second ed., pp. 220-235). New York: The Guilford Press.

Kaiser, S., & Wehrle, T. (2001). Facial expressions as indicator of appraisal processes. In K. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion (pp. 285-300). Oxford: Oxford University Press.

Lang, P.J. (1985). The cognitive psychophysiology of emotion: anxiety and the anxiety disorders. Hillsdale, NJ: Lawrence Erlbaum.

Ortony, A., Clore, G.L., & Collins, A. (1988). The cognitive structure of emotions. Cambridge: Cambridge University Press.

Picard, R. W. (2000). Towards computer that recognize and respond to user emotion. IBM Systems Journal, 39(3/4).

Russell, J.A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161-1178.

ND KARAT

n how entertaining users perceive the ere more interested in a topic would elated information. The results did not appeal was not related to the duration I with the level of interactivity by the nvestigation.

utilizing both small group design s to be highly beneficial. In the small om a large number of people about a the data and arrive at a design for time and labor intensive for the team rich and detailed design information nethods are appropriate for different de complementary information.

ng experiences for users, and there is tainment on the web. Future research ding this topic through an in-depth es of varying duration, content, with ext, and physical settings.

CES

eking: Tight coupling of dynamic query Boston MA, April 1994), ACM Press, 313-

, California.: UCLA Center for

Tow the Geeks, the Suits, and the Ponytails hing, New York, New York. lison-Wesley.

'Narrative in Cyberspace. New York, NY.

digital Hollywood. Available: tml.

794). Seductive interfaces: Satisfying a mass April 1994), ACM Press, 359-360.
r interface tool. . Proceedings of CHI '94

r 7, 2000]

, T., Riecken, D., and Podlaseck, M. (2001). centered design of a multi-institutional web s.), Museum and the Web 2001: Selected useum Informatics, 23-32. of CHI '99, ACM Press, 306-312. dition, Cambridge University Press.

nedia presentations. The Data Base for

RANDY J. PAGULAYAN, KEITH R. STEURY, BILL FULTON, AND RAMON L. ROMERO

CHAPTER 11

DESIGNING FOR FUN: USER-TESTING CASE STUDIES

1. INTRODUCTION

The goal of this chapter is to demonstrate that extending current usability methods and applying good research design based on psychological methods can result in improved entertainment experiences. This chapter will present several case studies where user-centered design methods were implemented on PC and Xbox games at Microsoft Game Studios. The examples were taken from several series of larger studies on Combat Flight Simulator (PC), MechWarrior 4: Vengeance (PC), Halo: Combat Evolved (Xbox), and RalliSport Challenge (Xbox). These examples were chosen to illustrate a variety of user-centered methods and to demonstrate the impact user-centered design principles can have on an entertainment product. Furthermore, these examples are presented in a way that illustrates a progression from addressing usability issues similar to those found in productivity applications, to extending usability methods to address more unique aspects of game design, to using survey methods to address issues related to fun for which standard usability methods do not suffice. For more detailed descriptions of Microsoft Game Studios User-testing methods and laboratory facilities, see Pagulayan, Keeker, Wixon, Romero, and Fuller (2003).

1.1 Methods and Games

The many similarities between productivity applications and games suggest that traditional discount usability methods would be suitable in the entertainment domain. Games have selection screens and menus just like other software applications. Task persistence, performance, ease of use, learnability, and all the potential obstacles to efficiency and productivity are found in games as well. However, it is possible to conceptualize usability in games as including other areas of game design, such as the comprehension of rules and objectives, control of characters, and manipulation of camera (view), to name a few. A game designer must script an experience within a game, so an extension of usability techniques from productivity applications to games becomes clearer. Usability testing in games

137

Mark A. Blythe, Andrew F. Monk, Kees Overbeeke and Peter C. Wright (eds.), Funology: From Usability to Enjoyment, 137—150 © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

√D KARAT

n how entertaining users perceive the ere more interested in a topic would elated information. The results did not appeal was not related to the duration I with the level of interactivity by the nvestigation.

utilizing both small group design s to be highly beneficial. In the small om a large number of people about a the data and arrive at a design for time and labor intensive for the team rich and detailed design information nethods are appropriate for different de complementary information.

ng experiences for users, and there is tainment on the web. Future research ding this topic through an in-depth es of varying duration, content, with ext, and physical settings.

CES

eking: Tight coupling of dynamic query Boston MA, April 1994), ACM Press, 313-

, California.: UCLA Center for

Yow the Geeks, the Suits, and the Ponytails hing, New York, New York. lison-Wesley.

Narrative in Cyberspace. New York, NY.

digital Hollywood. Available:

394). Seductive interfaces: Satisfying a mass April 1994), ACM Press, 359-360. τ interface tool. . *Proceedings of CHI '94*

r 7, 2000]

, T., Riecken, D., and Podlaseck, M. (2001). centered design of a multi-institutional web s.), Museum and the Web 2001: Selected useum Informatics, 23-32. of CHI '99, ACM Press, 306-312. dition, Cambridge University Press.

nedia presentations. The Data Base for

RANDY J. PAGULAYAN, KEITH R. STEURY, BILL FULTON, AND RAMON L. ROMERO

CHAPTER 11

DESIGNING FOR FUN: USER-TESTING CASE STUDIES

1. INTRODUCTION

The goal of this chapter is to demonstrate that extending current usability methods and applying good research design based on psychological methods can result in improved entertainment experiences. This chapter will present several case studies where user-centered design methods were implemented on PC and Xbox games at Microsoft Game Studios. The examples were taken from several series of larger studies on Combat Flight Simulator (PC), MechWarrior 4: Vengeance (PC), Halo: Combat Evolved (Xbox), and RalliSport Challenge (Xbox). These examples were chosen to illustrate a variety of user-centered methods and to demonstrate the impact user-centered design principles can have on an entertainment product. Furthermore, these examples are presented in a way that illustrates a progression from addressing usability issues similar to those found in productivity applications, to extending usability methods to address more unique aspects of game design, to using survey methods to address issues related to fun for which standard usability methods do not suffice. For more detailed descriptions of Microsoft Game Studios User-testing methods and laboratory facilities, see Pagulayan, Keeker, Wixon, Romero, and Fuller (2003).

1.1 Methods and Games

The many similarities between productivity applications and games suggest that traditional discount usability methods would be suitable in the entertainment domain. Games have selection screens and menus just like other software applications. Task persistence, performance, ease of use, learnability, and all the potential obstacles to efficiency and productivity are found in games as well. However, it is possible to conceptualize usability in games as including other areas of game design, such as the comprehension of rules and objectives, control of characters, and manipulation of camera (view), to name a few. A game designer must script an experience within a game, so an extension of usability techniques from productivity applications to games becomes clearer. Usability testing in games

133

Mark A. Blythe, Andrew F. Monk, Kees Overbeeke and Peter C. Wright (eds.), Funology: From Usability to Enjoyment, 137—150 © 2003 Kluwer Academic Publishers. Printed in the Netherlands.