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Autonomic Nervous System Activity
Distinguishes Among Emotions

Abstract. Emotion-specific activity in the autonomic nervous system was generat-
ed by constructing facial prototypes of emotion muscle by muscle and by reliving
past emotional experiences. The autonomic activity produced distinguished not only
between positive and negative emotions, but also among negative emotions. This
finding challenges emotion theories that have proposed autonomic activity to be
undifferentiated or that have failed to
differentiation in emotion.

For almost a century scientists have
argued about whether or not activity in
the autonomic nervous system (ANS) is
emotion-specific. Some of the most in-
fluential cognitive theories of emotion (1,

address the implications of autonomic

2) presume undifferentiated autonomic
arousal despite a number of reports of
emotion-specific autonomic activity (3-
5). We now report evidence of such
specificity in an experiment designed to

remedy methodological problems that
have lessened the impact of previous
studies: (i) A broad sample of six emo-
tions was studied, rather than the two or
three that are typical. (ii) Verification
procedures were instituted to maximize
the likelihood that each sample con-
tained only the single target emotion and
no other. (iii) A sufficiently broad sample
of autonomic measures was obtained to
enable differentiation of multiple emo-
tions, with appropriate statistical protec-
tion against spurious findings due to mul-
tiple dependent measures. (iv) Autonom-
ic measures were taken from the onset of
emotion production continuously until it
was terminated. More typical measures
taken before and after production of an
emotion may completely miss short-
lived target emotions. (v) Multiple elicit-
ing tasks were used with the same sub-
jects. (vi) Professional actors (N = 12)
and scientists who study the face
(N = 4) served as subjects to minimize
contamination of emotion samples by
extraneous affect associated with frus-
tration or embarrassment.
We studied six target emotions (sur-

prise, disgust, sadness, anger, fear, and
happiness) elicited by two tasks (direct-
ed facial action and relived emotion),
with emotion ordering counterbalanced
within tasks. During both tasks, facial
behavior was recorded on videotape,
and second-by-second averages were ob-
tained for five physiological measures:
(i) heart rate-measured with bipolar
chest leads with Redux paste; (ii) left-
and (iii) right-hand temperatures-mea-
sured with thermistors taped to the pal-
mar surface of the first phalanges of the
middle finger of each hand; (iv) skin
resistance-measured with Ag-AgCl
electrodes with Beckman paste attached
to the palmar surface of the middle pha-
langes of the first and third fingers of the
nondominant hand; and (v) forearm flex-
or muscle tension-measured with Ag-

Fig. 1. Frames from the videotape of one of the actor's performance of the fear prototype instructions: (A) "raise your brows and pull them
together," (B) "now raise your upper eyelids," (C) "now also stretch your lips horizontally, back toward your ears."
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AgCl electrodes with Redux paste and
electronic integration of the electromyo-
gram.
The directed facial action task com-

prised six trials; in each a nonemotional
expression was performed and followed
by an emotion-prototypic expression,
that is, an expression that theory and
evidence indicate universally signals one
of the target emotions (6). Subjects were
not asked to produce an emotional
expression but instead were told precise-
ly which muscles to contract (Fig. 1).
Their attempts to follow these instruc-
tions were aided by a mirror and coach-
ing (by P.E.). The nonemotional expres-
sion comprised two actions not included
in any of the emotional expressions to
control for ANS changes associated with
making any facial movement. Expres-
sions were held for 10 seconds. This task
resembles a traditional emotion posing
task (in which, for example, subjects are
asked to look fearful), but improves on it
by precisely specifying for the subject,
and for the experimenter's subsequent
verification, the exact set of muscle
movements that is required. Video rec-
ords offacial expressions were measured
(7) to ensure that autonomic data would
be included in the analyses only if the
instructed set of actions had been made;
86.5 percent of the data were used.

In the relived emotion task, subjects
were asked to experience each of the six
emotions (in counterbalanced orders) by
reliving a past emotional experience for
30 seconds. This task resembles tradi-
tional imagery tasks, but more specifical-
ly focuses on reliving a past emotional
experience. After each trial, subjects rat-
ed the intensity of any felt emotion on a
scale from 0 to 8. Autonomic data were
used only when the relived emotion was
felt at the midpoint of the scale or greater
and when no other emotion was reported
at a similar strength; 55.8 percent of the
data were used.
Change scores were computed for

each emotion on each task (directed fa-
cial action: averaged data during emo-
tional face minus that during nonemo-
tional face; relived emotion: averaged
data during relived emotion minus that
during the preceding 10-second rest peri-
od). The experiment was analyzed in a 2
by 2 by 6 (actors versus scientists by task
by emotion) multivariate analysis of vari-
ance. Our hypothesis that there are auto-
nomic differences among the six emo-
tions was supported [emotion main ef-
fect, F(25, 317) = 2.51, P < 0.001].
There were differences in emotion-spe-
cific autonomic patterns between the
two eliciting tasks [task by emotion in-
teraction, F(25, 62) = 2.0, P = 0.014].
16 SEPTEMBER 1983

Skin High:
High - temperature Anger

/ Low:
Heart Fear
rate Sad

Low:
Happy
Disgust
Surprise

Fig. 2. Decision tree for discriminating emo-
tions in direction facial action task.

The nature of the emotion-specific
ANS activity was explored with t-tests
within significant univariate effects. Two
findings were consistent across tasks: (i)
Heart rate increased more in anger
(mean calculated across tasks + stan-
dard error, +8.0 ± 1.8 beats per minute)
and fear (+8.0 ± 1.6 beats per minute)
than in happiness (+2.6 ± 1.0 beats per
minute). (ii) Left and right finger
temperatures increased more in anger
(left, +0.100C ± 0.0090; right, +0.080C ±
0.008°) than in happiness (left, -0.07°C +
0.0020; right, -0.03°C ± 0.002°).

In addition to these differences be-
tween the negative emotions of anger
and fear and the positive emotion of
happiness, there were important differ-
ences among negative emotions. In the
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directed facial action task we were able
to distinguish three subgroups of emo-
tions (Fig. 2) on the basis of heart rate
and finger temperature differences (Fig.
3). Additional differentiation in the re-
lived emotions task enabled distinction
between sadness and other negative
emotions on the basis of significantly
larger decreases in skin resistance in
sadness [-12.6 ± 164.6 kilohm (8)] than
in the others (fear, -0.37 ± 1.0 kilohm;
anger, -2.1 ± 3.7 kilohm; and disgust,
+4.4 ± 6.6 kilohm).
There were also three negative find-

ings of note. No significant differences
were found between emotions on the
forearm flexor measure, thus indicating
that heart rate effects were not artifacts
of fist clenching or other related muscle
activity. No statistically significant dif-
ferences were found between actors and
scientists studying facial expression, in-
dicating that the findings generalized to
both of these populations. Finally, when
the major analyses were rerun including
all ANS data without regard to whether
verification criteria were met, only the
negative versus positive emotional dis-
tinctions remained; all distinctions
among negative emotions were lost. We
interpret this finding as supporting the
importance of verification of emotional
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Fig. 3. Changes in (A) heart rate and (B) right finger temperature during the directed facial
action task. Values are means + standard errors. For heart rate, the changes associated with
anger, fear, and sadness were all significantly greater (P < 0.05) than those for happiness,
surprise, and disgust. For finger temperature, the change associated with anger was significant-
ly different (P < 0.05) from that for all other emotions.
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state and as indicating one reason previ-
ous studies that failed to include verifica-
tion procedures have been unable to
distinguish so many negative emotions.
Combining the results from the two

tasks, this experiment provides the first
evidence (to our knowledge) of autonom-
ic differences among four negative emo-
tions (disgust and anger distinguished
from each other and from fear or sadness
in the directed facial action task; sadness
distinguished from disgust, anger, or fear
in the relived emotion task) as well as
showing general distinctions between
positive and negative emotions in both
tasks. In addition to this new evidence,
we replicated with the directed facial
action task the single most reliable find-
ing from past studies: anger and fear
show similar heart rate increases but
differ in peripheral vascular function (in-
dicated by our finding of colder fingers in
fear than in anger). The magnitude of
these heart rate increases, both mean
(Fig. 3) and maximum (fear, +21.7; an-
ger, +25.3 beats per minute) are compa-
rable to other such findings (9).

Further research is needed to choose
between two alternative explanations of
the differences in the results we obtained
with the two eliciting tasks: (i) the tasks
involve different neural substrates,
which generate different patterns ofemo-
tion-specific autonomic activity; or (ii)
the tasks differ in the extent of emotion
blending they produce. Further work is
also needed to demonstrate that emo-
tion-specific autonomic activity is not
unique to actors and scientists, although
the possibility that training in either pro-
fession would have such a profound ef-
fect on autonomic patterning in emotion
seems unlikely.
Our finding of emotion-differentiated

autonomic activity, albeit important in

its own right, begets the question of how
that activity was generated. Particularly
intriguing is our discovery that produc-
ing the emotion-prototypic patterns of
facial muscle action resulted in autonom-
ic changes of large magnitude that were
more clear-cut than those produced by
reliving emotions (a more naturalistic
process). With this experiment we can-
not rule out the possibility that knowl-
edge of the emotion labels derived from
the facial movement instructions or see-
ing one's own or the coach's face was
directly or indirectly responsible for the
effect. We find this unlikely since it
would indicate either (i) that just viewing
an emotional face directly produced
autonomic patterning or (ii) that subjects
inferred the "correct" set of autonomic
changes from the label and then some-
how produced these complex patterns.
The biofeedback literature (10) suggests
that people cannot voluntarily produce
such complex patterns of autonomic ac-
tivity.
We propose instead that it was con-

tracting the facial muscles into the uni-
versal emotion signals which brought
forth the emotion-specific autonomic ac-
tivity. This might occur either through
peripheral feedback from making the fa-
cial movements, or by a direct connec-
tion between the motor cortex and hypo-
thalamus that translates between emo-
tion-prototypic expression in the face
and emotion-specific patterning in the
ANS. Although further studies are need-
ed to verify this hypothesis and to deter-
mine the pathways involved, the fact
that emotion-specific autonomic activity
occurred is of fundamental theoretical
importance, no matter what the underly-
ing mechanisms may turn out to be. It
raises the question of how such complex
patterns of autonomic activity relate to

changes in the central nervous system,
cognitive processes, motor behaviors,
and the subjective experience of emo-
tion; it also underscores the centrality of
the face in emotion as Darwin (11) and
Tomkins (12) suggested.
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