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The “Sampling Distribution” is the 
foundation of Statistical Inference 

 

The sampling distribution represents the 
relative frequency of all possible values of a 

statistic given a well-defined set of conditions. 

 

It is this knowledge that allows us to 
discriminate “likely” vs. “unlikely” (significant) 

events. 



The most commonly used statistics have 
well-known, mathematically-defined 

sampling distributions: e.g., mean, binomial 
proportion, difference between sample means, 

etc. 



The Sampling Distribution of the Mean 
(Population is Normally Distributed) 



The Sampling Distribution of the Mean 
(Population is Uniformly Distributed) 

 

MATLAB 



MATLAB Code Snippet 
Monte Carlo Generation of Sampling Dist. 

%Generate 5000 random samples of N=50 from a 

%Uniform Distribution and save means in a list 

 

universe=[5 6 7 8 9 10 11 12 13 14 15]; 

for i=1:5000 

    rs=randsample(universe,50,true); %with replacement 

    remeans(i)=mean(rs);  %plug-in statistic of interest 

end 

 



“Student’s t” 
Theoretical sampling distribution for the difference 

between means assumed to have been sampled 
from the same population (Assumes normality)  



Let’s Revisit the 
Sampling Distribution 

of a (any) Statistic 
 



Three ways to generate 
a Sampling Distribution 

 



Ideal Sampling Approach 
Take a large number of samples of size N from your 

population of interest and generate a custom sampling 
distribution for your statistic 

Best approach; Can be applied to ANY statistic; 
Unrealizable (silly?) given normal constraints 

 



Sampling Approach 2: 
Take a single sample from a (normally distributed) 

population and generate theoretically derived sampling 
distribution for your statistic 

Standard approach but sensitive to distributional 
assumptions; mathematical basis lacking for many stats 

Theoretical Probability Approach 
Apply mathematical theory to generate expected distributions of a 

given statistic.  This is the traditional approach we all know and love(?) 
 

Useful approach; Limited to “well” behaved statistics; opaque; 
Depends upon assumptions that are often difficult to evaluate 

 



Resampling Approach 
Draw a sample from your target population(s) and use Monte Carlo techniques 
to randomly resample in order to generate an empirically derived estimate of 

the sampling distribution of your statistic. 

 

Computationally and conceptually simple; minimal reliance upon mathematical 
theory (“brute force”?); Can be applied to ANY statistic (median; ratio; mode); 

Makes bias, shape and spread of sampling distribution observable 



Resampling Approach 
to Statistical Inference  



What is Resampling? 

Resampling refers to a variety of statistical 
methods based on available data (samples) 
rather than a set of standard assumptions 
about underlying populations. 

Such methods include bootstrap, jackknife, 
and permutation tests. 

Resampling represents a “new” idea about 
statistical analysis which is distinct from that 
of traditional statistics. 



Why resampling? 

In most cases we accept the assumptions for 
traditional statistics “as if” they are satisfied. 

Traditional statistics cannot be applied to some 
“awkward” but “interesting” statistics such as the 
median, mode, range, ratio, trimmed mean, etc. 

Generality of resampling saves us from onerous 
formulas for different problems. 

Permutation tests, and some bootstraping 
methods, are more accurate in practice than 
traditional methods. 



What is bootstraping? 

• Bootstraping is a statistical method for 
generating the sampling distribution of a 
statistic by sampling with replacement from 
the original data sample.  

• Bootstraping can also be exploited to estimate 
confidence intervals and to conduct null 
hypothesis testing.  



Procedure of bootstraping 

Get an original random sample from the population of 
interest. 

Create hundreds of new samples, called bootstrap 
samples (or resamples), by sampling with replacement. 
Each resample is the same size as the original random 
sample. 

Calculate the statistic for each resample. The frequency 
(probabiliy) distribution of these resample statistics is 
called the bootstrap distribution. 

Use the bootstrap distribution for establishing 
confidence intervals and/or null hypothesis testing. 



Let’s start with the 

  Ideal Approach for the Mean 

 
Specify population 

Take 1,000 random samples 

Generate probability distribution 

   for all possible values of mean 

   for sample size (n) = 50 

 

Theoretical approach 

   Assumes normality 

   E(M) of sampling dist = µ 

   S.D. of sampling dist = δ/√n 

   Normality assumption less 

      important as N increases 



Now let’s explore the 

   Bootstrap Resampling Approach 

 

 

Begin by taking a simple random 

sample from the target population 

(n = 50) 

 



Now let’s explore the 

   Bootstrap Resampling Approach 

 

Begin by taking a simple random 

sample from the target population 

                                    (n=50) 

Next,  

Draw 1000 (re)samples from the 

simple random sample (SRS); 

Compute a mean for each resample; 

Generate distribution of resampled 

means 

 

All resamples of size n (=50) 

Resampling is (obviously) 

   sampling with replacement 

 

Shape and spread of bootstrap 

distribution approximates the true 

(ideal) sampling distribution very well. 

 



Now let’s explore the 

   Bootstrap Resampling Approach 

 

 

If we repeat the resampling 

procedure several times using the 

same original random sample from 

the population… 

 

We can see that the amount of 

uncertainty introduced by the 

resampling procedure is minimal for 

1000+ resamples 

 

That is: 

The shape, spread and bias is 

preserved across all five replications 

of the bootstrap distribution 

 

 



Now let’s explore the 

   Bootstrap Resampling Approach 

 

 

If we draw three additional simple 

random samples (n=50) from the 

target population…we can visualize 

the uncertainty introduced by the 

conventional sampling process 

 

Variations in the shape and bias of 

the resulting bootstrap distributions 

reflect these uncertainties (which are 

exacerbated by violations of the 

normality assumption) 

 

The bootstrap distribution makes 

these distortions directly observable. 

Many techniques for dealing with 

these distortions have emerged as 

understanding of resampling 

techniques accummulates 

 

 



Bootstrap Example [h2.m] 



Bootstrap Example 
[h2.m] 



Quantile-Quantile Plot 
Plot percentiles of distribution X against percentiles of the standard normal distribution 

(Linear if from the same distribution) 



1. Draw original SRS’s of size n and m from 
each population 

2. Generate resamples of size n and m from 
each SRS; compute statistics; compute and 
record differences between these stats 

3. Repeat Step #2 1000 times 
4. Construct bootstrap distribution and use it 

to evaluate the difference between the 
original two SRS’s 

2-Sample Applications of Bootstraping 



The Permutation Test 
(aka Randomization Test) 

 

A resampling approach to  

Null Hypothesis Testing 



While the Bootstrap derives its power 

 from the process of random sampling 

The Permutation Test derives its power 

 from the process of random assignment 





The Permutation Resampling Process 



Example : Do structured reading exercises 
improve Degree of Reading Power (DRP) scores? 

Standard Parametric 1-tailed t-test: 

 H0: MEANtreatment – MEANcontrol = 0 

 H1: MEANtreatment – MEANcontrol > 0 

Results:   t(42) = 2.26, p < 0.014 (reject null hypothesis) 



Resampling Approach to Same Reading Study: 
Monte Carlo Computation of Permutation Distribution 



MATLAB Code Snippet 
Permutation Resampling 

%Generate 1000 pairs of permutations representing 

%random assignment to the treatment & control groups 

%using sampling without replacement 

 

universe=concat(treatment_group, control_group); 

for i=1:1000 

    [s1,s2]=randperm2(universe, 21);  

    remeans(i)=mean(s1)-mean(s2);  %plug-in statistic 

end 

 



An example where the t-Test and 
Permutation Test yield Different 
Results 

FCC regulations mandate that non-traditional telephone 
service providers be fined if they provide inferior service 

compared to the Legacy Provider in their area. 

 

If the MEAN TIME TO ANSWER SERVICE CALLS is 
significantly longer than that obtained from a 

representative sample of the Legacy Co’s logs then the 
competing Co. must pay a fine (alpha=1%) 



1-tailed t-Test: 

 

t(1685) = -2.5877 

p < 0.0048 

 

Statistically reliable 
increase in service call 

latency (alpha=1%) 

 

SmallCo must pay fine! 



Permutation Sampling Distribution reveals: 

Expected value of M1-M2 deviates from normal 

M1-M2 not significant at alpha = 1% 



Resampling for Correlated t-test [h15.m] 

Scenario: 

 

Twenty executives participated in a 2-week intensive foreign  

language course.  Evaluate the effectiveness of the course 

based upon their “before” and “after” scores on a language 

assessment test. 



Bootstrap Example [h2.m] 

 

 Use Resampling to generate Permutation Distribution 

 of Difference between Correlated Means                    

                                                                

 1. Generate list of subjects to resample (with replacement)    

 2. Randomly assign each resampled subject's bivariate data to  

       the before vs. after treatment pool (null hypothesis)    

 3. Compute the means for the before vs. after pools            

 4. Compute difference between after-before resampled means     

 5. Repeat steps 1-4 for 1000 iterations                        

 6. Generate and apply the permutation distribution             

 



Bootstrap Example [h2.m] 

subjects = [1:samplesize]; 

n_resamples=1000; 

for i=1:n_resamples 

 

    %resample N subjects (with replacement) 

    s1 = randsample(samplesize, samplesize, true); 

 

    %randomly assign subjects' bivariate sample pairs to before vs. after pool 

    before_assignments = randsample(2, samplesize, true); %1 or 2 

    after_assignments = 2-floor(before_assignments/2);        %complement 

    for n=1:samplesize  %implement random assignment 

        before_pool(n) = bivariate(s1(n),before_assignments(n)); 

        after_pool(n)  = bivariate(s1(n),after_assignments(n)); 

    end 

 

    %compute difference between after-before means 

    %and add it to the accumulating permutation distribution 

    remdiff(i)=mean(after_pool)-mean(before_pool); 

end 

 



Resampling for Correlated t-test [h15.m] 



Visit MATLAB Resampling 
Resource Page: 

apps.usd.edu/coglab/psyc792/resampling/resampling.html 

http://apps.usd.edu/coglab/psyc792/resampling/resampling.html
http://apps.usd.edu/coglab/psyc792/resampling/resampling.html
http://apps.usd.edu/coglab/psyc792/resampling/resampling.html

