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The “Sampling Distribution” is the
foundation of Statistical Inference

The sampling distribution represents the
relative frequency of all possible values of a
statistic given a well-defined set of conditions.

It is this knowledge that allows us to
discriminate “likely” vs. “unlikely” (significant)
events.



The most commonly used statistics have
well-known, mathematically-defined

sampling distributions: e.g., mean, binomial
proportion, difference between sample means,
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"Relative Frequency”

The Sampling Distribution of the Mean
(Population is Normally Distributed)

MNormal Distribution
(mu=10; sigma=3.3166)

"Relative Frequency”

Sampling Distribution of the Mean
Mean=mu, SE=sigma/sqrt(N)
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Relative Frequency

The Sampling Distribution of the Mean
(Population is Uniformly Distributed)

Uniform Distribution Sampling Distribution of the Mean  Monte Carlo Simulation
(mu=10; sigma=3.3.166) Mean=mu, SE=sigma/sqit(N) (N=50; 5000 resamples)
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MATLAB Code Snippet
Monte Carlo Generation of Sampling Dist.

%Generate 5000 random samples of N=50 from a
%Uniform Distribution and save means in a list

universe=[56789101112 13 14 15];
for i=1:5000
rs=randsample(universe,50,true); %with replacement
remeans(i)=mean(rs); %plug-in statistic of interest
end



“Student’s t”

Theoretical sampling distribution for the difference
between means assumed to have been sampled
from the same population (Assumes normality)
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Let’s Revisit the
Sampling Distribution
of a (any) Statistic



Three ways to generate
a Sampling Distribution



Ideal Sampling Approach

Take a large number of samples of size N from your
population of interest and generate a custom sampling
distribution for your statistic

Best approach; Can be applied to ANY statistic;
Unrealizable (silly?) given normal constraints
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Theoretical Probability Approach

Apply mathematical theory to generate expected distributions of a
given statistic. This is the traditional approach we all know and love(?)

Useful approach; Limited to “well” behaved statistics; opaque;
Depends upon assumptions that are often difficult to evaluate

Theory

NORMAL POPULATION Sampling distribution
unknown mean p (t Distribution)



Resampling Approach

Draw a sample from your target population(s) and use Monte Carlo techniques
to randomly resample in order to generate an empirically derived estimate of
the sampling distribution of your statistic.

Computationally and conceptually simple; minimal reliance upon mathematical
theory (“brute force”?); Can be applied to ANY statistic (median; ratio; mode);
Makes bias, shape and spread of sampling distribution observable
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Resampling Approach
to Statistical Inference



What is Resampling?

® Resampling refers to a variety of statistical
methods based on available data (samples)
rather than a set of standard assumptions
about underlying populations.

@ Such methods include bootstrap, jackknife,
and permutation tests.

@®Resampling represents a “new” idea about
statistical analysis which is distinct from that
of traditional statistics.



Why resampling?

@ In most cases we accept the assumptions for
traditional statistics “as if” they are satisfied.

® Traditional statistics cannot be applied to some
“awkward” but “interesting” statistics such as the
median, mode, range, ratio, trimmed mean, etc.

® Generality of resampling saves us from onerous
formulas for different problems.

® Permutation tests, and some bootstraping
methods, are more accurate in practice than
traditional methods.




What is bootstraping?

* Bootstraping is a statistical method for
generating the sampling distribution of a
statistic by sampling with replacement from
the original data sample.

* Bootstraping can also be exploited to estimate
confidence intervals and to conduct null
hypothesis testing.



Procedure of bootstraping

® Get an original random sample from the population of
Interest.

® Create hundreds of new samples, called bootstrap
samples (or resamples), by sampling with replacement.
Each resample is the same size as the original random
sample.

® Calculate the statistic for each resample. The frequency
(probabiliy) distribution of these resample statistics is
called the bootstrap distribution.

® Use the bootstrap distribution for establishing
confidence intervals and/or null hypothesis testing.



Let's start with the
|deal Approach for the Mean

Specify population

Take 1,000 random samples

Generate probability distribution
for all possible values of mean
for sample size (n) =50

Theoretical approach
Assumes normality

E(M) of sampling dist = u

S.D. of sampling dist = 8/n

Normality assumption less
Important as N increases




Now let’s explore the
Bootstrap Resampling Approach

Begin by taking a simple random
sample from the target population
(n =50)




Now let’s explore the
Bootstrap Resampling Approach

Begin by taking a simple random

sample from the target population
(n=50)

Next,

Draw 1000 (re)samples from the

simple random sample (SRS);

Compute a mean for each resample;

Generate distribution of resampled

means

All resamples of size n (=50)
Resampling is (obviously)
sampling with replacement

Shape and spread of bootstrap
distribution approximates the true
(ideal) sampling distribution very well.



Population distribution

Sampling distribution
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Now let’s explore the
Bootstrap Resampling Approach

If we repeat the resampling
procedure several times using the
same original random sample from
the population...

We can see that the amount of
uncertainty introduced by the
resampling procedure is minimal for
1000+ resamples

That is:

The shape, spread and bias is
preserved across all five replications
of the bootstrap distribution



Population distribution

Sampling distribution
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Now let’s explore the
Bootstrap Resampling Approach

If we draw three additional simple
random samples (n=50) from the
target population...we can visualize
the uncertainty introduced by the
conventional sampling process

Variations in the shape and bias of
the resulting bootstrap distributions
reflect these uncertainties (which are
exacerbated by violations of the
normality assumption)

The bootstrap distribution makes
these distortions directly observable.
Many techniques for dealing with
these distortions have emerged as
understanding of resampling
technigues accummulates



Bootstrap Example [h2.m]

“erizon Customer Service Repair Times
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Bootstrap Distribution of Resampled Means
Hesterberg Example 18.2 [MATLAB: h2.m]
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Quantile-Quantile Plot

Plot percentiles of distribution X against percentiles of the standard normal distribution
(Linear if from the same distribution)
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2-Sample Applications of Bootstraping

1. Draw original SRS’s of size n and m from
each population

2. Generate resamples of size n and m from
each SRS; compute statistics; compute and
record differences between these stats

Repeat Step #2 1000 times

4. Construct bootstrap distribution and use it
to evaluate the difference between the
original two SRS’s

w



The Permutation Test

(aka Randomization Test)

A resampling approach to
Null Hypothesis Testing



While the Bootstrap derives its power

from the process of random sampling

The Permutation Test derives its power

from the process of random assignment




GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without
replacement in a way that is consistent with the null hypothesis
of the test and with the study design. Construct the permutation
distribution of the statistic from its values in a large number of
resamples.

3. Find the P-value by locating the original statistic on the
permutation distribution.




The Permutation Resampling Process

Control Sample (N=5) Treatment Sample (N=6)
Collect Data from
Control & Treatment 57841 689759
Groups \ /
Merge Samples
toforma 578416897509
pseudopopulation 77 NN N A\ -

Sample without //

replacement from
pseudopopulation
to simulate Control

and Treatment Groups 8463897
Compute target l l
statistic for each
resample Median(57159) Median(8 4 6 8 9 7)

~ .

Compute “difference statistic™, save result in table
and repeat resampling process 1000+ iterations



Example : Do structured reading exercises
improve Degree of Reading Power (DRP) scores?

TABLE 184 DRP scores for third-graders

Treatment group Control group
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

Standard Parametric 1-tailed t-test:

I_IO: MEAN control — 0
H,: MEAN >0

— MEAN
MEAN

treatment

contro

Results: t(42)=2.26, p <0.014 (reject null hypothesis)

treatment ~—




Resampling Approach to Same Reading Study:
Monte Carlo Computation of Permutation Distribution

Permutation Distribution of Difference between Means
Hesterberg Example 18.12
(Number of Resamples = 1000)
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MATLAB Code Snippet
Permutation Resampling

%Generate 1000 pairs of permutations representing
%random assignment to the treatment & control groups
%using sampling without replacement

universe=concat(treatment_group, control _group);
for i=1:1000
[s1,52]=randperm2(universe, 21);
remeans(i)=mean(sl)-mean(s2); %plug-in statistic
end



An example where the t-Test and
Permutation Test vield Different
Results

FCC regulations mandate that non-traditional telephone
service providers be fined if they provide inferior service
compared to the Legacy Provider in their area.

If the MEAN TIME TO ANSWER SERVICE CALLS is
significantly longer than that obtained from a
representative sample of the Legacy Co’s logs then the
competing Co. must pay a fine (alpha=1%)
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Verizon Customer Service Repair Times
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Permutation Sampling Distribution reveals:

Expected value of M1-M2 deviates from normal
M1-M2 not significant at alpha = 1%

Permutation Distribution of Differences between Sample Means
Hesterberg Example 18.14 (Permutation Test)
(Number of Resamples = 10000)

1500 F 15
-
10} PR
Mean (BIAS):  -0.029541
Std. Eror: 3.0923 0T
1000 F  “erizon-SmallCo: -8.0243 ‘5
- exact-p 00185 o
) Tst %ile; -9.1483 < gl
5 O0th %ile:  5.2435 @
= £
@ = a1
= A= -
L ©
o
500 )
o gl
_15 »
0 20 ' 1 '
0 -15 -10 5 0 5 10 -4 2 0 2 4

Repair Time (hours) Standard Normal Quantiles



Resampling for Correlated t-test [h15.m]

Scenario:

Twenty executives participated in a 2-week intensive foreign
language course. Evaluate the effectiveness of the course
based upon their “before” and “after” scores on a language
assessment test.

Subject 1 2 3 4 ... 18 19 20
Before 32 31 29 10 32 23 23
After 34 31 35 16 34 26 26



Bootstrap Example [h2.m]

Use Resampling to generate Permutation Distribution
of Difference between Correlated Means

1. Generate list of subjects to resample (with replacement)

2. Randomly assign each resampled subject's bivariate data to
the before vs. after treatment pool (null hypothesis)

3. Compute the means for the before vs. after pools

4. Compute difference between after-before resampled means

5. Repeat steps 1-4 for 1000 iterations

6. Generate and apply the permutation distribution



Bootstrap Example [h2.m]

subjects = [1.samplesize];
n_resamples=1000;
for i=1:n_resamples

%resample N subjects (with replacement)
sl = randsample(samplesize, samplesize, true);

%randomly assign subjects' bivariate sample pairs to before vs. after pool
before _assignments = randsample(2, samplesize, true); %1 or 2
after_assignments = 2-floor(before _assignments/2); %complement
for n=1:samplesize %implement random assignment

before pool(n) = bivariate(s1(n),before_assignments(n));

after_pool(n) = bivariate(s1(n),after _assignments(n));
end

%compute difference between after-before means
%and add it to the accumulating permutation distribution
remdiff(l=mean(after_pool)-mean(before pool);

end



Resampling for Correlated t-test [h15.m]

Frequency

Permutation Distribution of Difference between Correlated Means
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Visit MATLAB Resampling
Resource Page:

apps.usd.edu/coglab/psyc792/resampling/resampling.html


http://apps.usd.edu/coglab/psyc792/resampling/resampling.html
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