Prelude

Ensuring equal service

n 1984, in an effort to open the telecommunications market to
I competition, AT&T was split into eight regional companies. To
promote competition, more than one company was now allowed to
offer telecommunications services in a local market. But since it isn’t in
the public interest to have multiple companies digging up local streets to
bury cables, one telephone company in each region is given responsibility
for installing and maintaining all local lines and leasing capacity to other
carriers.

Each state’s Public Utilities Commission (PUC) is responsible for seeing
that there is fair access for all carriers. For example, the primary carrier
should do repairs as quickly for customers of other carriers as for their
own. Significance tests are used to compare the levels of service. If a test
indicates that service levels are not equivalent, the primary carrier pays a
penalty.

PUCs and primary carriers perform many of these tests each day. Given
the large amounts of money at stake, the significance tests described in
earlier chapters are not sufficiently accurate. Instead, primary carriers like

Ver:zon have turned to resampling methods in an effort to achieve accurate

test results that provide a strong defense in an adversarial hearing
before a PUC.

The resampling methods of this chapter provide
alternatives to the methods of earlier chapters for
finding standard errors and confidence intervals
and for performing significance tests.
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m Why Resampling?

Statistics is changing. Modern computers and software make it possible to
look at data graphically and numerically in ways previously inconceivable.
They let us do more realistic, accurate, and informative analyses than can
be done with pencil and paper.

The bootstrap, permutation tests, and other resampling methods are part
of this revolution. Resampling methods allow us to quantify uncertainty
by calculating standard errors and confidence intervals and performing
significance tests. They require fewer assumptions than traditional methods
and generally give more accurate answers (sometimes very much more
accurate). Moreover, resampling lets us tackle new inference settings easily.
For example, Chapter 7 presented methods for inference about the difference
between two population means. But suppose you are really interested in a
ratio of means, such as the ratio of average men’s salary to average women’s
salary. There is no simple traditional method for inference in this new
setting. Resampling not only works, but works in the same way as for
the difference in means. We don’t need to learn new formulas for every
new problem.

Resampling also helps us understand the concepts of statistical inference.
The sampling distribution is an abstract idea. The bootstrap analog (the
“bootstrap distribution”) is a concrete set of numbers that we analyze using
familiar tools like histograms. The standard deviation of that distribution
is a concrete analog to the abstract concept of a standard error. Resam-
pling methods for significance tests have the same advantage; permutation
tests produce a concrete set of numbers whose “permutation distribution”
approximates the sampling distribution under the null hypothesis. Compar-
ing our statistic to these numbers helps us understand P-values. Here is a
summary of the advantages of these new methods:

m Fewer assumptions. For example, resampling methods do not require that
distributions be Normal or that sample sizes be large.

m Greater accuracy. Permutation tests, and some bootstrap methods, are
more accurate in practice than classical methods.

m Generality. Resampling methods are remarkably similar for a wide range
of statistics and do not require new formulas for every statistic. You do
not need to memorize or look up special formulas for each procedure.

= Promote understanding. Bootstrap procedures build intuition by provid-
ing concrete analogies to theoretical concepts.

Resampling has revolutionized the range of problems accessible to busi-
ness people, statisticians, and students. It is beginning to revolutionize our
standards of what is acceptable accuracy in high-stakes situations such as
legal cases, business decisions, and clinical trials.
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Bootstrapping and permutation tests are feasible only with the use of
software to automate the heavy computation that these resampling methods
require. If you are sufficiently expert in programming or with a spreadsheet,
you can program basic resampling methods yourself. But it is easier to use
software with resampling methods built in.

This chapter uses S-PLUS,! the software choice of most statisticians do-
ing research on resampling methods. A free student version of this software
is available to students and faculty at elms03.e-academy.com/splus/.
In addition, a student library containing data sets specifically for your book,
menu-driven access to capabilities you’ll need, and a manual that accom-
panies this chapter can be found at www.insight ful.com/Hesterberg/
bootstrap or at www.whfreeman.com. You may also order an S-PLUS
manual® to supplement this book from www.whfreeman. com.

Note on software

Introduction to Bootstrapping

Let’s get a feel for bootstrapping by seeing how it works in a specific
example. We’ll begin by showing how to bootstrap and then relate the
results to ideas you’ve already encountered, such as standard errors and
sampling distributions.

TELECOMMUNICATION REPAIR TIMES

Verizon is the primary local telephone company (the legal term is Incumbent
Local Exchange Carrier, ILEC) for a large area in the eastern United States.
As such, it is responsible for providing repair service for the customers of
other telephone companies (known as Competing Local Exchange Carriers,
CLEGCs) in this region. Verizon is subject to fines if the repair times (the
time it takes to fix a problem) for CLEC customers are substantially worse
than those for Verizon’s own customers. This is determined using hypothesis
tests, negotiated with the local Public Utilities Commission (PUC).

We begin our analysis by focusing on Verizon’s own customers. Figure 18.1
shows the distribution of a random sample of 1664 repair times.> The data
file is verizon.dat. A quick glance at the distribution reveals that the data are
far from Normal. The distribution has a long right tail (skewness to the right).

The mean repair time for Verizon customers in this sample is ¥ = 8.41
hours. This is a statistic from just one random sample (albeit a fairly large
one). The statistic X will vary if we take more samples, and its trustworthiness
as an estimator of the population mean u depends on how much it varies
from sample to sample.
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FIGURE 18.1 (a) The distribution of 1664 repair times for Verizon
customers. (b) Normal quantile plot of the repair times. The distribution is
clearly right-skewed rather than Normal.
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Procedure for bootstrapping

Statistical inference is based on the sampling distributions of sample statistics.
The bootstrap is first of all a way of finding the sampling distribution, at
least approximately, from just one sample. Here is the procedure:
Step 1: Resample. Create hundreds of new samples, called bootstrap
resamples  samples or resamples, by sampling with replacement from the original
random sample. Each resample is the same size as the original random
sample.
sampling with Sampling with replacement means that after we randomly draw an
replacement  observation from the original sample, we put it back before drawing the
next observation. This is like drawing a number from a hat, then putting
it back before drawing again. As a result, any number can be drawn once,
more than once, or not at all. If we sampled without replacement, we’d
get the same set of numbers we started with, though in a different order.
Figure 18.2 illustrates the bootstrap resampling process on a small scale.
In practice, we would start with the entire original sample, not just six
observations, and draw hundreds of resamples, not just three.
Step 2: Calculate the bootstrap distribution. Calculate the statistic for
each resample. The distribution of these resample statistics is called a
bootstrap ~ bootstrap distribution. In Case 18.1, we want to estimate the population
distribution ~ mean repair time u, so the statistic is the sample mean x.
Step 3: Use the bootstrap distribution. The bootstrap distribution gives
information about the shape, center, and spread of the sampling distribution
of the statistic.

THE BOOTSTRAP IDEA

The original sample represents the population from which it was
drawn. So resamples from this sample represent what we would
get if we took many samples from the population. The bootstrap
distribution of a statistic, based on many resamples, represents the
sampling distribution of the statistic, based on many samples.

3.12 0.00 1.57 19.67 0.22 2.20
mean = 4.46

v

1.57 0.22 19.67 0.00 0.22 3.12 0.00 2.20 2.20 2.20 19.67 1.57 0.22 3.12 1.57 3.12 2.20 0.22
mean = 4.13 mean = 4.64 mean = 1.74

FIGURE 18.2 The resampling idea. The top box is a sample of size n = 6 from the Verizon data. The three
lower boxes are three resamples from this original sample. Some values from the original sample occur more than
once in the resamples because each resample is formed by sampling with replacement. We calculate the statistic of
interest—the sample mean in this example—for the original sample and each resample.
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EXAMPLE 18.1

EXAMPLE 18.2
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Bootstrap distribution for mean repair time

Figure 18.3 displays the bootstrap distribution of 1000 resample means for the
Verizon repair time data, using a histogram and a density curve on the top and

a Normal quantile plot on the bottom. The solid vertical line in the top panel
marks the mean of the original sample, and the dashed line marks the mean of the
bootstrap means.

Shape: We see that the bootstrap distribution is nearly Normal. The central
limit theorem says that the sampling distribution of the sample mean ¥ is
approximately Normal if 7 is large. So the bootstrap distribution shape is close to
the shape we expect the sampling distribution to have.

Center: The bootstrap distribution is centered close to the mean of the
original sample. That is, the mean of the bootstrap distribution has little bias
as an estimator of the mean of the original sample. We know that the sampling
distribution of ¥ is centered at the population mean w, that is, that X is an unbiased
estimate of u. So the resampling distribution again behaves (starting from the
original sample) as we expect the sampling distribution to behave (starting from
the population).

Spread: Figure 18.3 gives a rough idea of the variation among the resample
means. We can get a more precise idea by computing the standard deviation of the
bootstrap distribution. Applying the bootstrap idea, we use this standard deviation
to estimate the standard deviation of the sampling distribution of x.

BOOTSTRAP STANDARD ERROR

The bootstrap standard error of a statistic is the standard deviation
of the bootstrap distribution of that statistic.

If the statistic of interest is the sample mean ¥, the bootstrap standard
error based on B resamples is

1 1 >
SEpoot, x = 13—12<x* - BZX*>

In this expression, x* is the mean value of an individual resample. The
bootstrap standard error is just the ordinary standard deviation of the B
values of x*. The asterisk in x* distinguishes the mean of a resample from
the mean X of the original sample.

Bootstrap standard error for mean repair time

The bootstrap standard error for the 1000 resample means displayed in Figure
18.3 case is SEpoor, ¥ = 0.367. This estimates the standard deviation of the
sampling distribution of X.
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FIGURE 18.3 The bootstrap distribution for 1000 resample
means from the Verizon ILEC sample. The solid line in the top
panel marks the original sample mean, and the dashed line marks
the average of the bootstrap means. The Normal quantile plot
confirms that the bootstrap distribution is nearly Normal in shape.
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In fact, we know that the standard deviation of X is o / /%, where o is the
standard deviation of individual observations in the population. Our usual
estimate of this quantity is the standard error of X, s/\/;, based on the standard
deviation s of the original sample. In this example,

s 14.69

= 0.360

Jn Jiced

The bootstrap standard error agrees quite closely with this formula-based
estimate.

We know a great deal about the behavior of the sample mean ¥ in large
samples. Examples 18.1 and 18.2 verify the bootstrap idea for the mean of
a sample of size 1664. The examples show that the shape, bias, and spread
of the bootstrap distribution are close to the shape, bias, and spread of the
sampling distribution. This is also true in many situations where we do not
know the sampling distribution. This fact is the basis of the usefulness of
bootstrap methods.

APPLY YOUR 18.1 Bootstrap a small data set by hand. To illustrate the bootstrap
KNOWLEDGE procedure, let’s bootstrap a small random subset of the Verizon

data:

CASE 181

3.12 0.00 1.57 19.67 0.22 2.20

(a) Sample with replacement from this initial SRS by rolling a die. Rolling
a 1 means select the first member of the SRS, a 2 means select the
second member, and so on. (You can also use Table B of random
digits, responding only to digits 1 to 6.) Create 20 resamples of
size n = 6.

(b) Calculate the sample mean for each of the resamples.

(c) Make a stemplot of the means of the 20 resamples. This is the bootstrap
distribution.

(d) Calculate the bootstrap standard error.

Using software

Software is essential for bootstrapping in practice. Here is an outline of the
program you would write if your software will choose random samples from
a set of data but does not have bootstrap functions:

Repeat 1000 times {
Draw a resample with replacement from the data.
Calculate the resample mean.
Save the resample mean into a vector (a variable).
}
Make a histogram and Normal quantile plot of the 1000 means.
Calculate the standard deviation of the 1000 means.
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Number of Replications: 1000

Summary Statistics:

Observed Mean Bias SE
mean 8412 8395 -0.01698 0.3672
Percentiles:
2.5% 5.0% 95.0% 97.5% FIGURE 18.4 S-PLUS
mean 7.717 7.814 9.028 9.114 output for the Verizon data

bootstrap, Case 18.1.

Using S-PLUS

Suppose that we save the 1664 Verizon repair times as the variable ILEC in S-PLUS
(commands to do this are in the file readdata.ssc). We can make 1000 resamples
and analyze their means using these commands:

bootILEC = bootstrap(data = ILEC, statistic = mean)
plot (bootILEC)

aanorm (boot ILEC)

summary (bootILEC)

The same functions are available in menus, but it is a bit easier to discuss the
typed commands. The first command resamples from the ILEC data set, calculates
the means of the resamples, and saves the bootstrap results as the object named
bootILEC. By default, S-PLUS takes 1000 resamples. The remaining three
commands make a histogram (with a density curve) and a Normal quantile plot
and calculate numerical summaries. The summaries include the bootstrap standard
error.

Figure 18.4 is part of the output of the summary command. The Observed
column gives the mean ¥ = 8.412 of the original sample. Mean is the mean of
the resample means. The Bias column shows the difference between the Mean
and the Observed values. The bootstrap standard error is displayed in the SE
column. The Percentiles are percentiles of the bootstrap distribution, that
is, of the means of the 1000 resamples pictured in Figure 18.3. All of these values
except Observed will differ a bit if you repeat 1000 resamples, because resamples
are drawn at random.

.

18.2  Earnings for white female hourly workers. Bootstrap the mean of &
the white female hourly workers data from Table 1.8 (page 31). i

(a) Plot the bootstrap distribution (histogram or density plot and Y
Normal quantile plot). Is it approximately Normal?

(b) Find the bootstrap standard error.
(c) Find the 2.5th and 97.5th percentiles of the bootstrap distribution.

Why does bootstrapping work?

It might seem that the bootstrap creates data out of nothing. This seems
suspicious. But we are not using the resampled observations as if they were
real data—the bootstrap is not a substitute for gathering more data to
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improve accuracy. Instead, the bootstrap idea is to use the resample means to
estimate how the sample mean of a sample of size 1664 from this population
varies because of random sampling.

Using the data twice—once to estimate the population mean, and again
to estimate the variation in the sample mean—is perfectly legitimate. Indeed,
we’ve done this many times before: for example, when we calculated both ¥
and s /./n from the same data. What is different is that

1. we compute a standard error by using resampling rather than the formula
s/ \/Z, and

2. we use the bootstrap distribution to see whether the sampling distribution
is approximately Normal, rather than just hoping that our sample is large
enough for the central limit theorem to apply.

The bootstrap idea applies to statistics other than sample means. To use
the bootstrap more generally, we appeal to another principle—one that we
have often applied without thinking about it.

To estimate a parameter, a quantity that describes the population,
use the statistic that is the corresponding quantity for the sample.

The plug-in principle suggests that we estimate a population mean w
by the sample mean X¥ and a population standard deviation o by the
sample standard deviation s. Estimate a population median by the sample
median. To estimate the standard deviation of the sample mean for an SRS,
0'/\/— plug in s to get s/\/ﬁ The bootstrap idea itself is a form of the
plug-in principle: substitute the distribution of the data for the population
distribution, then draw samples (resamples) to mimic the process of building
a sampling distribution. Let’s look at this more closely.

Sampling distribution and bootstrap distribution

Confidence intervals, hypothesis tests, and standard errors are all based on
the idea of the sampling distribution of a statistic—the distribution of values
taken by the statistic in all possible samples of the same size from the same
population. Figure 18.5(a) shows the idea of the sampling distribution of the
sample mean X. In practice, we can’t take a large number of random samples
in order to construct this sampling distribution. Instead, we have used a
shortcut: if we start with a model for the distribution of the population, the
laws of probability tell us (in some situations) what the sampling distribution
is. Figure 18.5(b) illustrates an important situation in which this approach
works. If the population has a Normal distribution, then the sampling
distribution of X is also Normal.

In many settings, we have no model for the population. We then can’t
appeal to probability theory, and we also can’t afford to actually take many
samples. The bootstrap rescues us. Use the one sample we have as though
it were the population, taking many resamples from it to construct the
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FIGURE 18.5 (a) The idea of the sampling distribution of the sample mean x: take very many samples, collect the value of
X from each, and look at the distribution of these values. (b) The probability theory shortcut: if we know that the population
values follow a Normal distribution, theory tells us that the sampling distribution of X is also Normal. (¢) The bootstrap idea:
when theory fails and we can afford only one sample, that sample stands in for the population and the distribution of X in
many resamples stands in for the sampling distribution.
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bootstrap distribution. Figure 18.5(c) outlines the process. Then use
the bootstrap distribution in place of the sampling distribution.

In practice, it is usually impractical to actually draw all possible resam-
ples. We carry out the bootstrap idea by using 1000 or so randomly chosen
resamples. We could directly estimate the sampling distribution by choosing
1000 samples of the same size from the original population, as Figure 18.5(a)
illustrates. But it is very much faster and cheaper to let software resample
from the original sample than to select many samples from the population.
Even if we have a large budget, we would prefer to spend it on obtaining
a single larger sample rather than many smaller samples. A larger sample
gives a more precise estimate.

In most cases, the bootstrap distribution has approximately the same
shape and spread as the sampling distribution, but it is centered at the original
statistic value rather than the parameter value. The bootstrap allows us to
calculate standard errors for statistics for which we don’t have formulas and
to check Normality for statistics that theory doesn’t easily handle. We’ll do
this in the next section.

I Section 18.2 SummaRry

m To bootstrap a statistic (for example, the sample mean), draw hundreds
of resamples with replacement from the original sample data, calculate the
statistic for each resample, and inspect the bootstrap distribution of the
resampled statistics.

m The bootstrap distribution approximates the sampling distribution of the
statistic. This is an example of the plug-in principle: use a quantity based
on the sample to approximate a similar quantity from the population.

m Bootstrap distributions usually have approximately the same shape
and spread as the sampling distribution but are centered at the statistic
(from the original data) when the sampling distribution is centered at the
parameter (of the population).

m Use graphs and numerical summaries to determine whether the bootstrap
distribution is approximately Normal and centered at the original statistic
and to get an idea of its spread. The bootstrap standard error is the
standard deviation of the bootstrap distribution.

m The bootstrap does not replace or add to the original data. We use the
bootstrap distribution as a way to estimate the variation in a statistic based
on the original data.

I SecTioN 18.2 EXERCISES

Unless an exercise instructs you otherwise, use 1000 resamples for all bootstrap
exercises. S-PLUS uses 1000 resamples unless you ask for a different number. Always
save your bootstrap results in a file or S-PLUS object, as in Example 8.3, so that
you can use them again later.
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18.3  Spending by shoppers. Here are the dollar amounts spent by 50 consecutive
shoppers at a supermarket. We are willing to regard this as an SRS of all
shoppers at this market.

3.11 8.88 9.26 10.81 12,69 13.78 15.23 15.62 17.00 17.39
18.36 18.43 19.27 19.50 19.54 20.16 20.59 22.22 23.04 24.47
24.58 25.13 2624 26.26 27.65 28.06 28.08 28.38 32.03 34.98
36.37 38.64 39.16 41.02 42.97 44.08 44.67 4540 46.69 48.65
50.39 5275 54.80 59.07 61.22 70.32 82.70 85.76 86.37 93.34

(a) Make a histogram of the data. The distribution is slightly skewed.

(b) The central limit theorem says that the sampling distribution of the sam-
ple mean X becomes Normal as the sample size increases. Is the sampling
distribution roughly Normal for # = 50? To find out, bootstrap these
data and inspect the bootstrap distribution of the mean.

18.4 Guinea pig survival times. The lifetimes of machines before a breakdown
and the survival times of cancer patients after treatment are typically strongly
right-skewed. Here are the survival times (in days) of 72 guinea pigs in a
medical trial:*

43 45 53 56 56 57 58 66 67 73
74 79 80 80 81 81 81 82 83 83
84 88 89 91 91 92 92 97 99 99
100 100 101 102 102 102 103 104 107 108
109 113 114 118 121 123 126 128 137 138
139 144 145 147 156 162 174 178 179 184
191 198 211 214 243 249 329 380 403 511
522 598

(a) Make a histogram of the survival times. The distribution is strongly
skewed.

(b) The central limit theorem says that the sampling distribution of the sam-
ple mean X becomes Normal as the sample size increases. Is the sampling
distribution roughly Normal for # = 72? To find out, bootstrap these
data and inspect the bootstrap distribution of the mean (use a Normal
quantile plot). How does the distribution differ from Normality? Is the
bootstrap distribution more or less skewed than the data distribution?

18.5 More on supermarket shoppers. Here is an SRS of 10 of the amounts spent
from Exercise 18.3:

18.43 52.75 50.39 3498 19.27 19.54 1523 1739 12.69 93.34

We expect the sampling distribution of X to be less close to Normal for

samples of size 10 than for samples of size 50 from a skewed distribution.

This sample includes a high outlier.

(a) Create and inspect the bootstrap distribution of the sample mean from
these data. Is it less close to Normal than your distribution from Exercise
18.3?
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(b) Compare the bootstrap standard errors for your two runs. What ac-
counts for the larger standard error for the smaller sample?

18.6 More on survival times. Here is an SRS of 20 of the guinea pig survival
times from Exercise 18.4:

92 123 88 598 100 114 89 522 58 191
137 100 403 144 184 102 83 126 53 79

We expect the sampling distribution of X to be less close to Normal for
samples of size 20 than for samples of size 72 from a skewed distribution.
These data include some extreme high outliers.

(a) Create and inspect the bootstrap distribution of the sample mean for
these data. Is it less close to Normal than your distribution from Exercise
18.4?

(b) Compare the bootstrap standard errors for your two runs. What ac-
counts for the larger standard error for the smaller sample?

18.7 Comparing standard errors. We have two ways to estimate the standard
deviation of a sample mean : use the formula s /,/n for the standard error
or use the bootstrap standard error. Find the sample standard deviation s
for the 50 amounts spent in Exercise 18.3 and use it to find the standard
error s / J/n of the sample mean. How closely does your result agree with the
bootstrap standard error from your resampling in Exercise 18.3?

Bootstrap Distributions
and Standard Errors

In this section we’ll use the bootstrap procedure to find bootstrap distribu-
tions and standard errors for statistics other than the mean. The shape of the
bootstrap distribution approximates the shape of the sampling distribution,
so we can use the bootstrap distribution to check Normality of the sampling
distribution. If the sampling distribution appears to be Normal and centered
at the true parameter value, we can use the bootstrap standard error to
calculate a ¢ confidence interval. So we need to use the bootstrap to check
the center of the sampling distribution as well as the shape and spread. It
turns out that the bootstrap does not reveal the center directly, but rather
reveals the bias.

A statistic used to estimate a parameter is biased when its sampling
distribution is not centered at the true value of the parameter. The
bias of a statistic is the mean of the sampling distribution minus the
parameter.

The bootstrap method allows us to check for bias by seeing whether
the bootstrap distribution of a statistic is centered at the statistic of
the original random sample. The bootstrap estimate of bias is the
mean of the bootstrap distribution minus the statistic for the original
data.
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TABLE 18.1 Selling prices (in $1000) for an SRS of 50 Seattle real estate

sales in 2002

142 232 132.5 200 362 24495 335 324.5 222 225
175 50 215 260 307 210.95 1370 215.5 179.8 217
197.5 146.5 116.7 4499 266 265 256 684.5 257 570
149.4 155 2449 66407 166 296 148.5 270 252.95 507
705 1850 290 164.95 375 335 987.5 330 149.95 190

REAL ESTATE SALE PRICES

We are interested in the sales prices of residential property in Seattle. Un-
fortunately, the data available from the county assessor’s office do not
distinguish residential property from commercial property. Most of the sales
in the assessor’s records are residential, but a few large commercial
sales in a sample can greatly increase the mean selling price. We prefer
to use a measure of center that is more resistant than the mean. When we do
this, we know less about the sampling distribution than if we used the mean
to measure center. The bootstrap is very handy in such settings.

Table 18.1 gives the selling prices for a random sample (SRS of size 50)
from the population of all 2002 Seattle real estate sales, as recorded by the
county assessor. The sales include houses, condominiums, and commercial
real estate but exclude plots of undeveloped land.’

Figure 18.6 describes these data with a histogram and Normal quantile
plot. As we expect, the distribution is strongly skewed to the right. There
are several high outliers, which may be commercial sales.

EXAMPLE 18.4 Bootstrapping the mean selling price

The skewness of the distribution of real estate prices affects the sampling
distribution of the sample mean. We cannot see the sampling distribution directly
without taking many samples, but the bootstrap distribution gives us a clue.
Figure 18.7 shows the bootstrap distribution of the sample mean X based on
1000 resamples from the data in Table 18.1. The distribution is skewed to the
right—that is, a sample of size 50 is not large enough to allow us to act as if x has
a Normal distribution.

There is some good news as well. The bootstrap distribution shows that
the outliers do not cause large bias—the mean of the bootstrap distribution is
approximately equal to the sample mean of the data in Table 18.1 (the solid
and dotted lines nearly coincide). We conclude that the sampling distribution is
skewed but has small bias. This isn’t surprising: we know that X is an unbiased
estimator of the population mean u, whether or not the population has a Normal
distribution.
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FIGURE 18.6 Graphical displays of the 50 selling prices in Table 18.1.
The distribution is strongly skewed, with high outliers.
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FIGURE 18.7 The bootstrap distribution of the sample means
of 1000 resamples from the data in Table 18.1. The bootstrap
distribution is right-skewed, so we conclude that the sampling
distribution of X is right-skewed as well.

The conclusion of Example 18.4 is based on the following principle.

BOOTSTRAP DISTRIBUTIONS AND SAMPLING DISTRIBUTIONS

For most statistics, bootstrap distributions approximate the shape,
spread, and bias of the actual sampling distribution.

Bootstrap distributions differ from the actual sampling distributions in
the location of their centers. The sampling distribution of a statistic used
to estimate a parameter is centered at the actual value of the parameter
in the population, plus any bias. The bootstrap distribution, generated by
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APPLY YOUR
KNOWLEDGE

EXAMPLE 18.5

resampling from a single sample, is centered at the value of the statistic for
the original sample, plus any bias. The two biases are similar even though
the two centers are not.

In estimating the center of Seattle real estate prices, we cannot act as if
the sampling distribution of X were Normal. We have two alternatives: use
a confidence interval not based on Normality or choose a measure of center
whose distribution is closer to Normal. We will see that advanced bootstrap
methods do produce confidence intervals not based on Normality. For now,
however, we choose to bootstrap a different statistic that is more resistant
to skewness and outliers.

18.8  Supermarket shoppers. What is the bootstrap estimate of the bias from
your resamples in Exercise 18.3? What does this tell you about the bias
encountered in using X to estimate the mean spending for all shoppers at this
market?

18.9  Guinea pig survival. What is the bootstrap estimate of the bias from your
resamples in Exercise 18.4? What does this tell you about the bias encoun-
tered in using X to estimate the mean survival time for all guinea pigs that
receive the same experimental treatment?

Bootstrap distributions of other statistics

One statistic we might consider in place of the mean is the median. Here,
instead, we’ll use a 25% trimmed mean.

A trimmed mean is the mean of only the center observations in a
data set. In particular, the 25% trimmed mean X,59, ignores the
smallest 25% and the largest 25% of the observations. It is the mean
of the middle 50% of the observations.

Recall that the median is the mean of the 1 or 2 middle observations.
The trimmed mean often does a better job of representing the average of
typical observations than does the median. Bootstrapping trimmed means
also works better than bootstrapping medians, because the bootstrap doesn’t
work well for statistics that depend on only 1 or 2 observations.

25% trimmed mean for the real estate data

We don’t need any distribution facts about the trimmed mean to use the bootstrap.
We bootstrap the 25% trimmed mean just as we bootstrapped the sample mean:
draw 1000 resamples, calculate the 25% trimmed mean for each resample, and
form the bootstrap distribution from these 1000 values. Figure 18.8 shows the
result.

Comparing Figures 18.7 and 18.8 shows that the bootstrap distribution of the
trimmed mean is less skewed than the bootstrap distribution of the mean and is
closer to Normal. It is close enough that we will calculate a confidence interval for
the population trimmed mean based on Normality. (If high accuracy were



18.3 Bootstrap Distributions and Standard Errors m

Observed —
Mean -

Density

200 220 240 260 280 300
Means of resamples (in $1000)

(@)

Means of resamples (in $1000)

Z-score

(b)

FIGURE 18.8 The bootstrap distribution of the 25% trimmed
means of 1000 resamples from the data in Table 18.1. The
bootstrap distribution is roughly Normal.

important, we would prefer one of the more accurate confidence interval
procedures we discuss later.)

The distribution of the trimmed mean is also narrower than that of the mean.
For a long-tailed distribution such as this, the 25% trimmed mean is a less variable
estimate of the center of the population than is the ordinary mean. Here is the
summary output from S-PLUS:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE
TrimMean 244 244.7 0.7171 16.83
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The trimmed mean for the sample is X250, = 244, the mean of the 1000 trimmed
means of the resamples is 244.7, and the bootstrap standard error is 16.83.

.

BOOTSTRAP ¢t CONFIDENCE INTERVAL*

Bootstrap t confidence intervals

Recall the familiar one-sample ¢ confidence interval (page 435) for the mean
of a Normal population,

R

Jn
This interval is based on the Normal sampling distribution of the sample
mean X and the formula s /./n for the standard error of x.
When a bootstrap distribution is approximately Normal and has small
bias, we can use essentially the same recipe with the bootstrap standard
error to get a confidence interval for any parameter.

Suppose that the bootstrap distribution of a statistic from an SRS
of size n is approximately Normal and that the bias is small. An
approximate level C confidence interval for the parameter that
corresponds to this statistic by the plug-in principle is

. "
statistic * ¢"SEpoor, statistic

where " is the critical value of the #(z — 1) distribution with area C
between —¢* and #*.

Bootstrap ¢ confidence interval for the trimmed mean

We want to estimate the 25% trimmed mean of the population of all 2002

Seattle real estate selling prices. Table 18.1 gives an SRS of size n = 50.

The software output in Example 18.5 shows that the trimmed mean of this
sample is X594, = 244 and that the bootstrap standard error of this statistic is
SEboor, %y55, = 16.83. A 95% confidence interval for the population trimmed mean
is therefore

%59 + £'SEpoer, 1,5, = 244 = (2.009)(16.83)
= 244 = 33.81
= (210.19,277.81)
Because Table D does not have entries for 7 — 1 = 49 degrees of freedom, we used
t* = 2.009, the entry for 50 degrees of freedom.
We are 95% confident that the 25% trimmed mean (the mean of the middle

50%) for the population of real estate sales in Seattle in 2002 is between $210,190
and $277,810.

.

“There is another “bootstrap ¢ confidence interval” in common use. It estimates the value of #* that
is appropriate for the data rather than using a value from a ¢ table.
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APPLY YOUR 18.10 Confidence interval for shoppers’ mean spending. Your investigation in
KNOWLEDGE Exercise 18.3 found that the bootstrap distribution of the mean is reasonably
Normal and has small bias.
(a) What is the bootstrap # 95% confidence interval for the population
mean u, based on your resamples from Exercise 18.3?
(b) Also find the standard one-sample # confidence interval. The two in-

tervals differ only in the standard errors used. How similar are the
intervals?

18.11 Trimmed mean for shoppers’ spending. Because the distribution of amounts
spent by supermarket shoppers (Exercise 18.3) is strongly skewed, we might
choose to use a measure of center more resistant than the mean.

(a) Find the 25% trimmed mean for this sample of 50 shoppers. Why is the
trimmed mean smaller than the mean?

(b) Use the bootstrap ¢ method to give a 95% confidence interval for the
25% trimmed mean spending in the population of all shoppers.

18.12 Median for shoppers’ spending. We remarked that bootstrap methods often
work poorly for the median. Construct and inspect the bootstrap distribution
of the median for resamples from the shopper spending data (Exercise 18.3).
Present a plot of the distribution and explain carefully why you would not
use the bootstrap ¢ confidence interval for the population median.

Bootstrapping to compare two groups

Two-sample problems (Section 7.2) are among the most common statistical
settings. In a two-sample problem, we wish to compare two populations,
such as male and female customers, based on separate samples from each
population. When both populations are roughly Normal, the two-sample
t procedures compare the two population means. The bootstrap can also
compare two populations, without the Normality condition and without
the restriction to comparison of means. The most important new idea is
that bootstrap resampling must mimic the “separate samples” design that
produced the original data.

BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes 7 and m from two populations:

1. Draw a resample of size n with replacement from the first sample
and a separate resample of size 7 from the second sample.
Compute a statistic that compares the two groups, such as the
difference between the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.
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EXAMPLE 18.7

Service times in telecommunications

Incumbent local exchange carriers (ILECs), such as Verizon, install and maintain
local telephone lines, lease capacity, and perform repairs for the competing local
exchange carriers (CLECs). Figure 18.9 shows density curves and Normal quantile
plots for the repair times (in hours) of 1664 service requests from customers of
Verizon and 23 requests from customers of a CLEC during the same time period.
The distributions are both far from Normal. Here are some summary

statistics:

Service provider n x s
Verizon 1664 8.4 14.7
CLEC 23 16.5 19.5
Difference -8.1

The data suggest that repair times may be longer for the CLEC. The mean repair
time, for example, is almost twice as long for CLEC customers as for Verizon
customers.

In the setting of Example 18.7 we want to estimate the difference of
population means, w; — o, but we are reluctant to use the two-sample
¢t confidence interval because one of the samples is both quite small and
very skewed. To compute the bootstrap standard error for the difference in
sample means X1 — X, resample separately from the two samples. Each of our
1000 resamples consists of two group resamples, one of size 1664 drawn
with replacement from the Verizon data and one of size 23 drawn with
replacement from the CLEC data. For each combined resample, compute
the statistic X1 — X2. The 1000 differences form the bootstrap distribution.
The bootstrap standard error is the standard deviation of the bootstrap
distribution. Here is the S-PLUS output:

Number of Replications: 1000
Summary Statistics:

Observed Mean Bias SE
meanDiff -8.098 -8.251 -0.1534 4.052

The bootstrap distribution and Normal quantile plot are shown in Figure
18.10. The bootstrap distribution is not close to Normal. It has a short right
tail and a long left tail, so that it is skewed to the left. We are unwilling to use
a bootstrap ¢ confidence interval. That is, no method based on Normality
is safe. In Section 18.5, we will see that there are other ways of using the
bootstrap to get confidence intervals that can be safely used in this and
similar examples.



18.3 Bootstrap Distributions and Standard Errors m

ILEC n = 1664
CLEC ................ n= 23
(%] S
(= 8
7} H
E
} T ~eq T . (| T
0 50 100 150 200
Repair time (in hours)
(6)]
ILEC ‘
CLEC - .
2 150 -
-
: [ ]
°
£
£
o 100
£
£~
1
‘T
g
< 50 -
0 i
-2
Z-score
(b)

FIGURE 18.9 Comparing the distributions of repair times
(in hours) for 1664 requests from Verizon customers and
23 requests for customers of a CLEC. The top panel shows
density curves and the bottom panel shows Normal quantile
plots. (The density curves appear to show negative repair
times—this is due to how the density curves are calculated
from data, not because any times are negative.
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18.13 Compare standard errors. The formula for the standard error of & |
X1 — Xy is \/s3/ny + s3/ny (see page 464). This formula does not |
depend on Normality. How does this formula-based standard error ¢

18.14

FIGURE 18.10 The
bootstrap distribution of the
difference in means for the
Verizon and CLEC repair
time data.

for the data of Example 18.7 compare with the bootstrap standard error?

An experiment in education. Table 7.3 (page 465) gives the scores on a
test of reading ability for two groups of third-grade students. The treatment
group used “directed reading activities” and the control group followed the
same curriculum without the activities.
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(a) Bootstrap the difference in means x; — x; and report the bootstrap
standard error.

(b) Inspect the bootstrap distribution. Is a bootstrap ¢ confidence interval
appropriate? If so, give the interval.

(c) Compare the bootstrap results with the two-sample ¢ confidence interval
reported on page 478.

18.15 Healthy versus failed companies. Table 7.4 (page 476) contains |
the ratio of current assets to current liabilities for random samples 4

of healthy firms and failed firms. Find the difference in means u
(healthy minus failed).

(a) Bootstrap the difference in means x; — X, and look at the bootstrap
distribution. Does it meet the conditions for a bootstrap ¢ confidence
interval?

(b) Report the bootstrap standard error and the bootstrap ¢ confidence
interval.

(c) Compare the bootstrap results with the two-sample ¢ confidence interval
reported on page 479.

I Bevonp THE Basics: THE BOOTSTRAP FOR

EXAMPLE 18.8

A SCATTERPLOT SMOOTHER

The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smooth illustrated in Chapter 2 (page 126).

Do some lottery numbers pay more?

The New Jersey Pick-It Lottery is a daily numbers game run by the state of New
Jersey. We’ll analyze the first 254 drawings after the lottery was started in 1975.°
Buying a ticket entitles a player to pick a number between 000 and 999. Half of
the money bet each day goes into the prize pool. (The state takes the other half.)
The state picks a winning number at random, and the prize pool is shared equally
among all winning tickets.

Although all numbers are equally likely to win, numbers chosen by fewer
people have bigger payoffs if they win because the prize is shared among fewer
tickets. Figure 18.11 is a scatterplot of the first 254 winning numbers and their
payoffs. What patterns can we see?

.

The straight line in Figure 18.11 is the least-squares regression line. The
line shows a general trend of higher payoffs for larger winning numbers. The
curve in the figure was fitted to the plot by a scatterplot smoother that follows
local patterns in the data rather than being constrained to a straight line.
The curve suggests that there were larger payoffs for numbers in the intervals
000 to 100, 400 to 500, 600 to 700, and 800 to 999. When people pick
“random” numbers, they tend to choose numbers starting with 2, 3, 5, or 7,
so these numbers have lower payoffs. This pattern disappeared after 1976—it
appears that players noticed the pattern and changed their number choices.

Are the patterns displayed by the scatterplot smooth just chance? We can
use the bootstrap distribution of the smoother’s curve to get an idea of how
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FIGURE 18.11 The first 254 winning numbers in the New Jersey Pick-It
Lottery and the payoffs for each. To see patterns we use least-squares
regression (/ine) and a scatterplot smoother (curve).

much random variability there is in the curve. Each resample “statistic” is
now a curve rather than a single number. Figure 18.12 shows the curves
that result from applying the smoother to 20 resamples from the 254 data
points in Figure 18.11. The original curve is the thick line. The spread of the
resample curves about the original curve shows the sampling variability of
the output of the scatterplot smoother.

Original smooth ~—— °
800 -| Bootstrap smooths

600 -

Payoff

400

200

1 1 1 1 1
0 200 400 600 800 1000
Number

FIGURE 18.12 The curves produced by the scatterplot smoother for
20 resamples from the data displayed in Figure 18.11. The curve for the
original sample is the heavy line.
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Nearly all the bootstrap curves mimic the general pattern of the original
smooth curve, showing, for example, the same low average payoffs for
numbers in the 200s and 300s. This suggests that these patterns are real, not
just chance.

SecTion 18.3 SUMMARY

m Bootstrap distributions mimic the shape, spread, and bias of sampling
distributions.

m The bootstrap standard error is the standard deviation of the bootstrap
distribution. It measures how much a statistic varies under random
sampling.

m The bootstrap estimate of bias is the mean of the bootstrap distribution
minus the statistic for the original data. Small bias means that the
bootstrap distribution is centered at the statistic of the original sample and
suggests that the sampling distribution of the statistic is centered at the
population parameter.

m The bootstrap can estimate the sampling distribution, bias, and standard
error of a wide variety of statistics, such as the trimmed mean.

m If the bootstrap distribution is approximately Normal and the bias is
small, we can give a bootstrap ¢ confidence interval, statistic * #*SE, for the
parameter. Do not use this ¢ interval if the bootstrap distribution is not
Normal or shows substantial bias.

m To bootstrap a statistic that compares two samples, such as the
difference in sample means, we draw separate resamples from the two
original samples.

SEcTioN 18.3 EXERCISES

18.16 Standard error. What is the difference between the standard deviation of a
sample and the standard error of a statistic such as the sample mean?

18.17 Seattle real estate sales: the mean. Figure 18.7 shows one bootstrap
distribution of the mean selling price for Seattle real estate in 2002.
Repeat the resampling of the data in Table 18.1 to get another
bootstrap distribution for the mean.

o
[TT R
w0ni
L
1Y)

(a) Plot the bootstrap distribution and compare it with Figure 18.7. Al-
though resamples are random, we expect 1000 resamples to always
produce similar results. Are the two bootstrap distributions similar?

(b) Compare the bootstrap standard error of the mean to the bootstrap
standard error of the 25% trimmed mean for the same data in Example
18.5. How do the two bootstrap distributions (Figures 18.7 and 18.8)
reflect this comparison?

(c) Why should we not report a bootstrap ¢ confidence interval for the
mean?
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18.18 Seattle real estate sales: the median. Bootstrap the median for the

18.19

Seattle real estate sales data in Table 18.1.

(a) What is the bootstrap standard error of the median?

(b) Look at the bootstrap distribution of the median. Despite the small
standard error, why might we not want to report a ¢ confidence interval
for the median?

Really Normal data. The following data are an SRS from the standard Nor-
mal distribution N(0, 1), produced by a software Normal random number
generator:

0.01
—0.02
0.23
—0.52
0.30
0.34
—2.36
0.05

-0.04 -1.02 -0.13 -0.36 —0.03 —1.88 0.34 —0.00 1.21

-1.01 0.58 092 -138 -047 —0.80 0.90 -1.16 0.11
2.40 0.08 —0.03 0.75 229 —-111 =223 1.23 1.56
0.42 -0.31 0.56 2.69 1.09 0.10 -0.92 -0.07 -1.76

—0.53 1.47 0.45 0.41 0.54 0.08 032 —-1.35 -2.42
0.51 2.47 299 -—-1.56 1.27 1.55 0.80 —0.59 0.89
1.27 —-1.11 0.56 -—-1.12 0.25 0.29 0.99 0.10 0.30
1.44 —2.46 0.91 0.51 0.48 0.02 -0.54

18.20

(a) Make a histogram and Normal quantile plot. Do the data appear to
follow the N(0, 1) distribution?

(b) Bootstrap the mean and report the bootstrap standard error.

(c) Why do your bootstrap results suggest that a ¢ confidence interval is
appropriate? Give the 95% bootstrap ¢ interval.

CEO salaries. The following data are the salaries, including bonuses (in
millions of dollars), for the chief executive officers (CEOs) of small companies
in 1993.7 Small companies are defined as those with annual sales greater
than $5 million and less than $350 million.

145 621 262
368 659 234
206 250 21
1103 213 296

208 362 424 339 736 291 58 498 643 390 332 750
396 300 343 536 543 217 298 198 406 254 862 204
298 350 800 726 370 536 291 808 543 149 350 242
317 482 155 802 200 282 573 388 250 396 572

18.21

(a) Display the data using a histogram and Normal quantile plot. Describe
the shape, center, and spread of the distribution.

(b) Create the bootstrap distribution for the 25% trimmed mean or, if your
software won’t calculate trimmed means, the median.

(c) Isa bootstrap ¢ confidence interval appropriate? If so, calculate the 95%
interval.

Clothing for runners. Your company sells exercise clothing and equipment
on the Internet. To design clothing, you collect data on the physical charac-
teristics of your customers. Here are the weights in kilograms for a sample
of 25 male runners. Assume these runners are a random sample of your
potential male customers.

67.8 619 63.0 53.1 623 59.7 554 589 609
69.2 63.7 683 923 64.7 65.6 56.0 57.8 66.0
629 53.6 650 558 604 693 61.7
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Since your products are aimed toward the “average male,” you are interested
in seeing how much the subjects in your sample vary from the average weight.

(a) Calculate the sample standard deviation s for these weights.

(b) We have no formula for the standard error of s. Find the bootstrap
standard error for s.

(c) What does the standard error indicate about how accurate the sam-
ple standard deviation is as an estimate of the population standard
deviation?

(d) Would it be appropriate to give a bootstrap # interval for the population
standard deviation? Why or why not?

18.22 Clothing for runners, interquartile range. If your software will calculate the
interquartile range, repeat the previous exercise using the interquartile range
in place of the standard deviation to measure spread.

18.23 Mortgage refusal rates. The Association of Community Organizations for
Reform Now (ACORN) did a study on refusal rates in mortgage lending by
20 banks in major cities.® They recorded the percent of mortgage applications
refused for both white and minority applicants. Here are the results for the

20 banks:
Bank Minority White Bank Minority White
Harris Trust 20.9 3.7 Provident National 49.7 20.1
NCNB Texas 23.2 5.5 Worthen 44.6 19.1
Crestar 23.1 6.7 Hibernia National 36.4 16.0
Mercantile 30.4 9.0 Sovron 32.0 16.0
First NB Commerce 42.7 13.9 Bell Federal 10.6 5.6
Texas Commerce 62.2 20.6 Security Pacific Arizona 34.3 18.4
Comerica 39.5 13.4 Core States 42.3 23.3
First of America 38.4 13.2 Citibank Arizona 26.5 15.6
Boatman’s National 26.2 9.3 Manufacturers Hanover 51.5 32.4
First Commercial 55.9 21.0 Chemical 47.2 29.7

ACORN is concerned that minority applicants are refused more often than
are white applicants.

(a) Display the data by making separate histograms and Normal quantile
plots for the minority and white refusal rates. Is there anything in the
displays to indicate that the sampling distribution of the difference in
means might be non-Normal?

(b) Give a two-sample paired ¢ 95% confidence interval for the difference
in the population means. What do your results show?

(c) Bootstrap the difference in means x; — ;. (You should resample banks
rather than resampling the minority and white refusal rates separately.
Or you could compute the difference in refusal rates for each bank, and
resample the differences.) Does the bootstrap distribution indicate that
a t confidence interval is appropriate? If yes, give a 95% t confidence
interval using the bootstrap standard error. How does your result
compare with the traditional interval in (b)?

18.24 Billionaires. Each year, the business magazine Forbes publishes a list of the
world’s billionaires. In 2002, the magazine found 497 billionaires. Here is
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the wealth, as estimated by Forbes and rounded to the nearest $100 million,
of an SRS of 20 of these billionaires:’

86 13 52 10 25 18 27 24 14 3.0
50 1.7 11 S50 20 14 21 12 15 1.0

You are interested in (vaguely) “the wealth of typical billionaires.” Boot-
strap an appropriate statistic, inspect the bootstrap distribution, and draw
conclusions based on this sample.

18.25 Seeking the source of the skew. Why is the bootstrap distribution
of the difference in mean Verizon and CLEC repair times in Figure
18.10 so skewed? Let’s investigate by bootstrapping the mean of -
the CLEC data and comparing it with the bootstrap distribution for the
mean for Verizon customers.

CASE18.1

(a) Bootstrap the mean for the CLEC data. Compare the bootstrap distri-
bution with the bootstrap distribution of the Verizon repair times in
Figure 18.3.

(b) Given what you see in part (a), what is the source of the skew in the
bootstrap distribution of the difference in means X; — x,?

m How Accurate Is a Bootstrap
Distribution?”

The sampling distribution of a statistic displays the variation in the statistic
due to selecting samples at random from the population. We understand
that the statistic will vary from sample to sample, so that inference about
the population must take this random variation into account. For example,
the margin of error in a confidence interval expresses the uncertainty due
to sampling variation. Now we have used the bootstrap distribution as a
substitute for the sampling distribution. We thus introduce another source of
random variation: resamples are chosen at random from the original sample.

SOURCES OF VARIATION IN A BOOTSTRAP DISTRIBUTION

Bootstrap distributions and conclusions based on them include two
sources of random variation:

1. The original sample is chosen at random from the population.

2. Bootstrap resamples are chosen at random from the original
sample.

Figure 18.13 shows the entire process. The population distribution (top
left) has two peaks and is clearly not close to Normal. Below the figure
are histograms of five random samples from this population, each of size
50. The sample means X are marked on each histogram. These vary from
sample to sample. The distribution of the x-values from all possible samples

“This section is optional.
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FIGURE 18.13 Five random samples (n = 50) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the
right are five more bootstrap distributions from the first sample. In all cases, the mean of the
bootstrap distribution is nearly indistinguishable from X, so is not shown separately.




m CHAPTER 18 m Bootstrap Methods and Permutation Tests

is the sampling distribution. This sampling distribution appears to the right of
the population distribution. It is close to Normal, as we expect because
of the central limit theorem.

Now draw 1000 resamples from an original sample, calculate ¥ for
each resample, and present the 1000 X’s in a histogram. This is a bootstrap
distribution for ¥. The middle column in Figure 18.13 displays boot-
strap distributions based on 1000 resamples from each of the five samples.
The right column shows the results of repeating the resampling from the
first sample five more times. Comparing the five bootstrap distributions in
the middle column shows the effect of the random choice of the original
samples. Comparing the six bootstrap distributions drawn from the first
sample shows the effect of the random resampling. Here’s what we see:

= Each bootstrap distribution is centered close to the value of X from its
original sample, whereas the sampling distribution is centered at the
population mean w.

m The shape and spread of the bootstrap distributions in the middle column
also vary a bit. That is, shape and spread also depend on the original
sample, but the variation from sample to sample is not great. The shape
and spread of all of the bootstrap distributions resemble those of the
sampling distribution.

m The six bootstrap distributions from the same sample are very similar in
shape, center, and spread. That is, random resampling adds little variation
to the variation due to the random choice of the original sample from the
population.

Figure 18.13 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its
shape and spread don’t depend heavily on the original sample and do inform
us about the shape and spread of the sampling distribution. Bootstrap
distributions do not have the same center as the sampling distribution; they
mimic bias, not the actual center. The figure also illustrates an important
new fact: the bootstrap resampling process (using 1000 or more resamples)
introduces little additional variation.

Bootstrapping small samples

We now know that almost all of the variation among bootstrap distributions
for a statistic such as the mean comes from the random selection of
the original sample from the population. We also know that in general
statisticians prefer large samples because small samples give more variable
results. This general fact is also true for bootstrap procedures.

Figure 18.14 repeats Figure 18.13, with two important differences. The
five original samples are only of size # = 9, rather than the n = 50 of
Figure 18.13. The population distribution (top left) is Normal, so that the
sampling distribution of ¥ is Normal despite the small sample size. The
bootstrap distributions in the middle column show more variation in shape
and spread than those for larger samples in Figure 18.13. Notice, for exam-
ple, how the skewness of the fourth sample produces a skewed bootstrap
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FIGURE 18.14 Five random samples (n = 9) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the right
are five more bootstrap distributions from the first sample. In all cases, the mean of the bootstrap
distribution is nearly indistinguishable from X, so is not shown separately.
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distribution. The bootstrap distributions are no longer all similar to the
sampling distribution at the top of the column. We can’t trust that a
bootstrap distribution from so small a sample will closely mimic the shape
and spread of the sampling distribution. Bootstrap confidence intervals will
sometimes be too long or too short, or too long in one direction and too
short in the other. In most cases these errors tend to balance out, but they
may not with very small samples. The six bootstrap distributions based on
the first sample are again very similar. Because we used 1000 resamples,
resampling still adds little variation. There are subtle effects that can’t be
seen from a few pictures, but the main conclusions are clear.

DEALING WITH VARIATION IN BOOTSTRAP DISTRIBUTIONS

For most statistics, almost all the variation in bootstrap distributions
comes from the selection of the original sample from the population.
You can reduce this variation by using a larger original sample.

Bootstrapping does not overcome the weakness of small samples as a
basis for inference. Some bootstrap procedures (we will discuss BCa
and tilting later) are usually more accurate than standard methods,
but even they may not be accurate for very small samples. Use
caution in any inference—including bootstrap inference—from a
small sample.

The bootstrap resampling process using 1000 or more resamples
introduces little additional variation.

Bootstrapping a sample median

In Section 18.3 we chose to bootstrap the 25% trimmed mean rather than
the median. We did this in part because the usual bootstrapping procedure
doesn’t work well for the median unless the original sample is quite large.
Now we will try bootstrapping the median in order to understand the
difficulties.

Figure 18.15 follows the format of Figures 18.13 and 18.14. The popu-
lation distribution appears at top left, with the population median marked.
Below in the left column are five samples of size 7 = 15 from this population,
with their sample medians marked. Bootstrap distributions for the median
based on resampling from each of the five samples appear in the middle
column. The right column again displays five more bootstrap distributions
from resampling the first sample. The six bootstrap distributions from the
same sample are once again very similar to each other, so we concentrate on
the middle column in the figure.

Bootstrap distributions from the five samples differ markedly from each
other and from the sampling distribution at the top of the column. The
median of a resample can only be one of the 15 observations in the
original sample and is usually one of the few in the middle. Each bootstrap
distribution repeats the same few values. The sampling distribution, on
the other hand, contains the medians of all possible samples and is not
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FIGURE 18.15 Five random samples (n = 15) from the same population, with a bootstrap distribu-
tion for the sample median formed by resampling from each of the five samples. At the right are five
more bootstrap distributions from the first sample.
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confined to a few values. The difficulty is somewhat less when 7 is even,
because the median is then the average of 2 observations. It is much less for
moderately large samples, say, 7 = 100 or more. Bootstrap standard errors
and confidence intervals from such samples are reasonably accurate, though
the shapes of the bootstrap distributions may still appear odd. You can see
that the same difficulty will occur for small samples with other statistics,
such as the quartiles, that are calculated from just 1 or 2 observations from
a sample.

There are more advanced variations of the bootstrap idea that improve
performance for small samples and for statistics such as the median and
quartiles. In particular, your software may offer the “smoothed bootstrap”
for use with medians and quartiles. Unless you have expert advice or
undertake further study, avoid bootstrapping the median and quartiles
unless your sample is rather large.

I Section 18.4 Summary

m Almost all of the variation in a bootstrap distribution is due to the
selection of the original random sample from the population. The
resampling process introduces little additional variation.

m Bootstrap distributions based on small samples can be quite variable.
Their shape and spread reflect the characteristics of the sample and may
not accurately estimate the shape and spread of the sampling distribution.

m Bootstrapping is unreliable for statistics like the median and quartiles
when the sample size is small. The bootstrap distributions tend to be
broken up (discrete) and highly variable in shape.

I Section 18.4 ExERCISES

18.26 The effect of sample size: Normal population. Your statistical software no
doubt includes a function to generate samples from Normal distributions.
Set the mean to 8.4 and the standard deviation to 14.7. You can think of
all the numbers produced by this function if it ran forever as a population
that has very close to the N(8.4, 14.7) distribution. Samples produced by the
function are samples from this population.

(a) What is the exact sampling distribution of the sample mean x for a
sample of size # from this population?

(b) Draw an SRS of size # = 10 from this population. Bootstrap the sample
mean X using 1000 resamples from your sample. Give a histogram and
Normal quantile plot of the bootstrap distribution and the bootstrap
standard error.

©

Repeat the same process for samples of sizes n# = 40 and n = 160.

e

Write a careful description comparing the three bootstrap distributions
and also comparing them with the exact sampling distribution. What
are the effects of increasing the sample size?

18.27 The effect of sample size: non-Normal population. The data
for Example 18.7 include 1664 repair times for customers of
Verizon, the local telephone company in their area. In that J &2
example these observations formed a sample. Now we will treat these
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1664 observations as a population. The population distribution appears in
Figure 18.9. The population mean is u = 8.4, and the population standard
deviation is o = 14.7.

(a) Although we don’t know the shape of the sampling distribution of the
sample mean x for a sample of size # from this population, we do know
the mean and standard deviation of this distribution. What are they?

(b) Draw an SRS of size # = 10 from this population. Bootstrap the sample
mean x using 1000 resamples from your sample. Give a histogram and
Normal quantile plot of the bootstrap distribution and the bootstrap
standard error.

(c) Repeat the same process for samples of sizes 7 = 40 and n = 160.

(d) Write a careful description comparing the three bootstrap distributions.
What are the effects of increasing the sample size?

18.28 Normal versus non-Normal populations. The populations in the & |77
two previous exercises have the same mean and standard deviation, & s
but one is very close to Normal and the other is strongly non- & &2
Normal. Based on your work in these exercises, how does non-Normality of
the population affect the bootstrap distribution of x? How does it affect the
bootstrap standard error? Do either of these effects diminish when we start
with a larger sample? Explain what you have observed based on what you
know about the sampling distribution of ¥ and the way in which bootstrap

distributions mimic the sampling distribution.

Bootstrap Confidence Intervals

To this point, we have met just one type of inference procedure based on
resampling: bootstrap ¢ confidence intervals. We can calculate a bootstrap ¢
confidence interval for any parameter by bootstrapping the corresponding
statistic (the plug-in principle). We don’t need conditions on the population
or special knowledge about the sampling distribution of the statistic. The
flexible and almost automatic nature of bootstrap ¢ intervals is wonderful—
but there is a catch. These intervals work well only when the bootstrap
distribution tells us that the sampling distribution is approximately Normal
and has small bias. How can we know whether these conditions are met well
enough to trust the confidence interval? And what can we do if we don’t trust
the bootstrap ¢ interval? This section deals with these important questions.
We’ll learn a quick way to check ¢ confidence intervals for accuracy and
learn alternative ways to calculate confidence intervals when ¢ intervals
aren’t accurate.

Bootstrap percentiles as a check

Confidence intervals are based on the sampling distribution of a statistic.
A 95% confidence interval starts by marking off the central 95% of the
sampling distribution. The ¢ critical values in any ¢ confidence interval are
a shortcut to marking off this central 95%. The shortcut requires special
conditions that are not always met, so ¢ intervals are not always appropriate.
One way to check whether ¢ intervals (using either bootstrap or formula
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EXAMPLE 18.9

APPLY YOUR
KNOWLEDGE

BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

standard errors) are reasonable is therefore to compare them with the central
95% of the bootstrap distribution. The 2.5th and 97.5th percentiles mark
off the central 95%. The interval between the 2.5th and 97.5th percentiles
of the bootstrap distribution is often used as a confidence interval in its own
right. It is known as a bootstrap percentile confidence interval.

The interval between the 2.5th and 97.5th percentiles of the
bootstrap distribution of a statistic is a 95% bootstrap percentile
confidence interval for the corresponding parameter.

If the bias of the bootstrap distribution is small and the distribution
is close to Normal, the bootstrap ¢ and percentile confidence
intervals will agree closely. If they do not agree, this is evidence
that the Normality and bias conditions are not met. Neither type of
interval should be used if this is the case.

Seattle real estate sales: the trimmed mean

In Examples 18.5 and 18.6 we found a 95% bootstrap ¢ confidence interval for
the 25% trimmed mean, but we also noted that the bootstrap distribution was a
bit skewed. We’d like to know how that affects the accuracy of the ¢ confidence
interval.

The S-PLUS bootstrap output includes the 2.5th and 97.5th percentiles of the
bootstrap distribution. Using these, the percentile interval for the trimmed mean of
the Seattle real estate sales is 213.1 to 279.4. This is quite close to the bootstrap ¢
interval 210.2 to 277.8 found in Example 18.6. This suggests that both intervals
are reasonably accurate.

.

The bootstrap ¢ interval for the trimmed mean of real estate sales is
%59 * £"SEpoor x,,, = 244 = 33.81

We can learn something by also writing the percentile interval starting at the
statistic Xp50, = 244. In this form, it is

244.0 — 30.9, 244.0 +35.4

Unlike the ¢ interval, the percentile interval is not symmetric—its endpoints
are different distances from the statistic. The slightly greater distance to
the 97.5th percentile reflects the slight right-skewness of the bootstrap
distribution.

18.29 Percentile confidence intervals. What percentiles of the bootstrap distribu-
tion are the endpoints of a 90% bootstrap percentile confidence interval?

18.30 1Q scores of seventh-grade students. The following data are the IQ scores
for 78 seventh-grade students at a middle school.!® We will treat these data
as a random sample of all seventh-grade 1Q scores in the region.



18.5 Bootstrap Confidence Intervals m

111 102 128 123 93 105 107 91 118 124 72 110
100 114 113 126 111 107 107 114 120 116 103 103
114 103 132 127 123 77 115 106 111 119 79 98
111 105 124 97 119 90 97 113 127 86 110 96
100 109 128 102 110 112 112 108 136 110 107 112
104 113 106 120 74 114 89 130 118 103 105 93
104 128 119 115 112 106

We expect the distribution of IQ scores to be approximately Normal.
The sample size is reasonably large, so the sampling distribution of the mean
should be close to Normal.

(a) Make a Normal quantile plot of the data. Is the distribution approxi-
mately Normal?

(b) Use the formula s /ﬁ to find the standard error of the mean. Give the
95% t confidence interval based on this standard error.

(c) Bootstrap the mean of the IQ scores. Make a histogram and Normal
quantile plot of the bootstrap distribution. Does the bootstrap distribu-
tion appear Normal? What is the bootstrap standard error? Give the
bootstrap t 95% confidence interval.

(d) Give the 95% percentile confidence interval. How well do your three
confidence intervals agree? Was bootstrapping needed to find a reason-
able confidence interval, or was the formula confidence interval good
enough?

Confidence intervals for the correlation coefficient

The bootstrap allows us to find standard errors and confidence intervals for
a wide variety of statistics. We have to this point done this for the mean, the
trimmed mean, the difference of means, and (with less success) the median.
Now we will bootstrap the correlation coefficient. This is our first use of the
bootstrap for a statistic that depends on two related variables.

BASEBALL SALARIES AND PERFORMANCE

CASE 18.3

Major League Baseball (MLB) owners claim they need direct or indirect
limitations on player salaries to maintain competitiveness among richer and
poorer teams. This argument assumes that higher salaries are needed to
attract better players. Is there a relationship between an MLB player’s salary
and his performance?

Table 18.2 contains the names, 2002 salaries, and career batting averages
of 50 randomly selected MLB players (excluding pitchers).!! The scatterplot
in Figure 18.16 suggests that the relationship between salary and batting
average is weak to nonexistent. The correlation is positive but small, » =
0.107. We wonder if this is significantly greater than 0. To find out, we can
calculate a 95% confidence interval and see whether or not it covers 0.

—anu—
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TABLE 18.2 Major League Baseball salaries and batting averages

Name Salary Average Name Salary Average
Matt Williams  $9,500,000  .269 Greg Colbrunn $1,800,000  .307
Jim Thome 8,000,000 282 Dave Martinez 1,500,000 276
Jim Edmonds 7,333,333 327 Einar Diaz 1,087,500 216
Fred McGriff 7,250,000 259 Brian L. Hunter 1,000,000 .289
Jermaine Dye 7,166,667 .240 David Ortiz 950,000 237
Edgar Martinez 7,086,668 270 Luis Alicea 800,000 202
Jeff Cirillo 6,375,000 253 Ron Coomer 750,000 .344
Rey Ordonez 6,250,000 238 Enrique Wilson 720,000 185
Edgardo Alfonzo 6,200,000 .300 Dave Hansen 675,000 234
Moises Alou 6,000,000 247 Alfonso Soriano 630,000 .324
Travis Fryman 5,825,000 213 Keith Lockhart 600,000 .200
Kevin Young 5,625,000 238 Mike Mordecai 500,000 214
M. Grudzielanek 5,000,000 245 Julio Lugo 325,000 262
Tony Batista 4,900,000 276 Mark L. Johnson 320,000 207
Fernando Tatis 4,500,000 268 Jason LaRue 305,000 233
Doug Glanville 4,000,000 221 Doug Mientkiewicz 285,000 259
Miguel Tejada 3,625,000 .301 Jay Gibbons 232,500 250
Bill Mueller 3,450,000 242 Corey Patterson 227,500 278
Mark McLemore 3,150,000 273 Felipe Lopez 221,000 237
Vinny Castilla 3,000,000 250 Nick Johnson 220,650 235
Brook Fordyce 2,500,000 .208 Thomas Wilson 220,000 243
Torii Hunter 2,400,000 .306 Dave Roberts 217,500 297
Michael Tucker 2,250,000 235 Pablo Ozuna 202,000 333
Eric Chavez 2,125,000 277 Alexis Sanchez 202,000 .301
Aaron Boone 2,100,000 227 Abraham Nunez 200,000 224

58 '
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FIGURE 18.16 Batting average and salary for a random sample of 50
Major League Baseball players.
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EXAMPLE 1810 Bootstrapping the correlation

We use the same bootstrap procedures to find a confidence interval for the
correlation coefficient as for other statistics. There is one point to note: because
each observation consists of the batting average and salary for one player, we
resample players (that is, observations). Resampling batting averages and salaries
separately would lose the tie between a player’s batting average and his salary.

Figure 18.17 shows the bootstrap distribution and Normal quantile plot for
the sample correlation for 1000 resamples from the 50 players in our sample.
The bootstrap distribution is reasonably Normal and has small bias, so a 95%
bootstrap ¢ confidence interval appears reasonable.

Observed ——
Mean -
—— I- -------- — 1
-0.2 0.0 0.2 0.4
Correlation coefficient
(a)
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FIGURE 18.17 The bootstrap distribution and Normal quantile
plot for the correlation r for 1000 resamples from the baseball
player data in Table 18.2. The solid double-ended arrow below the
distribution is the ¢ interval, and the dashed arrow is the percentile
interval.
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accurate

The bootstrap standard error is SEpoor, , = 0.125. The ¢ interval using the
bootstrap standard error is

7 % £*SEpoor, » = 0.107 % (2.01)(0.125)
0.107 + 0.251
(—0.144, 0.358)

The bootstrap percentile interval is

(2.5th percentile, 97.5th percentile) = (0.107 — 0.235,0.107 + 0.249)
= (—0.128,0.356)

The two confidence intervals are in reasonable agreement.

.

The confidence intervals give a wide range for the population correlation,
and both include zero. These data do not provide significant evidence that
there is a relationship between salary and batting average. There may be
a relationship that could be found with a larger data set, but the evidence
from this data set suggests that any relationship is fairly weak. Of course,
batting average is only one facet of a player’s performance. It is possible
that we would discover a significant salary-performance relationship if we
included several measures of performance.

18.31 Percentiles as an aid in detecting non-Normality. It is difficult to
see any significant asymmetry in the bootstrap distribution of the
correlation of Example 18.10. Compare the percentiles and the ¢
interval; does the difference between these suggest any skewness?

CASE 18.3

18.32 Wages and length of service. Table 10.1 (page 587) reports the
wages and length of service for a random sample of 59 women
who hold customer service jobs in Indiana banks. In Example 10.4,
using a test that assumes a jointly Normal distribution for these variables,
we found a highly significant relationship between wages and length of
service. We may prefer inference that is not based on a Normal model.
Bootstrap the correlation for these data. Give the bootstrap ¢ and bootstrap
percentile confidence intervals for the population correlation. Are these
intervals trustworthy here? What do you conclude about the population?

CASE 101

More accurate bootstrap confidence intervals

No method for obtaining confidence intervals produces exactly the intended
confidence level in practice. When we compute what is supposed to be a
95% confidence interval, our method may give intervals that in fact capture
the true parameter value less often, say, 92% or 85% of the time. Or instead
of missing 2.5% of the time on each side, the method may in some settings
miss 1% of the time on one side and 4% of the time on the other, giving a
biased picture of where the parameter is.

We say that a method for obtaining 95% confidence intervals is accurate
in a particular setting if 95% of the time it produces intervals that capture
the parameter and if the 5% misses are shared equally between high and
low misses. Confidence intervals are never exactly accurate because the
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conditions under which they work are never exactly satisfied in practice.
The traditional ¢ intervals, although reasonably robust, are affected by lack
of Normality in the sampling distribution of the sample mean, especially
skewness. Although the central limit theorem tells us that the sampling
distribution of the mean becomes nearly Normal as the size of the sample
increases, the effect of a skewed population can persist in the sampling
distribution even for quite large samples.

One advantage of the bootstrap is that it allows us to check for skewness
in a sampling distribution by inspecting the bootstrap distribution. We can
also compare the bootstrap ¢ and bootstrap percentile confidence intervals.
When the sampling distribution is skewed, the percentile interval is shifted
in the direction of the skewness, relative to the ¢ interval. The intervals in
both Example 18.9 and Example 18.10 reveal some right-skewness, though
not enough to invalidate inference. The ¢ and percentile intervals may not
be sufficiently accurate when

m the statistic is strongly biased, as indicated by the bias estimate from the
bootstrap,

» the sampling distribution of the statistic is clearly skewed, as indicated by
the bootstrap distribution and by comparing the ¢ and percentile intervals,
or

m high accuracy is needed because the stakes are high (large sums of money
or public welfare).

Bootstrap tilting and BCa intervals

Most confidence interval procedures are more accurate for larger sample

sizes. The problem with # and percentile procedures is that they improve

only slowly—they require 100 times more data to improve accuracy by a

factor of 10—and so tend not to be very accurate except for quite large

sample sizes. There are several bootstrap procedures that improve faster,

requiring only 10 times more data to improve accuracy by a factor of 10.

These procedures are quite accurate unless the sample size is very small. The

BCa  bootstrap bias-corrected accelerated (BCa) and bootstrap tilting methods

bootstrap tilting ~ are accurate in a wide variety of settings, have reasonable computation

requirements (by modern standards), and do not produce excessively wide
intervals.

These procedures are not as intuitively clear as the ¢ and percentile
methods, which is why we did not meet them earlier. Now that you
understand the bootstrap, however, you should always use one of these
more accurate methods if your software offers them.

EXAMPLE 1811 Seattle real estate sales: the mean

The 2002 Seattle real estate sales data are strongly skewed (Figure 18.6), and the
skewness persists in the sampling distribution of the mean (Figure 18.7). Generally,
we prefer resistant measures of center such as the trimmed mean or median for
skewed data. However, the mean is easily understood by the public and is needed
for some purposes, such as projecting taxes based on total sales value.
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Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE
mean 3293 3269 -2.383 439

Percentiles:
2.5% 5.0% 95.0% 97.5%
mean 252.5 261.7 4083 433.1

BCa Confidence Limits:
2.5% 5% 95% 97.5%
mean 270 279.6 442.7 4557

Tilting Confidence Limits (maximum-likelihood tilting):
25% 5% 95% 97.5%
mean 265 2744 4342 458.7

FIGURE 18.18 S-PLUS output for bootstrapping the mean
of the Seattle real estate sales price data. From this output
you can obtain the bootstrap ¢ and percentile intervals, which
are not accurate for these data. You can also obtain the BCa
and tilting intervals, the recommended methods.

The bootstrap # and percentile intervals aren’t reliable when the sampling
distribution of the statistic is skewed. Figure 18.18 shows software output that
allows us to obtain more accurate confidence intervals. The BCa interval is

(329.3 — 59.2,329.3 + 126.4) = (270.0,455.7)
and the tilting interval is

(329.3 — 64.3,329.3 + 129.5) = (265.0, 458.7)

The intervals agree closely (we usually find only small differences between highly
accurate procedures). Both are strongly asymmetrical—the upper endpoint is about
twice as far from the sample mean as the lower endpoint—reflecting the strong
right-skewness of the data.

In this example, both endpoints of the less-accurate procedures—t, bootstrap ¢,
and percentile intervals—are too low. These intervals are too likely (greater than
2.5%) to fall below the population mean and are not likely enough to fall above
the population mean. They give a biased picture of where the true mean is likely
to be. If you use these intervals to budget how much you would need to be 95%
confident of affording an average home, your estimate would be too low.

.

18.33 Comparing intervals. Use the software output in Figure 18.18 to o
give the bootstrap ¢ and percentile 95% confidence intervals for ; 'K'L’
the mean p of all 2002 real estate sales in Seattle. Also give the 5 a_AN
traditional one-sample ¢ interval, x = ¢ s/ﬁ Example 18.11 reports the
BCa and tilting intervals. Make a picture that compares all five confidence
intervals by drawing a vertical line at ¥ and placing the intervals one
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above the other on this line. Describe how the intervals compare. In practical
terms, what kind of errors would you make by using a ¢ interval or percentile
interval instead of a tilting or BCa interval?

18.34 Comparing intervals. The bootstrap distribution of the 25% <
trimmed mean for the Seattle real estate sales (Figure 18.8) is uma'ﬂ'{-’
not strongly skewed. We were willing in Example 18.6 to give the &2
95% bootstrap ¢ confidence interval for the trimmed mean of the populatlon
Was that wise? Bootstrap the trimmed mean and give all of the bootstrap
95% confidence intervals: #, percentile, BCa, and tilting. Make a picture
that compares these intervals by drawing a vertical line at X559, and placing
the intervals one above the other on this line. Describe how the intervals
compare. Is the ¢ interval reasonably accurate?

18.35 Wages and length of service. Table 10.1 (page 587) reports the & ™™

wages and length of service for a random sample of 59 women who ‘;’ '{-9’
hold customer service jobs in Indiana banks. Exercise 18.32 asked & A2
you to give a bootstrap confidence interval for the population correlation
between these variables. In practice, you would use the BCa or tilting method.
Bootstrap the correlation from the sample in Table 10.1 and compare the
BCa and tilting intervals with the bootstrap ¢ and percentile intervals. If
you did Exercise 18.32, explain why the # and percentile intervals you now
obtain differ slightly from those you found in the earlier exercise.

How the BCa and tilting intervals work

The BCa confidence interval endpoints are percentiles of the bootstrap
distribution that are adjusted to correct for bias and skewness in the
distribution. For example, the endpoints of the BCa 95% confidence interval
for the mean of the 2002 Seattle real estate data are the 4.3th and 98.8th
percentiles of the bootstrap distribution, rather than 2.5th and 97.5th
percentiles. If the statistic is biased upward (that is, if it tends to be too large),
the BCa bias correction moves the endpoints to the left. If the bootstrap
distribution is skewed to the right, the BCa incorporates a correction to
move the endpoints even farther to the right; this may seem counterintuitive,
but it is the correct action. Details of the computations are a bit advanced,
so we rely on software to calculate these intervals.

The tilting interval, in contrast, works by adjusting the process of
randomly forming resamples. To calculate the left endpoint of the interval,
it starts by finding a pseudopopulation that is similar to the sample except
that the bootstrap distribution from this population has its 97.5th percentile
equal to the observed statistic from our SRS. Then the left endpoint of the
tilting interval is the parameter of that pseudo-population. Similarly, the
right endpoint of the interval is the parameter of a pseudo-population whose
bootstrap distribution has its 2.5th percentile equal to the observed statistic
of the SRS. We again rely on software to handle the calculations.

Bootstrap tilting is more efficient than other bootstrap intervals, requiring
only about 1/37 as many resamples as BCa intervals for similarly accurate
results. If we require high accuracy, 1000 resamples is often not enough for
the BCa interval; 5000 resamples would be better.
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While the BCa and tilting calculations are radically different, the results
tend to be about the same, except for random variation in the BCa if the
number of resamples is less than about 5000. Both procedures are accurate,
so we expect them to produce about the same results. Even BCa and tilting
confidence intervals should be used cautiously when sample sizes are small,
because there won’t be enough data to accurately determine the necessary
corrections for bias and skewness.

I SecTioN 18.5 SUMMARY

m Both bootstrap ¢ and (when they exist) traditional z and ¢ confidence
intervals require statistics with small bias and sampling distributions close
to Normal. We can check these conditions by examining the bootstrap
distribution for bias and lack of Normality.

m The bootstrap percentile confidence interval for 95% confidence is the
interval from the 2.5th percentile to the 97.5th percentile of the bootstrap
distribution. Agreement between the bootstrap ¢ and percentile intervals is
an added check on the conditions needed by the ¢ interval. Do not use ¢ or
percentile intervals if these conditions are not met.

m When bias or skewness is present in the bootstrap distribution, use
either a bootstrap tilting or BCa interval. The ¢ and percentile intervals are
inaccurate under these circumstances unless the sample sizes are very large.
The tilting and BCa confidence intervals adjust for bias and skewness and
are generally accurate except for small samples.

I SecTioN 18.5 EXERCISES

18.36 CLEC repair times. The CLEC data of Example 18.7 are strongly
skewed to the right. The 23 CLEC repair times (in hours) are

2662 860 0 21.15 833 20.28 9632 17.97
3.42  0.07 2438 19.88 1433 545 540  2.68
0 2420 2213 18.57 20.00 14.13  5.80

(a) Make a histogram and Normal quantile plot of the sample data, and
find the sample mean.

(b) Bootstrap the mean of the data. Plot the bootstrap distribution. Is it
Normal? Do you expect any of the confidence intervals to be inaccurate?
Why or why not?

(c) Find the bootstrap standard error and use it to create a 95% ¢ confidence
interval.

(d) Find the 95% percentile, BCa, and tilting intervals.

(e) How do the intervals compare? Briefly explain the reasons for any
differences.

(f) Suppose you were using these data and confidence intervals to determine
staffing levels for the coming year that you are confident would match
the demand. What kind of errors would you make by using a ¢ interval
or percentile interval instead of a tilting or BCa interval?
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18.37 Mean difference in repair times. In Example 18.7 we looked & 7~
at the mean difference between repair times for Verizon (ILEC) "(9
customers and customers of competing carriers (CLECs). The S AN
bootstrap distribution was non-Normal with strong right-skewness, making

a t confidence interval inappropriate.

(a) Bootstrap the difference in means for the repair time data.

(b) Find the BCa and bootstrap tilting 95% confidence intervals. Do they
agree closely? What do you conclude about mean repair times for all
customers?

(c) In practical terms, what kind of errors would you make by using a ¢
interval or percentile interval instead of a tilting or BCa interval?

18.38 Really Normal data. In Exercise 18.19 you bootstrapped the mean of a
simulated SRS from the standard Normal distribution N(0, 1) and found
the standard error for the mean.

(a) Create the 95% bootstrap percentile confidence interval for the mean
of the population. We know that the population mean is in fact 0. Does
the confidence interval capture this mean?

(b) Compare the bootstrap percentile and bootstrap ¢ intervals. Do these
agree closely enough to indicate that these intervals are accurate?

18.39 Clothing for runners. In Exercise 18.21 you found the bootstrap standard
error of the standard deviation of the weights of male runners. Your company
is also interested in the average weight of its customers.

(a) Give the 95% ¢ confidence interval for the mean weight of runners using
the standard error s/ Jn computed by formula.

(b) Are there any data points that might strongly influence this confidence
interval?

(c) Give a 95% bootstrap percentile confidence interval for the mean.
Compare your interval with your work in (a).

(d) What conclusions can you draw about the population?

18.40 Earnings of black male bank workers. Table 1.8 (page 31) gives &

the earnings for a random sample of black male hourly workers ({-’

at National Bank. ] & |

(a) Make a histogram and Normal quantile plot of the data. Choose a
statistic to measure the center of the distribution. Justify your choice in
terms of the shape of the distribution and the size of the sample.

(b) Bootstrap your statistic and report its standard error.

(c) Choose a confidence interval based on the shape and bias of the
bootstrap distribution, and calculate it. What do you conclude about
the typical salary of black male hourly workers at National Bank?

18.41 Bootstrap to check traditional inference. Bootstrapping is a good way to
check whether traditional inference methods are accurate for a given sample.
Consider the following data:

109 123 118 99 121 134 126 114 129 123 171 124 111 125 128
154 121 123 118 106 108 112 103 125 137 121 102 135 109 11§
125 132 134 126 116 105 133 111 112 118 117 105 107

(a) Examine the data graphically. Do they appear to violate any of the
conditions needed to use the one-sample ¢ confidence interval for the
population mean?
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(b) Calculate the 95% one-sample # confidence interval for this sample.

(c) Bootstrap the mean, and inspect the bootstrap distribution. Does it
suggest that a ¢ interval should be reasonably accurate?

(d) Find the 95% bootstrap percentile interval. Does it agree with the one-
sample ¢ interval? What do you conclude about the accuracy of the
one-sample ¢ interval here?

More on checking traditional inference. Continue to work with the data

given in the previous exercise.

(a) Find the bootstrap BCa or tilting 95% confidence interval. We believe
that either interval is quite accurate.

(b) Does your opinion of the robustness of the ¢ confidence interval change
when you compare it with the BCa or tilting interval?

(c) To check the accuracy of the one-sample ¢ confidence interval,
would you generally use the bootstrap percentile or BCa (or tilting)
interval?

Iowa housing prices. Table 2.13 (page 165) gives the selling price, square

footage, and age for a sample of 50 houses sold in Ames, lowa.

(a) Make a histogram and Normal quantile plot of the prices. Based on
these plots, decide which statistic—mean, trimmed mean, or median—
would be the most useful measure of the price of typical houses sold in
Ames.

(b) Bootstrap that statistic and find its standard error.

(c) Plot the bootstrap distribution and describe its shape and bias. Choose
an appropriate 95% confidence interval for this sampling distribution,
and calculate it. Why did you choose this type of interval?

(d) What conclusion do you draw about Ames houses?

Iowa housing prices. Bootstrap the correlation between selling price and
square footage in the Ames, lowa, housing data from Table 2.13 (page 165).
Describe the bootstrap distribution, and give a 95% confidence interval that
is appropriate for these data. Explain your choice of interval. State your
conclusions from your analysis.

Weight as a predictor of car mileage. Table 18.3 gives weight in pounds and
gas mileage in miles per gallon for a sample of cars from the 1990 model

year.!?

(a) Make a scatterplot of the data. Characterize the relationship. Calculate
the sample correlation between weight and mileage.

(b) Bootstrap the correlation. Report an accurate confidence interval for the
correlation and tell what it means.

(c) Calculate the least-squares regression line to predict mileage from
weight. What is the traditional # confidence interval (page 596) for
the slope of the population regression line?

(d) Bootstrap the regression model. Give a 95% percentile confidence
interval for the regression slope using the bootstrap.

Baseball salaries. Table 18.2 gives data on a sample of 50 baseball
players.

(a) Find the least-squares regression line for predicting batting
average from salary.
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TABLE 18.3 Weight and gas mileage of 1990 model automobiles

Weight Mileage Weight Mileage Weight Mileage
2560 33 2840 26 3450 22
2345 33 2485 28 3145 22
1845 37 2670 27 3190 22
2260 32 2640 23 3610 23
2440 32 2655 26 2885 23
2285 26 3065 25 3480 21
2275 33 2750 24 3200 22
2350 28 2920 26 2765 21
2295 25 2780 24 3220 21
1900 34 2745 25 3480 23
2390 29 3110 21 3325 23
2075 35 2920 21 3855 18
2330 26 2645 23 3850 20
3320 20 2575 24 3195 18
2885 27 2935 23 3735 18
3310 19 2920 27 3665 18
2695 30 2985 23 3735 19
2170 33 3265 20 3415 20
2710 27 2880 21 3185 20
2775 24 2975 22 3690 19

(b) Bootstrap the regression line, and give a 95% confidence interval for the
slope of the population regression line.

(c) In Example 18.10 we found bootstrap confidence intervals for the
correlation between salary and batting average. Does your interval
for the slope of the population line agree with the conclusion of that
example that there may be no relation between salary and batting
average? Explain.

18.47 The influence of outliers. We know that outliers can strongly &
influence statistics such as the mean and the least-squares line. The
black female hourly worker data in Table 1.8 (page 31) contain a S
low outlier.

(a) Bootstrap the mean with and without the outlier. How does the outlier
influence the shape and bias of the bootstrap distribution?

(b) Find 95% BCa intervals for the population mean from both bootstrap
distributions. Discuss the differences.

m Significance Testing Using

Permutation Tests

We use significance tests to determine whether an observed effect, such as
a difference between two means or the correlation between two variables,

could reasonably be ascribed to the randomness introduced in selecting the
sample. If not, we have evidence that the effect observed in the sample
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null hypotbesis

P-value

reflects an effect that is present in the population. The reasoning of tests
goes like this:

1. Choose a statistic that measures the effect we are looking for.

2. Construct the sampling distribution that this statistic would have if the
effect were not present in the population.

3. Locate the observed statistic on this distribution. A value in the main
body of the distribution could easily occur just by chance. A value in
the tail would rarely occur by chance, and so is evidence that something
other than chance is operating.

The statement that the effect we seek is 7ot present in the population is the
null hypothesis, Hy. The probability, calculated taking the null hypothesis to
be true, that we would observe a statistic value as extreme or more extreme
than the one we did observe is the P-value. Figure 18.19 illustrates the idea of
a P-value. Small P-values are evidence against the null hypothesis and in favor
of a real effect in the population. The reasoning of statistical tests is indirect
and a bit subtle but is by now familiar. Tests based on resampling don’t change
this reasoning. They find P-values by resampling calculations rather than from
formulas and so can be used in settings where traditional tests don’t apply.

Because P-values are calculated by assuming that the null hypothesis is
true, we cannot resample from the observed sample as we did earlier. In
the absence of bias, resampling from the original sample creates a bootstrap
distribution centered at the observed value of the statistic. We must create
a distribution centered at the parameter value stated by the null hypothesis.
We must obey this rule:

RESAMPLING RULE FOR SIGNIFICANCE TESTS

Resample in a manner that is consistent with the null hypothesis.

P-value

Sampling
distribution
when Hj is true

1
Observed statistic

FIGURE 18.19 The P-value of a statistical test is found from the
sampling distribution the statistic would have if the null hypothesis
were true. It is the probability of a result at least as extreme as the
value we actually observed.
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EXAMPLE18.12 Do reading activities increase DRP scores?

In Example 7.11 (page 464) we did a 7 test to determine whether new “directed
reading activities” improved the reading ability of elementary school students,

as measured by their Degree of Reading Power (DRP) score. The study assigned
students at random to either the new method (treatment group, 21 students) or
traditional teaching methods (control group, 23 students). Their DRP scores at the
end of the study appear in Table 18.4. The statistic that measures the success of the
new method is the difference in mean DRP scores,

Xtreatment — Xcontrol

The null hypothesis is “no difference” between the two methods. If this Hy

is true, the DRP scores in Table 18.4 do not depend on the teaching method.

Each student has a DRP score that describes that child and is the same no matter

which group the child is assigned to. The observed difference in group means just

reflects the accident of random assignment to the two groups. Now we can see

how to resample in a way that is consistent with the null hypothesis: imitate many

repetitions of the random assignment, with each student always keeping his or her

DRP score unchanged. Because resampling in this way scrambles the assignment of
permutation test  students to groups, tests based on resampling are called permutation tests, from

the mathematical name for scrambling a group of things.

Here is an outline of the permutation test procedure for comparing the
mean DRP scores in Example 18.12:

m Choose 21 of the 44 students at random to be the treatment group; the
other 23 are the control group. This is an ordinary SRS, chosen without
replacement. It is called a permutation resample. Calculate the mean DRP

peﬂZZZZ;Z score in each group, using the ipdividual DRP scores in Table 18.4. The
difference between these means is our statistic.
m Repeat this resampling from the 44 students hundreds of times. The
distribution of the statistic from these resamples forms the sam-
permutation pling distribution under the condition that Hy is true. It is called a
distribution permutation distribution.

TABLE 184 = DRP scores for third-graders

Treatment group Control group
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42
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33,46

24,61 | 42,33,646,37

24, 61, 42, 37
)_(1 —)_(2= 39.5-41=-15

X1-X,=42.5-39.5=3.0

33,61 | 24,42, 46,37
X|-X;=47-37.25=9.75

37,42 | 24,61,33,46
)_(1 —)_(2= 39.5-41=-15

FIGURE 18.20 The idea of permutation resampling. The top box shows the outcomes of a study with four
subjects in one group and two in the other. The boxes below show three permutation resamples. The values
of the statistic for many such resamples form the permutation distribution.

EXAMPLE 1813

= The value of the statistic actually observed in the study was
Xereatment — Feonnel = S1.476 — 41.522 = 9.954

Locate this value on the permutation distribution to get the P-value.

Figure 18.20 illustrates permutation resampling on a small scale. The
top box shows the results of a study with 4 subjects in the treatment group
and 2 subjects in the control group. A permutation resample chooses an SRS
of 4 of the 6 subjects to form the treatment group. The remaining 2 are the
control group. The results of three permutation resamples appear below
the original results, along with the statistic (difference in group means)
for each.

The permutation test for DRP scores

Figure 18.21 shows the permutation distribution of the difference in means based
on 999 permutation resamples from the DRP data in Table 18.4. The solid line in
the figure marks the value of the statistic for the original sample, 9.954.

We seek evidence that the treatment increases DRP scores, so the hypotheses are

Hy: Metreatment — Mcontrol = 0
Hﬂ: I“Ltreatment - I'LC()ntr()l > O

The P-value for the one-sided test is the probability that the difference in
means is 9.954 or greater, calculated taking the null hypothesis to be true. The
permutation distribution in Figure 18.21 shows how the statistic would vary if the
null hypothesis were true. So the proportion of observations greater than 9.954
estimates the P-value. A look at the resampling results finds that 14 of the 999
resamples gave a value of 9.954 or larger.

The proportion of samples that exceed the observed value 9.954 is 14/999, or
0.014. Here is a last refinement. Recall from Chapter 8 that we can improve the
estimate of a population proportion by adding two successes and two failures to
the sample. It turns out that we can similarly improve the estimate of the P-value
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FIGURE 18.21 The permutation distribution of the statistic
Xireatment — X control Dased on the DRP scores of 44 students. The
observed difference in means, 9.954, is in the right tail.

by adding one sample result above the observed statistic. The final permutation test
estimate of the P-value is

14 +1 15
999 +1 1000 0-015

The data give good evidence that the new method beats the standard method.

.

Figure 18.21 shows that the permutation distribution has a roughly Nor-
mal shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to Normal.
When the sampling distribution is close to Normal, we can use the usual
two-sample ¢ test. Example 7.11 shows that the # test gives P = 0.013, very
close to the P-value from the permutation test.

Using software

In principle, you can program almost any statistical software to do a
permutation test. It is much more convenient to use software that automates
the process of resampling, calculating the statistic, forming the resampling
distribution, and finding the P-value.

The commands that do this in S-PLUS are

permDRP = permutationTestMeans

(data = DRP, treatment = group, alternative="greater")
plot (permDRP)
permDRP
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The first command uses the “group” variable from the DRP data
set to determine groups, calculates the difference in means for each re-
maining variable (in this case, only “score”), creates the permutation
distribution, and calculates the one-sided P-value for the specified alterna-
tive hypothesis (if the alternative is omitted, then two-sided P-values are
computed). The plot command produces the permutation distribution in
Figure 18.21 from the DRP data. The final command prints this summary of
results:

Number of Replications: 999

Summary Statistics:
Observed Mean SE alternative p.value
score 9.954 0.07153 4.421 greater 0.015

The output makes it clear, by giving “greater” as the alternative hypothesis,
that 0.015 is the one-sided P-value. For a two-sided test, double the one-sided
P-value to get P = 0.030.

18.48 Permutation test by hand. To illustrate the process, let’s perform a per-
mutation test for a small random subset of the DRP data. Here are the
data:

Treatment group 24 61
Control group 42 33 46 37

(a) Calculate the difference in means Xieatment — Xconmrol DEtWeen the two
groups. This is the observed value of the statistic.

(b) Resample: Start with the 6 scores and choose an SRS of 2 scores to form
the treatment group for the first resample. You can do this by labeling
the scores 1 to 6 and using consecutive random digits from Table B, or
by rolling a die to choose from 1 to 6 at random. Using either method,
be sure to skip repeated digits. A resample is an ordinary SRS, without
replacement. The remaining 4 scores are the control group. What is the
difference in group means for this resample?

(c) Repeat step (b) 20 times to get 20 resamples and 20 values of the
statistic. Make a histogram of the distribution of these 20 values. This
is the permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were equal to or greater than
the original value in part (a)? You have just estimated the one-sided
P-value for the original 6 observations.

18.49 Have Seattle real estate prices increased? Table 18.1 contains
the selling prices for a random sample of 50 Seattle real estate
transactions in 2002. Table 18.5 contains a similar random sample
of sales in 2001. Test whether the means of two random samples of the 2001
and 2002 Seattle real estate sales data are significantly different.

CASE 18.2

(a) State the null and alternative hypotheses.
(b) Perform a two-sample ¢ test. What is the P-value?
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TABLE 18.5 Selling prices (in $1000) for an SRS of 50 Seattle real estate sales

in 2001
419  55.268 65 210 510.728 2122 152.720 266.6  69.427 125
191 451 469 310 325 50 675 140 105.5 285
320 305 255 95.179 346 199 450 280 205.5 135
190 452.5 335 455 291.905 2399 36995 569 481 475
495 195 237.5 143 21895 239 710 172 228.5 270

(c) Perform a permutation test on the difference in means. What is the
P-value? Compare it with the P-value you found in part (b). What do
you conclude based on the tests?

(d) Find a bootstrap tilting or BCa 95 % confidence interval for the difference
in means. How is the interval related to your conclusion in (c)?

18.50 Assets to liabilities ratio. Case 7.2 (page 476) compared the ratio
of current assets to current liabilities for samples of 68 healthy
firms and 33 failed firms. We conjecture that the mean ratio is
higher in the population of healthy firms than among failed firms.

(a) State null and alternative hypotheses.

(b) Perform a two-sample ¢ test using the data in Table 7.4. What is the
P-value?

(c) Perform a permutation test on the difference in means. What is the
P-value? Compare it with the P-value found in part (b). What do you
conclude based on the tests?

(d) Find a bootstrap tilting or BCa 95 % confidence interval for the difference
in means. How is the interval related to the test result in (c)?

Permutation tests in practice

Advantages of Permutation Tests
In Example 18.13, the permutation test and the two-sample ¢ test gave very
similar P-values. Permutation tests have these advantages over ¢ tests:

m The ¢ test gives accurate P-values if the sampling distribution of the
difference in means is at least roughly Normal. The permutation test gives
accurate P-values even when the sampling distribution is not close to
Normal.

m We can directly check the Normality of the sampling distribution by
looking at the permutation distribution.

Permutation tests provide a “gold standard” for assessing two-sample
t tests. If the two P-values differ considerably, it usually indicates that
the conditions for the two-sample ¢ don’t hold for these data. Because
permutation tests give accurate P-values even when the sampling distribution
is skewed, they are often used when accuracy is very important. Here is an
example.
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EXAMPLE 18.14

Telecommunications data: test of difference in means

In Example 18.7, we looked at the difference in means between repair times
for 1664 Verizon (ILEC) customers and 23 customers of competing companies
(CLECs). Figure 18.9 shows both distributions. Penalties are assessed if a
significance test concludes at the 1% significance level that CLEC customers
are receiving inferior service. A one-sided test is used, because the alternative
of interest to the public utilities commission (PUC) is that CLEC customers are
disadvantaged.

Because the distributions are strongly skewed and the sample sizes are very
different, two-sample ¢ tests are inaccurate. An inaccurate testing procedure might
declare 3% of tests significant at the 1% level when in fact the two groups of
customers are treated identically, so that only 1% of tests should in the long run be
significant. Errors like this would cost Verizon substantial sums of money.

Verizon uses permutation tests with 500,000 resamples for high accuracy,
using custom software based on S-PLUS. Depending on the preferences of the
state PUC, one of three statistics is chosen: the difference in means, X; — x,; the
pooled-variance ¢ statistic, or a modified # statistic in which only the standard
deviation of the larger group is used to determine the standard error. The last
statistic prevents the large variation in the small group from inflating the standard
error.

To perform the permutation test, we randomly redistribute the repair times
into two groups that are the same sizes as the two original samples. Each repair
time appears once in the data in each resample, but some repair times from the
ILEC group move to CLEC, and vice versa. We calculate the test statistics for
each resample and create the permutation distribution for each test statistic.

The P-values are the proportions of the resamples with statistics that exceed the
observed statistics.

.

Here are the P-values for the three tests on the Verizon data, using
500,000 permutations. The corresponding ¢ test P-values, obtained by
comparing the ¢ statistic with # critical values, are shown for comparison.

Test statistic t test P-value Permutation test P-value
X1 — X2 0.0183
Pooled t statistic 0.0045 0.0183
Modified t statistic 0.0044 0.0195

The # test results are off by a factor of more than 4 because they do not take
skewness into account. The ¢ test suggests that the differences are significant
at the 1% level, but the more accurate P-values from the permutation test
indicate otherwise. Figure 18.22 shows the permutation distribution of the
first statistic, the difference in sample means. The strong skewness implies
that ¢ tests will be inaccurate.

Other data sets Verizon encounters are similar to this one in being
strongly skewed with imbalanced sample sizes. If Verizon and the PUCs used
t tests instead of the more accurate permutation tests, there would be about
four times too many false-positives (cases where a significance test indicates



18.6 Significance Testing Using Permutation Tests m

Observed —
Mean -

-15 -10 -5 0 5 7

FIGURE 18.22 The permutation distribution of the difference of
means X; — X, for the Verizon repair time data. The distribution is
skewed left. The observed difference in means, —8.098, is in the left
tail.

a significant difference even though the corresponding populations are the
same), which would result in substantial financial penalties.

Data from an Entire Population

A subtle difference between confidence intervals and significance tests is that
confidence intervals require the distinction between sample and population
but tests do not. If we have data on an entire population—say, all employees
of a large corporation—we don’t need a confidence interval to estimate the
difference between the mean salaries of male and female employees. We can
calculate the means for all men and for all women and get an exact answer.
But it still makes sense to ask, “Is the difference in means so large that
it would rarely occur just by chance?” A test and its P-value answer that
question.

Permutation tests are a convenient way to answer such questions. In
carrying out the test we pay no attention to whether the data are a sample or
an entire population. The resampling assigns the full set of observed salaries
at random to men and women and builds a permutation distribution from
repeated random assignments. We can then see if the observed difference
in mean salaries is so large that it would rarely occur if gender did not
matter.

When Are Permutation Tests Valid?

The two-sample ¢ test starts from the condition that the sampling distribution
of X1 — x, is Normal. This is the case if both populations have Normal
distributions, and it is approximately true for large samples from non-
Normal populations because of the central limit theorem. The central limit
theorem helps explain the robustness of the two-sample # test. The two-
sample # test works well when both populations are symmetric, or when the
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populations have mild skewness in the same direction and the two sample
sizes are similar.

The permutation test completely removes the Normality condition. The
tradeoff is that it requires the two populations to have identical distributions
when the null hypothesis is true—not only the same means, but also the same
spreads and shapes. It needs this to be able to move observations randomly
between groups. In practice it is robust against different distributions, except
for different spreads when the sample sizes are not similar. Our preferred
version of the two-sample ¢ allows different standard deviations in the two
populations.

However, this is rarely a reason to choose the ¢ test over the permutation
test, for two reasons. First, even if you notice that the two samples have
different standard deviations, this does not necessarily mean that the pop-
ulation standard deviations differ. Particularly for skewed populations, the
sample standard deviations may be very different even when the population
standard deviations are the same. Second, it is usually reasonable to assume
that the distributions are approximately the same if the null hypothesis
is true. In practice robustness against unequal standard deviations is less
important for hypothesis testing than for confidence intervals.

In Example 18.14, the distributions are strongly skewed, ruling out the
t test. The permutation test is valid if the repair time distributions for
Verizon customers and CLEC customers are the same if the null hypothesis
is true—in other words, that all customers are treated the same.

Sources of Variation
Just as in the case of bootstrap confidence intervals, permutation tests are
subject to two sources of random variability: the original sample is chosen at
random from the population, and the resamples are chosen at random from
the sample. Again as in the case of the bootstrap, the added variation due to
resampling is usually small and can be made as small as we like by increasing
the number of resamples. For example, Verizon uses 500,000 resamples.
For most purposes, 999 resamples are sufficient. If stakes are high or
P-values are near a critical value (for example, near 0.01 in the Verizon
example), increase the number of resamples. Here is a helpful guideline: If
the true (one-sided) P-value is p, the standard deviation of the estimated
P-value is approximately /p(1 — p)/B, where B is the number of resamples.

You can choose B to obtain a desired level of accuracy.

18.51 Choosing the number of resamples. The estimated P-value for the DRP
study (Example 18.13) based on 999 resamples is 0.015. For the Verizon
study (Example 18.14) the estimated P-value for the test based on ¥; — X,
is 0.0183 based on 500,000 resamples. What is the approximate standard
deviation of each of these estimated P-values? (Use each P as an estimate of
the unknown true P-value p.)

18.52 Validity of test methods. You want to test the equality of the means of two
populations. Sketch density curves for two populations for which

(a) a permutation test is valid but a # test is not.
(b) both permutation and ¢ tests are valid.
(c) attestis valid but a permutation test is not.
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Permutation tests in other settings

The bootstrap procedure can replace many different formula-based confi-
dence intervals, provided that we resample in a way that matches the setting.
The permutation test is also a general method that can be adapted to various
settings.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without
replacement in a way that is consistent with the null hypothesis
of the test and with the study design. Construct the permutation
distribution of the statistic from its values in a large number of
resamples.

3. Find the P-value by locating the original statistic on the
permutation distribution.

Formula methods generally obtain P-values from a standard distribution
such as ¢ or F, using either tables or software algorithms. The test statistic
must be standardized so that it has the required distribution when the null
hypothesis is true. This is why the two-sample ¢ test uses ¢ = (X1 — X2)/
J(s3/n1) + (s3/ny) rather than the simpler X; — X,. Permutation tests, in
contrast, generate a sampling distribution on the fly from the data and the
chosen statistic. This allows greater flexibility in the choice of statistic in
Step 1 of the procedure.

Permutation Test for Matched Pairs

The key step in the general procedure for permutation tests is to form
permutation resamples in a way that is consistent with the study design
and with the null hypothesis. Our examples and exercises to this point have
concerned two-sample settings. How must we modify our procedure for a
matched pairs design?

EXAMPLE 1815 Effects of language instruction

Example 7.7 (page 443) looked at scores of 20 executives on a French language
listening test taken both before and after a language course. The “before” and
“after” data are not two independent samples, because each executive’s scores
reflect his or her previous knowledge of French and other individual factors. The
scores appear in Table 7.2. How shall we carry out a permutation test?

The null hypothesis says that the language course has no effect on test scores. If
this is true, each executive’s before and after scores are just two measurements of that
person’s understanding of French. The “before” and “after” have no meaning because
the course has no effect. Resampling randomly assigns one of each executive’s two
scores to “before” and the other to “after.” We do not mix scores from different
people because that isn’t consistent with the pairing in the study design.
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FIGURE 18.23 The permutation distribution for the mean difference (score
after instruction minus score before instruction) from 9999 paired resamples
from the data in Table 7.2. The observed difference in means, 2.5, is in the
right tail.

After forming the “before” and “after” scores by randomly permuting each
matched pair separately, calculate the difference (after — before) and the mean
difference for the 20 pairs of scores. This statistic measures the effect of the course.
Figure 18.23 shows the permutation distribution for 9999 resamples from the data
in Table 7.2. The observed difference is far out in the right tail, P-value = 0.0015.
There is very strong evidence that the course increases French listening ability.

.

Permutation Test for the Significance of a Relationship

Permutation testing can be used to test the significance of a relationship be-
tween two variables. For example, in Case 18.3 we looked at the relationship
between baseball players’ batting averages and salaries.

The null hypothesis is that there is no relationship. In that case, salaries
are assigned to players for reasons that have nothing to do with batting
averages. We can resample in a way consistent with the null hypothesis by
permuting the observed salaries among the players at random.

Take the correlation as the test statistic. For every resample, calculate the
correlation between the batting averages (in their original order) and salaries
(in the reshuffled order). The P-value is the proportion of the resamples with
correlation larger than the original correlation.

When Can We Use Permutation Tests?

We can use a permutation test only when we can see how to resample in a
way that is consistent with the study design and with the null hypothesis.
We now know how to do this for the following types of problems:

= Two-sample problems when the null hypothesis says that the two pop-
ulations are identical. We may wish to compare population means,
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proportions, standard deviations, or other statistics. You may recall from
Section 7.3 that traditional tests for comparing population standard
deviations work very poorly. Permutation tests help satisfy this need.

m Matched pairs designs when the null hypothesis says that there are
only random differences within pairs. A variety of comparisons is again
possible.

» Relationships between two quantitative variables when the null hypothesis
says that the variables are not related. The correlation is the most common
measure, but not the only one.

These settings share the characteristic that the null hypothesis specifies
a simple situation such as two identical populations or two unrelated vari-
ables. We can see how to resample in a way that matches these situations.
Permutation tests can’t be used for testing hypotheses about a single popu-
lation, comparing populations that differ even under the null hypothesis, or
testing general relationships. In these settings, we don’t know how to resam-
ple in a way that matches the null hypothesis. Researchers are developing
resampling methods for these and other settings, so stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap
confidence interval instead. If the confidence interval fails to include the null
hypothesis value, then we reject Hy at the corresponding significance level.
This is not as accurate as doing a permutation test, but a confidence interval
estimates the size of an effect as well as giving some information about its
statistical significance. Even when a test is possible, it is often helpful to
report a confidence interval along with the test result. Confidence intervals
don’t assume that a null hypothesis is true, so we use bootstrap resampling
with replacement rather than permutation resampling without replacement.
18.53 Comparing proportions: exclusive franchise territories. Case 9.1 Z
(page 549) looked at the relationship between the presence of an 4 (&5
exclusive-territory clause and the survival of new franchise firms. O &2
Exclusive-territory clauses allow the local franchise outlet to be the sole

AS

representative of the franchise in a specified territory. Firms were classified
as successful or not based on whether or not they were still franchising as of
a certain date. Here is a summary of the findings for firms with and without
an exclusive-territory clause in their contract with local franchises:

Firms Successes Proportion

n X p=X/n
Exclusive-territory clause 142 108 0.761
No exclusive-territory clause 28 15 0.536
Total 170 123 0.7235

(a) We conjecture that exclusive-territory clauses increase the chance of
success. State appropriate null and alternative hypotheses in terms of
population proportions.

(b) Perform the z test (page 527) for your hypotheses.
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(c) Perform a permutation test based on the difference in the sample
proportions p; — p,. Explain carefully how the resampling is consistent
with the null hypothesis. Compare your result with part (b).

(d) Based on your permutation test P-value, what do you conclude about
the effect of exclusive-territory clauses?

(e) Give a bootstrap tilting or BCa interval for the difference between the
two population proportions. Explain how the interval is consistent with
the permutation test.

18.54 Matched pairs: designing controls. Exercise 7.40 (page 458) describes a
study in which 25 right-handed subjects were asked to turn a knob clockwise
and counterclockwise (in random order). The response variable is the time
needed to move an indicator a fixed distance. We conjecture that clockwise
movement is easier for right-handed people.

(a) State null and alternative hypotheses in terms of mean times. Carefully
identify the parameters in your hypotheses.

(b) Perform a matched pairs permutation test. What is the P-value? What
do you conclude about designing controls?

(c) Graph the permutation distribution and indicate the region that corre-
sponds to the P-value.

18.55 Correlation: salary and batting average. Table 18.2 contains the
salaries and batting averages of a random sample of 50 major
league baseball players. We wonder if these variables are correlated
in the population of all players.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the sample correlation. Report the
P-value and draw a conclusion.

I SecTioN 18.6 SUuMMARY

m Permutation tests are significance tests based on permutation resamples
drawn at random from the original data. Permutation resamples are drawn
without replacement, in contrast to bootstrap samples, which are drawn
with replacement.

m Permutation resamples must be drawn in a way that is consistent with
the null hypothesis and with the study design. In a two-sample design, the
null hypothesis says that the two populations are identical. Resampling
randomly reassigns observations to the two groups. In a matched

pairs design, randomly permute the two observations within each pair
separately. To test the hypothesis of no relationship between two variables,
randomly reassign values of one of the two variables.

m The permutation distribution of a suitable statistic is formed by the
values of the statistic in a large number of resamples. Find the P-value of
the test by locating the original value of the statistic on the permutation
distribution.

m When they can be used, permutation tests have great advantages. They
do not require specific population shapes such as Normality. They apply to
a variety of statistics, not just to statistics that have a simple distribution
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under the null hypothesis. They can give very accurate P-values, regardless
of the shape and size of the population (if enough permutations are used).

m It is often useful to give a confidence interval along with a test. To create
a confidence interval, we no longer assume the null hypothesis is true, so
we use bootstrap resampling rather than permutation resampling.

SkcTion 18.6 EXERCISES

18.56 Female basketball players. Here are heights (inches) of professional female
basketball players who are centers and forwards. We wonder if the two
positions differ in average height.

Forwards
69 72 71 66 76 74 71 66 68 67 70 65 72
70 68 73 66 68 67 64 71 70 74 70 75 75
69 72 71 70 71 68 70 75 72 66 72 70 69
Centers
7270 72 69 73 71 72 68 68 71 66 68 71
73 73 70 68 70 75 68

(a) Make a back-to-back stemplot of the data. How do the two distributions
compare?

(b) State null and alternative hypotheses. Do a permutation test for the
difference in means of the two groups. Give the P-value and draw a
conclusion.

18.57 Reaction time. Table 2.12 (page 163) gives reaction times for a person
playing a computer game. The data contain outliers, so we will measure
center by the median or trimmed mean rather than the mean.

(a) State null and alternative hypotheses.

(b) Perform a permutation test for the difference in medians. Describe the
permutation distribution.

(c) Perform a permutation test for the difference in 25% trimmed means.
Examine the permutation distribution. How does it compare with the
permutation distribution for the median?

(d) Draw a conclusion, using the P-value(s) as evidence.

18.58 One- or two-sided? A customer complains to the owner of an independent
fast-food restaurant that the restaurant is discriminating against the elderly.
The customer claims that people 60 years old and older are given fewer
french fries than people under 60. The owner responds by gathering data,
collected without the knowledge of the employees so as not to affect their
behavior. Here are data on the weight of french fries (grams) for the two
groups of customers:

Age<60: 75 77 80 69 73 76 78 74 75 81
Age =60: 68 74 77 71 73 75 80 77 78 72

(a) Display the two data sets in a back-to-back stemplot. Do they appear
substantially different?
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18.59

18.60

18.61

18.62

18.63

18.64

(b) If we perform a permutation test using the mean for “< 60” minus
the mean for “= 60,” should the alternative hypothesis be two-sided,
greater, or less? Explain.

(c) Perform a permutation test using the chosen alternative hypothesis and
give the P-value. What should the owner report to the customer?

“No Sweat” labels. Example 8.6 (page 527) presents a significance test

comparing the proportion of men and women who pay attention to a “No

Sweat” label when buying a garment.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the difference in sample propor-
tions.

(c) Based on the shape of the permutation distribution, why does the
permutation test agree closely with the z test in Example 8.6?

Real estate sales prices. We would like to test the null hypothesis
that the two samples of Seattle real estate sales prices in 2001 and
2002 have equal medians. Data for these years appear in Tables
18.1 and 18.5. Carry out a permutation test for the difference in medians,
find the P-value, and explain what the P-value tells us.

CASE 18.2

Size and age of houses. Table 2.13 (page 165) gives data for houses sold
in Ames, Iowa, in 2000. The sample correlation between square footage
and age is approximately » = —0.41, suggesting that the newer houses were
smaller than the older houses. Test the hypothesis that there is no correlation
between square footage and age. What do you conclude?

Calcium and blood pressure. Does added calcium intake reduce the
blood pressure of African American men? In a randomized comparative
double-blind trial, 10 men were given a calcium supplement for twelve
weeks and 11 others received a placebo. For each subject the researchers
recorded whether or not blood pressure dropped. Here are the data:!3

Treatment Subjects Successes Proportion

Calcium 10 6 0.60
Placebo 11 4 0.36
Total 21 10 0.48

Is there evidence that calcium reduces blood pressure? Use a permutation
test.

More on calcium and blood pressure. The previous exercise asks for a
permutation test for the difference in proportions. Now bootstrap the
difference in proportions. Use the observed difference in proportions and
the bootstrap standard error to create a 95% z interval for the difference in
population proportions.

Another Verizon data set. Verizon uses permutation testing for
hundreds of comparisons, comparing ILEC and CLEC distribu-
tions in different locations, for different time periods and different
measures of service quality. Here is a sample from another Verizon data set,
containing repair times in hours for Verizon (ILEC) and CLEC customers.

CASE 181
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ILEC
11 1 1 2 2 1 1 1 12 2 1 1 1 1
221 1 1 1 2 3 1 11 1 2 3 1 1
11 2 3 1 1 1 1 2 31 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4 1 1 1 1
25§ 1 1 1 1 2 5 1 1 1 1 2 6 1 1
1t 1 2 8 1 1 1 1 2 15 1 1 1 2 2

CLEC

(a) Choose and make data displays. Describe the shapes of the samples and
how they differ.

(b) Perform a # test to compare the population mean repair times. Give
hypotheses, the test statistic, and the P-value.

(c) Perform a permutation test for the same hypotheses using the pooled
variance ¢ statistic. Why do the two P-values differ?

(d) What does the permutation test P-value tell you?

Comparing Verizon standard deviations. We might also wish to
compare the variability of repair times for ILEC and CLEC cus-
tomers. For the data in the previous exercise, the F statistic for
comparing sample variances is 0.869 and the corresponding P-value is 0.67.
We know that this test is very sensitive to lack of Normality.

CASE 181

(a) Perform a two-sided permutation test on the ratio of standard deviations.
What is the P-value and what does it tell you?

(b) What does a comparison of the two P-values say about the validity of
the F test for these data?

Testing equality of variances. The F test for equality of variances 77,
(Section 7.3) is unreliable because it is sensitive to non-Normality 4 (s

in the data sets. The permutation test does not suffer from this SILUH

drawback. It is therefore possible to use a permutation test to check the
equal-variances condition before using the pooled version of the two-sample
t test. Example 7.18 (page 490) illustrates the F test for comparing the
variability of the asset-to-liability ratio in samples of healthy firms and failed
firms. Do a permutation test for this comparison.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test on the F statistic (ratio of sample variances).
What do you conclude?

(c) Compare the permutation test P-value to that in Example 7.18. What do
you conclude about the F test for equality of variances for these data?

Executives learn Spanish. Exercise 7.42 (page 459) gives the scores of 20

executives on a test of Spanish comprehension before and after a language

course. We think that the course should improve comprehension scores.

(a) State the null and alternative hypotheses.

(b) Perform a paired-sample permutation test. Give the P-value and your
conclusion about the effectiveness of the course.

(c) Graph the permutation distribution and indicate the region that corre-
sponds to the P-value.
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I STATISTICS IN SUMMARY

Fast and inexpensive computing power allows the use of statistical proce-
dures that require large-scale computation. Bootstrap confidence intervals
and permutation tests are based on large numbers of “resamples” drawn
from the data. These resampling computations replace the formulas derived
from probability theory that we use in traditional confidence intervals and
tests. Resampling procedures can often be used in settings that do not meet
the conditions for use of formula-based procedures. These resampling pro-
cedures are becoming ever more common in statistical practice. It is possible
that in the future they will largely replace some traditional procedures.
Reading this chapter should enable you to do the following;:

A. BOOTSTRAP

1. Explain the bootstrap resampling idea in the context of a particular
data set used to estimate a particular population parameter.

2. Use software such as S-PLUS to bootstrap a statistic of your choice
from a set of data. Plot the bootstrap distribution and obtain the
bootstrap standard error and the bootstrap estimate of bias.

3. Based on bootstrap software output, judge whether formula-based
confidence intervals that require Normal sampling distributions can
be used and whether the simple bootstrap ¢ and percentile confidence
intervals can be used.

4. Obtain from bootstrap software output any of the four types of
bootstrap confidence intervals for a parameter: ¢, percentile, BCa, and
tilting. By comparing these intervals judge which are safe to use.

B. PERMUTATION TESTS

1. Recognize the settings in which we can use permutation tests. In
such a setting, explain how to choose permutation resamples that are
consistent with the null hypothesis and with the design of the study.

2. Use software to obtain the permutation distribution of a test statistic of
your choice in settings that allow permutation tests. Give the P-value
of the test.

3. Based on permutation test software output, judge whether a traditional
formula-based test can be used.

I Chuaprer 18 Review Exercises

18.68 Piano lessons. Exercise 7.34 (page 456) reports the changes in reasoning
scores of 34 preschool children after six months of piano lessons. Here are
the changes:

2 7 =2 2 7 4 7
2 6 3 6 -1 6

NN
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|
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S 2 1 0 3
9 0 3 4 7 -

(a) Make a histogram and Normal quantile plot of the data. Is the distribu-
tion approximately Normal?
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(b) Find the sample mean and its standard error using formulas.

(c) Bootstrap the mean and find the bootstrap standard error. Does the
bootstrap give comparable results to theoretical methods?

18.69 Uniform distribution. Your software can generate “uniform random num-

bers” that have the Uniform distribution on 0 to 1. See Figure 4.5 (page

247) for the density curve. Generate a sample of 50 observations from this

distribution.

(a) What is the population median? Bootstrap the sample median and
describe the bootstrap distribution.

(b) What is the bootstrap standard error? Compute a bootstrap ¢ 95%
confidence interval.

(c) Find the BCa or tilting 95% confidence interval. Compare with the
interval in (b). Is the bootstrap ¢ interval reliable here?

18.70 Age of personal trainers. A fitness center employs 20 personal trainers. Here
are the ages in years of the female and male personal trainers working at this
center:

Male: 25 26 23 32 35 29 30 28 31 32 29
Female: 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think the difference in mean
ages will be significant?

(b) A two-sample ¢ test gives P < 0.001 for the null hypothesis that the
mean age of female personal trainers is equal to the mean age of male
personal trainers. Do a two-sided permutation test to check the answer.

(c) What do you conclude about using the ¢ test? What do you conclude
about the mean ages of the trainers?

18.71 Stock returns. Table 2.6 (page 130) gives annual total returns for overseas
and U.S. stocks over a 30-year period.

(a) Bootstrap the correlation between overseas and U.S. stocks and describe
its bootstrap distribution. What is the bootstrap standard error?

(b) Is a bootstrap ¢ confidence interval appropriate? Why or why not?
(c) Find the 95% BCa or tilting confidence interval.

18.72 Blockbuster stock. Here are data on the price of Blockbuster stock for the
month of June 2002:'

Date Close Change Date Close Change
6.03 2731 —0.19 6.17 27.36 0.41
6.04 27.49 0.18 6.18 27.02 —0.34
6.05 28.41 0.92 6.19 26.63 —0.39
6.06 28.38 —0.03 6.20 26.85 0.22
6.07 27.77 —0.61 6.21 2597 —0.88
6.10 28.02 0.25 6.24 26.39 0.42
6.11 27.84 —0.18 6.25 25.87 —0.52
6.12 27.38 —0.46 6.26 2559 —0.28
6.13 2620 —1.18 6.27 26.75 1.16
6.14 2695 0.75 6.28 2690 0.15
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18.73

(a) Compute the percent change for each trading day. The standard de-
viation of the daily percent change is one measure of the volatil-
ity of the stock. Find the sample standard deviation of the percent
changes.

(b) Bootstrap the standard deviation. What is its bootstrap standard
error?

(c) Find the 95% bootstrap ¢ confidence interval for the population standard
deviation.

(d) Find the 95% tilting or BCa confidence interval for the standard
deviation. Compare the confidence intervals and give your conclusions
about the appropriateness of the bootstrap ¢ interval.

Real estate sales prices. We have compared the selling prices of
Seattle real estate in 2002 (Table 18.1) and 2001 (Table 18.5).
Let’s compare 2001 and 2000. Here are the prices (thousands of
dollars) for 20 random sales in Seattle in the year 2000:

CASE 18.2

333 126.5 207.5 199.5 1836 360 175 133 1100 203
194.5 140 280 475 185 390 242 276 359 163.95

18.74

18.75

18.76

(a) Plot both the 2000 and the 2001 data. Explain what conditions needed
for a two-sample # test are violated.

(b) Perform a permutation test to find the P-value for the difference in
means. What do you conclude about selling prices in 2000 versus 2001?

Radon detectors. Exercise 7.38 (page 457) gives the following readings
for 12 home radon detectors when exposed to 105 picocuries per liter of
radon:

9.19 97.8 1114 1223 1054  95.0
103.8 99.6 96.6 1193 104.8 101.7

Part (a) of Exercise 7.38 judges that a ¢ confidence interval can be used

despite the skewness of the data.

(a) Give a formula-based 95% ¢t interval for the population mean.

(b) Find the bootstrap 95% tilting interval for the mean.

(c) Look at the bootstrap distribution. Is it approximately Normal in
appearance?

(d) Do you agree that the ¢ interval is robust enough in this case? Why or
why not? Keep in mind that whether the confidence interval covers 105
is important for the study’s purposes.

Use a permutation test? The study described in the previous exercise used
a one-sample ¢ test to see if the mean reading of all detectors of this type
differs from the true value 105. Can you replace this test by a permu-
tation test? If so, carry out the test and compare results. If not, explain
why not.

Do nurses use gloves? Nurses in an inner-city hospital were unknowingly
observed on their use of latex gloves during procedures for which glove
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use is recommended.'’ The nurses then attended a presentation on the
importance of glove use. One month after the presentation, the same nurses
were observed again. Here are the proportions of procedures for which each
nurse wore gloves:

Nurse Before After Nurse Before After
1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167  1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Why is a one-sided alternative proper here? Why must matched pairs
methods be used?

(b) Do a permutation test for the difference in means. Does the test indicate
that the presentation was helpful?

18.77 Glove use by nurses, continued. In the previous exercise, you did a one-sided
permutation test to compare means before and after an intervention. If you
are mainly interested in whether or not the effect of the intervention is
significant at the 5% level, an alternative approach is to give a bootstrap
confidence interval for the mean difference within pairs. If zero (no difference)
falls outside the interval, the result is significant. Do this and report your
conclusion.

18.78 Changes in urban unemployment. Here are the unemployment rates (percent
of the labor force) in July of 2001 and 2002 for a random sample of 19 of the
331 metropolitan areas for which the Bureau of Labor Statistics publishes

data:'®

Area 2001 2002 Area 2001 2002
1 4.7 6.0 11 2.6 2.3
2 4.1 4.0 12 5.2 5.2
3 3.9 4.1 13 2.6 2.9
4 5.0 5.3 14 3.2 3.7
S 5.0 5.6 15 4.6 5.5
6 4.3 52 16 3.5 4.6
7 4.4 5.6 17 4.6 5.8
8 5.6 6.9 18 4.1 5.9
9 5.3 7.2 19 5.6 7.7

10 6.3 8.7

(a) Plot the data for each year and compare the two graphs.
(b) Do a paired ¢ test for the difference in means, and find the P-value.

(c) Do a paired-sample permutation test, and find the P-value. Compare
this with your result in part (b).
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18.79

18.80

18.81

18.82

Ice cream preferences. A random sample of children who came into an ice
cream shop in a certain month were asked, “Do you like chocolate ice
cream?” The results were:

Girls Boys Total

Yes 40 30 70
No 10 15 25
Total 50 45 95

(a) Find the proportions of girls and boys who like chocolate ice cream.

(b) Perform a permutation test on the proportions, and use the P-value to
determine if there is a statistically significant difference in the proportions
of girls and boys who like chocolate ice cream.

Word counts in magazine ads. Is there a difference in the readability of
advertisements in magazines aimed at people with varying educational
levels? Here are word counts in 6 randomly selected ads from each of 3
randomly selected magazines aimed at people with high education level and

3 magazines aimed at people with middle education level:'”

Education level Word count

High 205 203 229 208 146 230 215 153 205
80 208 89 49 93 46 34 39 88

Medium 191 219 205 57 105 109 82 88 39

94 206 197 68 44 203 139 72 67

(a) Make histograms and Normal quantile plots for both data sets. Do the
distributions appear approximately Normal? Find the means.

(b) Bootstrap the means of both data sets and find their bootstrap standard
errors.

(c) Make histograms and Normal quantile plots of the bootstrap distribu-
tions. What do the plots show?

(d) Find the 95% percentile and tilting intervals for both data sets. Do the
intervals for high and medium education level overlap? What does this
indicate?

(e) Bootstrap the difference in means and find a 95% percentile confidence
interval. Does it contain 0? What conclusions can you draw from your
confidence intervals?

More on magazine ad word counts. The researchers in the study described
in the previous exercise expected higher word counts in magazines aimed at
people with high education levels. Do a permutation test to see if the data
support this expectation. State hypotheses, give a P-value, and state your
conclusions. How do your conclusions here relate to those from the previous
exercise?

Hyde Park burglaries. The following table gives the number of burglaries

per month in the Hyde Park neighborhood of Chicago for a period before

and after the commencement of a citizen-police program.'$
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Before

60 44 37 54 59 69 108 89 82 61 47
72 87 60 64 50 79 78 62 72 57 57
61 55 56 62 40 44 38 37 52 59 58
69 73 92 77 75 71 68 102

After
88 44 60 56 70 91 54 60 48 35 49
44 61 68 82 71 350

(a) Plot both sets of data. Are the distributions skewed or roughly Normal?

(b) Perform a one-sided (which side?) # test on the data. Is there statistically
significant evidence of a decrease in burglaries after the program began?

(c) Perform a permutation test for the difference in means, using the same
alternative hypothesis as in part (b). What is the P-value? Is there a
substantial difference between this P-value and the one in part (b)? Use
the shapes of the distributions to explain why or why not. What do you
conclude from your tests?

(d) Now do a permutation test using the opposite one-sided alternative
hypothesis. Explain what this is testing, why it is not of interest to us,
and why the P-value is so large.

18.83 Hyde Park burglaries, continued. The previous exercise applied significance

tests to the Hyde Park burglary data. We might also apply confidence
intervals.

(a) Bootstrap the difference in mean monthly burglary counts. Make a
histogram and a Normal quantile plot of the bootstrap distribution and
describe the distribution.

(b) Find the bootstrap standard error, and use it to create a 95% bootstrap
t confidence interval.

(c) Find the 95% percentile confidence interval. Compare this with the ¢
interval. Does the comparison suggest that these intervals are accurate?
How do the intervals relate to the results of the tests in the previous
exercise?
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