
Power Analysis 



The power of a statistical test is 
the probability that the test will 
reject the null hypothesis when 

the alternative hypothesis is true 
(i.e., the probability of not 
committing a type II error) 

A working definition: 



The t statistic is essentially the relative 
difference between two sample means 

When those samples are drawn from the  
same population, we can accurately compute 
the probability of observing any/all values of t 
(i.e., when H0 is assumed to be true) 
 
 
This fact is realized as the sampling distribution 
of the t -  whose shape is dependent upon a 
single parameter (i.e., the degrees of freedom 
imposed by the sampling and computational 
process…(df = n1-1 + n2-1 = n1+n2-2) 
 
MATLAB: 
t = [-6:0.1:6]; p = tpdf(t, 38); plot(t,p); 

Sampling Distribution of t(38) 



Type I Error Control: Setting Alpha 

The experimenter can control  
the a priori probability of making 
a type I error (i.e., the erroneous 
rejection of the hypothesis-of-no- 
difference-H0) 
 
This is done by setting alpha. 
 
Alpha sets the probability of  
observing a FALSE POSITIVE. 
 
By convention, we set α = 5% 
In the field of psychology. 
 
MATLAB: 
t_critical = tinv(0.05, 38); 

Decision Criterion: 
t < 1.68 



Q: How can we derive a measure of 
power from the familiar sampling 
distribution of the t statistic? 
 

A: We can’t.  We need to consider 
how the t statistic is distributed when 
the alternative hypothesis is true. 
(i.e., the noncentral t distribution) 



Noncentral t distribution 
nct(df, δ) 

The noncentral t represents a model  
of the t statistic when the alternative 
hypothesis is assumed to be true. 
 
It has two parameters: 
   df (i.e., degrees of freedom) 
   δ  (noncentrality parameter – delta) 
 
   Delta can most easily be described 
   as a derivative of “effect size”: 
 
   Cohen’s d = (M1-M2)/((SD1+SD2)/2) 
 
    δ = d * √((n1*n2)/(n1+n2)) 
 
MATLAB: 
t = [-8:0.1:8]; 
nct = nctpdf(t, df, delta); 
plot(t, nct); 



Let’s explore how the concept of 
power emerges from contrasting 
the t and noncentral t distributions 



To make the following exercise more 
concrete, we’ll focus on a specific 

example from a real study: 

H0:   Treatment Group Mean RT = Control Group RT 
H1:   Treatment Group Mean RT < Control Group Mean RT 
                      (1-tailed t-test; alpha = 0.05) 

Control Group: 
   MeanC = 1018 
   SDC = 192 
   NC = 20 

Treatment Group: 
   MeanT = 880 
   SDT = 141 
   NT = 20 



t versus noncentral t 

Let’s consider these distributions from a Signal Detection Theory perspective 
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G*Power Results 
Nt=40; Cohen’s d=0.8; power=0.82 



p(FALSE POSITIVES) 
α = 0.05 

P(TRUE POSITIVES) 
Power ≈ 0.8 
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