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Experiments were conducted in which Ss made classification, recognition, and similarity judg-
ments for 34 schematic faces. A multidimensional scaling (MDS) solution for the faces was
derived on the basis of the similarity judgments. This MDS solution was then used in conjunction
with an exemplar-similarity model to accurately predict Ss’ classification and recognition
judgments. Evidence was provided that Ss allocated attention to the psychological dimensions
differentially for classification and recognition. The distribution of attention came close to the
ideal-observer distribution for classification, and some tendencies in that direction were observed
for recognition. Evidence was also provided for interactive effects of individual exemplar
frequencies and similarities on classification and recognition, in accord with the predictions of
the exemplar model. Unexpectedly, however, the frequency effects appeared to be larger for

classification than for recognition.

The purpose of this study was to provide tests of a model
for relating perceptual classification performance and old-
new recognition memory. The model under investigation is
the context theory of classification proposed by Medin and
Schaffer (1978) and elaborated by Estes (1986a) and Nosofsky
(1984, 1986). According to the context theory, people repre-
sent categories by storing individual exemplars in memory,
and make classification decisions on the basis of similarity
comparisons with the stored exemplars. This exemplar view
of category representation strongly motivates the study of
relations between classification and recognition, because if
individual exemplars are stored in memory during classifica-
tion learning, this fact should be corroborated by postacquis-
ition recognition memory tests.

Nosofsky (1988a) demonstrated preliminary support for an
exemplar-based approach to relating classification and recog-
nition. The approach assumes that classification decisions are
based on the similarity of an item to the exemplars of a target
category relative to exemplars of contrast categories. Recog-
nition decisions are based on the absolute summed similarity
of an item to all exemplars of all categories. This absolute
summed similarity gives a measure of overall familiarity, with
higher familiarity values leading to higher recognition proba-
bilities. This idea that recognition judgments may be based
on a form of summed similarity or a “global match” to
information stored in memory serves as a core assumption
for a variety of extant theories (e.g., Gillund & Shiffrin, 1984;
Hintzman, 1986, 1988; Metcalfe-Eich, 1982; Murdock, 1982;
Ratcliff, 1978). Unique contributions of the present work are
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to demonstrate support for the summed-similarity rule in
situations involving perceptual classification learning, and to
demonstrate that fine-grained differences in recognition prob-
abilities can be predicted on the basis of fine-grained differ-
ences in similarities among items.

A key assumption in the present theory is that a common
representational substrate underlies classification and recog-
nition judgments (namely, memories for individual exem-
plars), but different decision rules govern performance in the
two tasks: the relative-similarity rule for classification and the
absolute summed-similarity rule for recognition. The assump-
tion of a common representational substrate allows for theo-
retical parsimony and a unified framework for understanding
classification and recognition. The assumption of different
decision rules enables the model to predict dissociations be-
tween classification and recognition, and various other phe-
nomena which previous investigators have cited as evidence
against exemplar-only memory models. For example, Nosof-
sky (1988a) demonstrated that the model is capable of pre-
dicting low correlations between classification and recogni-
tion, lack of positive contingencies between correct classifi-
cation and “old” recognition responses, faltering old-new
discrimination with increases in category size, high false-alarm
rates for category prototypes and foils that are low distortions
of the prototype, and dissociations between classification and
typicality judgments. Each of these phenomena has been
interpreted by previous investigators as providing evidence
for abstract forms of category representation, or for the idea
that separate memory systems underlie classification and
recognition performance (e.g., Anderson, Kline, & Beasley,
1979; Metcalfe & Fisher, 1986; Omohundro, 1981).

Although Nosofsky (1988a) provided quantitative tests of
the proposed exemplar framework, a limitation of this earlier
work was that fairly gross-level relations between classification
and recognition were investigated. For example, Nosofsky
(1988a) showed that in the traditional “prototype distortion”
paradigms (e.g., Homa, Cross, Cornell, Goldman, & Schwartz,
1973; Posner & Keele, 1970), the exemplar model roughly
predicted levels of classification and recognition performance
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for the prototypes, old distortions, and low-level and high-
level new distortions.

The present research goes beyond this earlier work by
studying detailed quantitative relations between classification
and recognition performance for individual items having fine-
grained differences in similarity to other items in the set.
Theoretical analyses are also conducted that investigate
whether subjects may modify their attentional weightings of
the component dimensions of the stimuli when making clas-
sification and recognition decisions. The idea that selective
attention modifies similarities between exemplars has served
as a cornerstone in allowing the model to characterize rela-
tions between identification, which is a choice experiment
involving a one-to-one stimulus-response mapping. and c¢/as-
sification, which involves a many-to-one stimulus-response
mapping (e.g., Nosofsky, 1984, 1986, 1987; Shepard, Hov-
land, & Jenkins, 1961). The present research extends this
earlier work by investigating the role of selective attention in
shaping the classification-recognition relation. Finally, exper-
iments are conducted in the present research that investigate
the role of individual item frequency in classification and
recognition (cf. Estes, 1986b; Nosofsky, 1988c).

Experiment 1A

Experiment 1A was a baseline condition for studying the
classification—recognition relation. The stimuli and category
structure that were used were the same as those used in Reed’s
(1972) seminal study, which was among the first to contrast
the quantitative predictions of competing models of classifi-
cation. I decided to replicate and extend Reed’s (1972) exper-
iment, because it is one of few published studies that reports
an advantage for the quantitative predictions of a pure pro-
totype model over an exemplar-based model in situations in
which categories are learned by way of induction over the
exemplars.' However, the exemplar model that Reed (1972)
tested was an average-distance model, whereas the context
model is a summed-similarity model. Because the context
model assumes that the relation between similarity and psy-
chological distance is highly nonlinear, its predictions are
often dramatically different from those of average-distance
and prototype models (e.g., Estes, 1986a: Medin & Schaffer,
1978; Nosofsky, 1984, 1987: Shepard, 1958, 1987). Unfortu-
nately, Reed (1972) reported only the summary fits for the
various models he tested; the actual classification data were
not reported. Therefore, it was necessary to repeat his exper-
iment to test the quantitative predictions of the context model.

The stimuli used in Reed’s (1972) study and the present
one were schematic faces varying along four continuous di-
mensions: eye height, eye separation, nose length, and mouth
height. Subjects learned to classify 10 faces into two categories
of 5 faces each. The categories of faces are illustrated in Figure
1. Following a training phase, a transfer phase was conducted
in which subjects classified each of the 10 old faces plus 24
additional faces formed by new combinations of the values
on the component dimensions. The present experiment ex-
tended Reed’s (1972) study by also collecting old-new recog-
nition judgments for the 34 faces. A preliminary similarity-
ratings study was conducted to derive a multidimensional
scaling (MDS) solution for the 34 faces. This MDS solution

was then used in conjunction with the context model to
generate ‘quantitative predictions of subjects’ classification
and recognition judgments.

Method

Subjects

Subjects were 138 undergraduates from Indiana University who
either participated as part of an introductory psychology course
requirement or were paid. There were 80 subjects in the classification
experiment and 58 subjects in the similarity-ratings study. The data
of 10 subjects in the similarity study were not included in the analyses
because they correlated lowly (<.50) with the averaged ratings of the
group. All subjects were tested individually and participated in only
one condition.

Stimuli and Apparatus

The stimuli were 34 schematic faces varying along four continuous
dimensions: eve height, eye separation. nose length. and mouth
height. Faces 1-32 were constructed from combinations of three
possibie values along each of the four dimensions. (Note that these
faces form only a subset of the total set of 81 stimuli that could have
been generated from the four trinary-valued dimensions. Reed [1972]
selected the faces, however, such that all possible pairwise combina-
tions of dimension values were represented in the subset.) As ex-
plained later, Faces 33 and 34 had intermediate values on each of the
four dimensions. The stimuli were generated on an IBM PC and
appeared essentially as illustrated in Figure |. The physical specifi-
cations for the 34 faces are provided in Appendix A. Two pairs of
stimuli, Faces 11 and 26 and Faces 18 and 30, were identical in
Reed’s (1972) study. and the same procedure was followed here.
Thus. there were 32 unique faces.

Proceduire

In the similarity-ratings study, all 496 unique pairs of faces were
presented and subjects rated their similarity on a scale from most
dissimilar (1) to most similar (10). The order of presentation of the
pairs was randomized for each subject, as was the left-right placement
of the faces on the screen. There were 30 practice trials preceding the
496 ratings. with the practice pairs selected randomly for each subject.
Subjects were urged to use the full range of similarity ratings.

The classification experiment consisted of a training phase followed
by a transfer phase. On each trial of the training phase 1 of the 10
assigned exemplars was presented and a subject judged whether it
belonged to Category 1 or 2. Feedback was provided following the
response. The training phase was organized into 12 blocks of 10 trials,
with each of the 10 faces presented once during each block. Order of
presentation of the faces was randomized within each block.

Following the training phase there was a transfer phase in which
all 34 faces were presented. The transfer phase was organized into
two blocks of 34 trials each. with each face presented once during a
block. Order of presentation of the faces was randomized within each
block. On each trial, a subject judged whether the face belonged to
Category 1 or 2 and then judged whether the face was “old™ or “new.”
Subjects also gave confidence ratings for their recognition judgments,

" The term prototype model is used in a specific sense in this article
to refer to a model in which the category representation is assumed
to be a single point corresponding to the central tendency (i.e., the
centroid) of all category exemplars in a multidimensional psycholog-
ical space.
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Figure .

llustration of the schematic faces used as training items in the present experiments. (Faces

in top and bottom rows are members of Category 1 and 2, respectively. Note. From “Perceptual vs.
conceptual categorization” by 8. K. Reed and M. P, Friedman, 1973, Memory & Cognition, 1, p. 158.
Copyright 1973 by the Psychonomic Society. Reprinted by permission.)

but these ratings are not analyzed in this article. Subjects were
instructed to judge as “old” only those faces that had been presented
during the training phase. No feedback was presented during the
transfer phase, and subjects did not know prior to the start of transfer
that their recognition performance would be tested.

Results and Theoretical Analyses

Multidimensional Scaling Analysis

The averaged similarity ratings were used as input to a
standard MDS program (KYST; Kruskal, Young, & Seery,
1973). Because of the integral nature of the stimulus dimen-
sions (Lockhead, 1970), a Euclidean metric was specified in
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the analyses (Garner, 1974; Shepard, 1958, 1987). A four-
dimensional solution yielded a good fit to the similarity-
ratings data (stress = 0.053), accounting for 94.8% of the
linearly explained variance. Higher dimensional solutions led
to little improvement in fit and I was unable to interpret the
additional dimensions. The coordinates for the MDS solution,
after rotation to achieve maximal correspondence with the
physically manipulated dimensions of eye height, eye separa-
tion, nose length, and mouth height, are reported in Appendix
A. These MDS coordinates are used in all subsequent theo-
retical analyses in this article.

The four-dimensional solution is illustrated in Figure 2. It
is evident from inspection that the derived psychological
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Figure 2. Multidimensional scaling solution for the 34 schematic faces. (Panel A: plot of Dimension
1 [eye height] versus Dimension 2 [eye separation]. Panel B: plot of Dimension 3 [nose length] versus
Dimension 4 [mouth height]. Circles, triangles, and squares correspond to physical values 1, 2, and 3,
respectively, on Dimensions | and 3. Open, cross-hatched, and solid shapes correspond to physical
values 1, 2, and 3, respectively, on Dimensions 2 and 4. It is evident from inspection that the stimuli
are located systematically such that the underlying psychological dimensions can be interpreted in terms
of the variations on the physically manipulated dimensions.)
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dimensions are readily interpretable in terms of the physically
manipulated dimensions. This result was surprising because 1
had expected that various configural properties of the faces
would be important in influencing subjects’ similarity judg-
ments (e.g., Cox & Wallsten, 1987; Pomerantz & Garner,
1973). One configural property of particular interest is the
distance between the level of the eyes and the top of the nose,
which serves as a perfectly valid cue for discriminating the
categories of faces (see Figure 1). Whether this configural
property becomes salient in influencing subjects’ classification
judgments is a question that is addressed in an upcoming
section of this article.

The category structure is shown embedded in the MDS
solution in Figure 3. As can be seen, four faces in each category
form a prototypical cluster in the plot of Dimension | versus
Dimension 2, whereas the fifth face in each category is rather
atypical and falls near the category boundary illustrated in
Figure 3. Faces 1-5 correspond to the top five faces in Figure
1. whereas Faces 6-10 correspond to the bottom five faces.
The atypical faces, close to the category boundary, are the
second faces in each row of Figure 1. As illustrated in Figure
3, the categories are linearly separable (e.g., Medin & Schwa-
nenflugel, 1981; Reed, 1972), which is a necessary require-
ment for accurate classification through the use of a prototype
strategy. Figure 3 also shows the physical prototypes for each
category (Faces 33 and 34), which were formed by averaging
the physical dimension values associated with the five faces
in each category: the psychological prototypes for each cate-
gory (P1 and P2), defined by averaging the psychological
dimension values associated with the five faces in each cate-
gory; and two control faces (Faces 31 and 32), which are
discussed later. The physical prototypes and control faces are
actual stimuli that were presented to subjects during the
transfer phase. whereas the psychological prototypes are the-
oretical constructs.

Classification and Recognition

The classification and recognition data obtained during the
transfer phase are reported in Table 1. The table shows the
probability with which each individual face was classified in
Category | and the probability with which it was judged as
“old.” To gain preliminary insight into the classification—
recognition relation, Figure 4 plots the observed recognition
probabilities against a classification confidence measure. The
classification confidence associated with face i [c¢c(i)] is de-
fined as ¢c(i) = 2 = |P(R,|i) — .5|, where P(R,|i) is the

probability with which face i was classified in Category 1.-

Thus, for faces that are classified with probability near unity
into either Category | or 2. the confidence measure will be
near unity, whereas for faces that are classified with probabil-
ity close to .5, the confidence measure will be near zero. The
motivation behind plotting the recognition probabilities
against the classification confidences is the hypothesis that
subjects might judge as “old™ those faces that they are fairly
certain belong in Category | or 2 and judge as “new” those
faces that are unclear cases (e.g.. Anderson et al., 1979;
Metcalfe & Fisher, 1986). As is clear from inspection of the
scatterplot, however, there is little correlation between the
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Figure 3. Illustration of the category structures and transfer stimuli

embedded in the MDS solution. (Stimuli enclosed by circles denote
training exemplars for Category 1, and stimuli enclosed by triangles
denote training exemplars for Category 2. The psychological proto-
types [Pl and P2] shown were computed by averaging over the
psychological coordinate values associated with the stimuli of each
category. Stimuli 33 and 34 are the physical prototypes, and Stimuli
31 and 32 are control faces [see text].)

observed recognition probabilities and the classification con-
fidences (r = .36). Indeed, various examples exist in which
classification confidence is low, yet recognition probability is
high (Faces 14, 15, 23, 28, and 32), and in which classification
confidence is at least moderate, vet recognition probability is
very low (Faces 13, 17, 19, 22, 29. and 31). The apparent
dissociation exhibited in Figure 4 poses an interesting chal-
lenge to a model that purports to account quantitatively for
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Table 1
Observed and Predicted Category 1 Response Probabilities and “Old” Recognition Probabilities for Each Face in Experiments
14 and 1B
Experiment Experiment Experiment Experiment Experiment Experiment
1A, 1A, 1B, 1A, 1A, 1B,
all subjects learners only all subjects all subjects learners only all subjects
Face P(C) P(old) P(C,) Plold) PC,) P(old) Face P(C,) P(old) P(C,) P(old) P(C) P(old)
1 915 .696 976 683 .885 615 18 .148 793 082 .780 110 752
.968 778 975 775 .956 .669 .145 .868 113 .825 094 .769

2 716 .833 821 825 619 .764
.665 741 .850 .700 594 156

3 951 .882 975 .876 910 .859
937 .924 987 91t 931 .838

4 963 .878 987 873 937 .841
975 918 1.000 .900 .944 856

5 918 854 985 842 .870 .825
875 .781 963 .825 75 731

6 .106 722 .034 705 071 674
134 675 075 663 .100 .588

7 192 727 121 712 072 753
.261 .682 138 700 .100 719
8 181 759 .143 739 159 .698
171 .665 087 .588 150 706

9 .089 726 082 719 066 .666
089 753 050 .700 069 738

10 .048 663 026 .654 .023 .609
.045 618 025 .557 .006 631

11 578 .446 .308 442 474 .360
.529 497 291 481 400 406

12 631 383 731 .393 443 316
538 247 718 .256 .488 .263

13 222 .296 077 324 .184 .220
258 .283 127 .329 275 213

14 518 670 276 .640 .399 .661
.541 .730 275 725 425 .694

15 .385 743 175 724 229 750
430 753 200 713 238 719
16 .245 .601 112 584 221 572
.283 579 .100 .638 269 .563

17 783 347 834 357 675 278
778 253 .859 218 675 .263

19 .385 .268 191 .288 .379 179
.281 .281 138 .250 325 138

20 617 713 816  .688 .529 .631
.780 635 .848 .570 681 669

21 .241 .391 112 401 123 312
291 335 167 .359 125 .300

22 318 .340 .162 .362 .298 257
277 327 100 .363 .269 231

23 532 735 602 707 428 .670
.601 741 538 .700 450 .600

24 .206 631 .093 .630 163 .602
289 698 .150 .763 219 .644

25 344 559 214 .546 333 .506
272 551 .139 .608 275 413

26 578 .446 308 442 474 .360
.490 .503 238 .600 413 431

27 1243 575 115 571 215 .530
.261 707 .150 725 275 588

28 328 .789 .383 762 210 791
.386 810 .350 .800 .144 813

29 322 292 120 310 .301 208
.269 .300 175 275 294 .169

30 .148 793 .082 .780 .110 752
14 .842 .075 .825 .094 .781

31 .895 415 957 437 .839 316
.796 .350 937 .329 .806 400

32 552 .808 .563 .794 411 746
.538 .848 .544 .810 .300 719

33 948 .901 980  .892 911 877
981 .943 .988 925 931 .906

34 133 814 .062 799 .085 795
126 .862 .087 .875 .050 .844

Note. Top entries in each Hw are predicted probabilities; bottom entries are observed probabilities.

both the classification and recognition data within a unified
framework.

Exemplar-similarity model. The formal approach to pre-
dicting the classification and recognition data is similar to
one used in previous work (Nosofsky, 1986, 1987, 1988a),
with some technical differences to be explained shortly. The
probability that face i is classified in Category 1 is predicted

as follows. First, the distance between faces / and j is computed
using a (weighted) Euclidean distance metric (e.g., Carroll &
Wish, 1974):

dU = C[E wmlxim - xjmlzll/z’ (1)

where X, is the psychological value of face i on dimension
m; wim (0 < w,, = 1, Tw,, = 1) is the weight given to dimension
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Figure 4. Scatterplot of observed recognition probabilities against
observed classification confidences in Experiment 1A.

m;, and ¢ is a sensitivity parameter reflecting overall discri-
minability in the psychological space. The x;, psychological
values are obtained from the MDS solution derived from the
similarity-ratings data (see Appendix A). The weights (w,)
are free parameters to be estimated from the data, and are
interpreted as reflecting the attention given to each dimension
in making classification judgments.’

The distance between faces i and j is transformed to a
similarity measure using an exponential decay function (She-
pard, 1958, 1987):

s = exp(—dy). (2)

The empirical support for an exponential relation between
similarity and psychological distance is so pervasive that
Shepard (1987) proposed it as a candidate for a universal law
of psychological generalization and developed a cognitive
process model to account for the law. As explained in previous
work, the nonlinear relation between similarity and psycho-
logical distance allows the exemplar model to be sensitive to
correlational structure in categories, category density effects,
and context (Medin & Reynolds, 1985; Medin & Schaffer,
1978; Nosofsky, 1984, 1987, 1988a).

In the present development, it is assumed that the degree
to which face / activates exemplar j in memory (a,) is given
by

a; = s; + e, (3)

where the es are independent and identically distributed
normal random variables with mean zero and variance ¢°.
The evidence for Category 1 given presentation of face 7 is
found by summing the activations of face / to all exemplars
of Category 1,

EL: = Z Aiy. (4)

ROBERT M. NOSOFSKY

and likewise for the evidence for Category 2.

According to the classification model, a Category | response
is made if the evidence for Category 1 exceeds the evidence
for Category 2 by a criterial amount:

El.l - EZ.: > bs (5)

where b is a response-bias parameter. Note that what is
important for classification is the relative activations for the
respective categories, that is, the magnitude of £, in relation
to Ez,,‘.

For recognition, the decision rule is to respond “old™ if the
summed activation for both categories exceeds a criterion x.:

El.l + EZ.I > X (6)

Note that what is important for recognition is the overall
summed activation for the two categories, not their activations
in relation to one another.

As explained in Appendix B, the predicted classification
and recognition probabilities are derived from the decision
rules in Inequalities 5 and 6 by using a numerical approxi-
mation to the integrals of appropriate normal density func-
tions. The free parameters in the model are the overall sensi-
tivity parameter (¢) and the attention weights (w,,) in the
distance function (Equation 1), the error variance (o) asso-
ciated with the random variables ¢, the category response-
bias parameter (b), and the recognition criterion (x.). In all
of the model-fitting analyses, the sensitivity parameter (¢) and
error variance (¢°) were held constant across classification
and recognition; however, in the initial analyses the attention
weights (w,,) were allowed to vary across classification and
recognition, for reasons to be explained shortly. Note that
only three of the four attention weights are free parameters,
because the weights are constrained to sum to one.

The main (technical) difference between the present formal
approach and the previous one adopted by Nosofsky (1986,
1988a) is that in the previous work, the category activation
functions were deterministically related to the exemplar sim-
ilarities, and a probabilistic decision rule was used. By con-
trast, in the present approach the category activation functions
are random variables (Equations 3 and 4), and deterministic
decision rules are used (Inequalities 5 and 6). I adopted the
latter approach in the present work because I considered it to
have a more natural process interpretation. In addition, evi-
dence provided by Ashby and Gott (1988) and Ashby and
Maddox (1990) indicates that people often adopt determin-
istic classification decision rules. Although the present ap-
proach involves the use of an additional free parameter
{namely, the error variance %), it appears 10 be necessary if
the context model is to adequately describe performance in
situations in which people use deterministic decision rules.
There are numerous possible sources of the noise in the

2In deriving the initial MDS solution from the similarity-ratings
data, the weights in the distance function are nonidentifiable with
respect to the MDS coordinates. It is assumed implicitly that in
making their similarity judgments subjects gave roughly equal atten-
tion weight to each of the dimensions, which seems reasonable in a
context-free similarity-judgment task.
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Figure 5. Scatterplot of observed against predicted classification and recognition probabilities in

Experiment 1A,

classification and recognition process, including noise in the
locations of the exemplars in the multidimensional space (e.g.,
Ennis, Palen, & Mullen, 1988; Zinnes & MacKay, 1983),
noise in the similarity computations, and noise in the criterion
settings (e.g., Wickelgren, 1968), but the issue of the precise
locus of the noise is not pursued in this research.

Quantitative fits. The exemplar model (Equations 1-6)
was fitted simultaneously to the classification and recognition
data with maximum likelihood as the criterion of fit.> The
observed classification and recognition probabilities are plot-
ted against the predicted probabilities in Figure 5. (The pre-
dicted probabilities are also reported in Table 1.) It is evident
from inspection that the model provides good fits to both sets
of data, accounting for 95.9% of the variance in the classifi-
cation probabilities and for 91.9% of the variance in the
recognition probabilities.

This analysis illustrates the benefits that can accrue from a
formal mathematical modeling approach. The initial scatter-
plot in Figure 4 revealed little relation between classification
and recognition performance. At that limited level of analysis,
one might have concluded that there was little in common
between the fundamental processes of classification and rec-
ognition. Under the guidance of the formal model, however,
a unified account of these processes is achieved in terms of
the assumption that classification and recognition are gov-
erned by similarity comparisons to stored exemplars.

To gain insight into the workings of the model, consider
again the MDS solution for the exemplars in Figure 3 and the
classification-recognition scatterplot in Figure 4. Faces 13,
19, 22, and 29 are examples of faces that received low recog-
nition probabilities, yet for which there was moderate classi-
fication confidence. Inspection of the MDS solution reveals
that these faces are located in an isolated region of the
psychological space (the upper-right region of the plot of
Dimension 1 vs. Dimension 2). Thus, the summed similarity
for these faces is low, so the model correctly predicts their low
recognition probabilities. In a relative sense, however, these
faces are clearly more similar to the exemplars of Category 2
than to the exemplars of Category 1, so the model correctly

predicts that these faces will be classified into Category 2 with
moderately high probability. Conversely, Faces 14, 15, 23,
28, and 32 received high recognition probabilities but had
low classification confidence. These faces tended to be cen-
trally located in the MDS solution and so were moderately
similar to numerous exemplars. In addition, they were highly
proximal to one of the training exemplars (either Face 2 or
Face 7). Thus, the overall summed similarity for these faces
was high, explaining their high recognition probabilities. Both
categories of exemplars exerted competing influence for these
faces, however, so there was low classification confidence
associated with them. Finally, there were also items such as
Faces 3, 4, and 33, which were highly similar to several
exemplars in the MDS solution from only the same category.
For these faces, both absolute summed similarity and relative
target-to-contrast similarity were high, explaining jointly their
high recognition probabilities and classification confidences.
The examples just discussed provide formal illustrations of
conjectures concerning the classification-recognition relation
put forth previously by Medin (1986).

In subsequent sections of this article, it will be useful to
consider performance patterns exhibited by learners sepa-
rately from the grouped-subjects data. The learners are de-

3 A computer search was used to find the parameters that maxi-
mized the following log-likelihood function: In L = $¥, In N! —

?:1 zsl lnﬁc! + 2,3-41 2,2_1_/,"]'[ In P,‘jc + E?:l In N,! - ?:1 2,2=1 ]nf,,R'
+ $¥, 32, fir In Pyr, where N; is the frequency with which stimulus
i was presented; fjc is the observed frequency with which stimulus i
was classified in category J; f;x is the observed frequency with which
stimulus / was judged in the recognition task as either “old” (j = )
or “new” (j = 2); and p;c and p;x are the corresponding predicted
classification and recognition probabilities, respectively. This likeli-
hood function assumes that the classification and recognition proba-
bilities for each stimulus are binomially distributed. Because the
likelihood function also assumes that the distributions for each stim-
ulus are independent (an assumption that is probably wrong given
that multiple observations are collected from the same subjects), the
results of the statistical tests should be interpreted with caution.
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fined as those subjects whose performance during the second
half of the training phase fell above the 50th percentile point,
where performance is defined in terms of average percentage
correct. (In the present experiment, the learners averaged
95.1% correct during the second half of training, whereas the
nonlearners averaged 81.1% correct.) Table | reports the
classification and recognition data obtained during the trans-
fer phase for the learners only. As was the case for the full set
of subjects. there was a low correlation between recognition
probability and classification confidence (r = .12), yet the
exemplar model accounted for an impressive 98.9% of the
variance in the classification data and for 85.1% of the vari-
ance in the recognition data. The predicted classification and
recognition probabilities for the learners are presented along-
side the observed data in Table 1.

Selective attention in classification and recognition. A cor-
nerstone of the context model is the assumption that similar-
ities between exemplars are modifiable by selective attention
processes (Medin & Schaffer, 1978; Nosofsky, 1986). Selective
attention is modeled by the dimension-weight parameters in
the distance function (Equation 1). Previous research has
demonstrated systematic shifts in the magnitudes of the atten-
tion weights depending on the structure of the categories that
are learned. In particular, there is support for the hypothesis
that subjects may distribute their attentional resources over
the component dimensions of the stimuli to optimize their
classification performance (Getty, Swets, Swets, & Green,
1979; Nosofsky, 1984, 1986, 1987, 1989; Reed, 1972; Shepard
etal., 1961).

A question of interest in the present research is whether the
attention weights may vary depending on whether subjects
are making classification or recognition judgments. It is crit-
ical to realize that dimensions that are highly diagnostic for
making classification judgments may be useless for distin-
guishing between old and new items, and vice versa. To take
an extreme example, suppose that all exemplars presented
during the training phase were colored blue, and all new items
presented during transfer were colored red. The color of an
item would be useless for purposes of classifying it into
Category 1 or 2, and subjects would presumably give it zero
weight. However, subjects could use the color dimension to
discriminate perfectly between the old and new items and so
might focus most of their attention on color for purposes of
recognition.

In the present experiment, subjects were trained to classify
the stimuli and received explicit classification feedback. Thus,
the hypothesis that subjects may have fine-tuned their atten-
tional weightings during training to optimize classification
performance is plausible. By contrast, there was obviously no
recognition training, and no explicit recognition feedback was
provided. Furthermore, the strategies of attention weighting
adopted during classification training may constrain what
subjects are able to do with regard to recognition. For exam-
ple, if a dimension is not attended during classification train-
ing, impoverished information about the values on that di-
mension may be stored in memory. And if the information
is not stored adequately in memory, subjects clearly would
not be able to take full advantage of that dimension when
asked later to make recognition judgments. For the aforemen-
tioned reasons, it seems implausible that subjects could dis-

tribute attention over the psychological dimensions to opti-
mize recognition performance. Nevertheless, it seems reason-
able to explore the weaker hypothesis that subjects may
modify their attentional weightings to improve recognition
performance in relation to what would be accomplished if
they used the same weights for recognition as are used for
classification.

The maximum likelihood parameters and summary fits for
the context model are reported in Table 2, separately for the
all-subjects analyses and the learners-only analyses. Inspection
of the parameters suggests that the distributions of attention
over the psychological dimensions were indeed different for
classification and recognition. To corroborate this observa-
tion, a restricted version of the context model was fitted to
the data in which the attention weights were constrained to
be constant across classification and recognition.* The fits for
this restricted model, summarized in Table 2, were noticeably
worse than for the full model. For example, for the learners
the sum of squared deviations between predicted and observed
classification and recognition probabilities increased from
.048 and .222, respectively, to .129 and .367. Likelihood ratio
tests indicated that the restricted model fit significantly worse
than the full model, x*(3, N = 10,880) = 125.6, p < .001, for
the all-subjects analysis, and x*(3, N = 10,880) = 954, p <
.001, for the learners-only analysis, so there is statistical
support for the hypothesis of varying attention weights.

To investigate whether the different distributions of atten-
tion could be interpreted in terms of the attention-optimiza-
tion hypothesis, a computer search was conducted to find the
optimal weights for classification and recognition. For classi-
fication, the optimization criterion was defined as the maxi-
mum average percentage of correct classifications that could
be achieved, whereas for recognition it was defined as the
maximum average hit rate minus false-alarm rate. In con-
ducting these searches, all parameters with the exception of
the attention weights were held fixed at those values that
yielded a maximum likelihood fit to the empirical classifica-
tion and recognition data.

The performance-optimizing (or ideal-observer) distribu-
tions of attention weights are plotted along with the best
fitting distributions in Figure 6 for the learners only. With
regard to classification, the correspondence between the ideal-
observer and the best fitting distributions of weights is im-
pressive, with primary weight given to nose length, secondary
weight given to eye height, and virtually no weight given to
eye separation or mouth height. (Intuitively, the reason it is
optimal to attend to eye height and nose length in the present
experiment is because the combination of these dimensions
yields the largest separation between the two categories of

* A restricted version of a model arises when some of its parameters
are constrained on a priori grounds. Let In L(F) and In L(R) denote
the log-likelihoods for a full and restricted model, respectively. As-
suming the restricted model is correct, the quantity —2+[ln L(R) —
In L(F)] is distributed as a chi-square random variable with degrees
of freedom equal to the number of constrained parameters. If this
quantity exceeds the critical value of chi-square, then one would
conclude that some of the parameters were constrained inappro-
priately. (See Wickens, 1982, Chapter 5, for a complete exposition of
likelihood-ratio testing.)
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Table 2
Maximum Likelihood Parameters and Summary Fits, Experiment 14
Parameters Fits
Model o ¢ wy w, w; Wy X b SSE % Var -ln L
All-subjects analyses
Context
Classification .289* 1.177* .19 12 .25 45 181 115 95.9 136.0
Recognition .289° 1.1772 A7 48 .25 .10 4.498 128 91.9 141.0
Restricted context
Classification 3370 1.6172 248 292 300 .18* .108 176 93.7 161.8
Recognition 3370 1.617* 24* 292 .30° .18 3.198 227 85.5 178.0
Prototype
Classification 2307 .902# 22 .14 .40 .24 —.008 215 92.3 191.8
Recognition 2307 .9022 .24 .50 .18 .08 1.105 .205 86.9 168.0
Learners-only analyses
Context
Classification 3192 1.360* 29 .00 .64 .07 .162 .048 98.9 82.3
Recognition 319° 1.360* 15 .46 .26 .13 4.006 222 85.2 118.6
Restricted context
Classification .308* 1.661* 320 142 47 .06* .169 129 97.0 102.8
Recognition .308® 1.661° 320 142 47* .06* 3.203 367 75.5 145.9
Prototype
Classification 214 .923° .30 .03 .61 .07 .005 .205 95.2 133.6
Recognition 2142 .923° 27 43 21 .09 1.089 212 85.9 116.2

Note.

SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =

log-likelihood. Criterion of fit was to minimize -In L; SSE and % Var are auxiliary measures.

® These parameters were held fixed across classification and recognition.

exemplars in the multidimensional space. The interested
reader can verify this point by seeing Figure 9B and noting
the large separation between Faces 1-5 and Faces 6-10 in the
plot of eye height versus nose length.)

As might be expected given the absence of explicit training,
the correspondence between the ideal-observer and the best
fitting distributions of attention weights is not very good for
recognition. (Alternative optimization criteria besides maxi-
mizing average hit minus false-alarm rate were also consid-
ered, but none yielded a close correspondence between the
ideal-observer and the best fitting weights.) It is of interest to
note, however, that whereas subjects gave little weight to eye
separation in making their classification decisions, a good deal
of weight was shifted to this dimension for recognition, which
is precisely as would be predicted by the attention-optimiza-
tion hypothesis. Indeed, according to the model subjects
would have achieved a hit minus false-alarm rate of only .087
had they used the same weights in the recognition task as they
had used in the classification task. By way of comparison, the
hit minus false-alarm rate predicted by the model with the
best fitting recognition weights is .192. Thus, subjects im-
proved their recognition performance substantially by shifting
some attention to the eye-separation dimension. (With the
optimal recognition weights, subjects could have achieved a
hit minus false-alarm rate of .338.)

In summary, there is support for the hypothesis that the
learners fine-tuned their attention weights to optimize classi-
fication performance, and there were tendencies in that direc-
tion with regard to recognition. Inspection of the best fitting
attention weights for the all-subjects data reveals that they are
far from the ideal-observer distribution. One interpretation is

that part of the nonlearners’ difficulty in solving the classifi-
cation problem is that they focused attention on nondiagnos-
tic dimensions.

Comparisons with a prototype model. The purpose of this
experiment was to investigate the classification-recognition
relation within the framework of the exemplar-based context
model. The category structure that was tested was not de-
signed to yield qualitative contrasts between the predictions
of the context model and those of prototype models. Never-
theless, it is of interest to compare the quantitative predictions
of the competing models, particularly because Reed (1988)
concluded that the prototype model is superior in situations
in which people classify continuous-dimension stimuli such
as dot patterns and schematic faces (but see Ashby & Gott,
1988; Busemeyer, Dewey, & Medin, 1984; Hintzman, 1986;
Nosofsky, 1986, 1987, 1988a, 1988c).

First, note that the physical prototypes (Faces 33 and 34)
were classified with extremely high accuracy during transfer.
Although consistent with a prototype model, this result is also
accurately predicted by the context model (see Table 1). The
context model makes this prediction because the prototypes
are highly similar to the exemplars of their own category and
are highly dissimilar to the exemplars of the contrast category.

Other transfer stimuli of interest are what Reed (1972)
termed the control faces (Faces 31 and 32). According to
Reed, these faces were equated with the prototypes in terms
of their similarity to the exemplars of the alternative cate-
gories. Because the prototypes were classified with higher
accuracy than the control faces, Reed argued that the results
favored the prototype model over exemplar-based models.
This conclusion is problematic, however, because as is seen
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Figure 6. Best fitting distributions of attention weights (solid lines)
plotted with ideal-observer distributions of attention weights (dashed
lines), Experiment 1A.

in Table 1, the exemplar-based context model accurately
predicts classification probabilities for the control faces. In-
deed, the control face that purportedly belongs to Category 2
(Face 32) is accurately predicted by the context model to be
classified with slight tendency in Category 1. Although the
control faces may be equated with the prototypes on some
type of similarity measure, they are clearly not equated with
respect to the predictions of the context model. To summa-
rize, the context model accurately predicts classification per-
formance for the prototypes and control faces used by Reed
(1972).

To make quantitative comparisons, prediction equations
analogous to Equations 1-6 were formulated for a prototype
model (see Appendix C for details). The free parameters for
the prototype model and the context model were identical
and functioned analogously. The only difference between the
models is that instead of computing summed similarity be-
tween a probe and the category exemplars, the prototype

model computes the similarity between a probe and the
category central tendency (i.e.. the psychological prototypes
illustrated in Figure 3). The maximum likelihood parameters
and summary fits for the prototype model are reported in
Table 2. For the all-subjects analyses, the quantitative predic-
tions of the prototype model are clearly worse than those
achieved by the exemplar-based context model for both clas-
sification and recognition. For the learners-only analyses, the
context model outperforms the prototype model on the clas-
sification data, and the fits are essentially the same for the
recognition data. These results lead one to strongly question
Reed’s (1988, p. 172) assertion that prototype models are
superior to exemplar models in predicting classification in
continuous-dimension stimulus domains.

Role of the configural property. In light of the finding that
the learners gave primary weight to the dimensions of eye
height and nose length in making their classification judg-
ments, a question that arises is the extent to which they were
relying on the configural property of distance between the
level of the eyes and the top of the nose. Recall that this
configural property is a perfect predictor of category mem-
bership (see Figure 1). Similarity judgments based solely on
eye-nose distance look very different from ones based on eye
height and nose length treated as separate dimensions. For
example, if eye-nose distance were the only relevant dimen-
sion, then a face with high eyes and a long nose would be
highly similar to one with low eyes and a short nose. By
contrast, if eye height and nose length operated as individual
psychological dimensions, these same two faces would be
highly dissimilar (as was observed in the similarity-ratings
data). Thus, there is a clear distinction between an exemplar-
similarity model which assumes that eye—-nose distance is the
sole underlying psychological dimension and one that treats
eye height and nose length as individual dimensions.

Numerous theoretical analyses of the learners’ classification
and recognition data were conducted to test for the influence
of the configural property. In one set of analyses, a fifth
psychological dimension was defined by setting x;s = a * x;
— b * x3, where x5 is an item’s coordinate on the dimension
of eye-nose distance and ¢ and b are scaling parameters. In
another set of analyses, the physical distance between level of
eves and top of nose was measured for each face, and the
psychological distance was assumed to be linearly related to
this physical distance. Regardless of its definition, use of this
fifth dimension in addition to the original four dimensions
led to no improvement in the quantitative fit that could be
achieved, and the weight given by the exemplar model to the
fifth dimension was essentially zero. In other analyses. the
fifth dimension was used instead of Dimensions | and 3 (i.e.,
the weights for Dimensions | and 3 were held fixed at zero).
In this case the exemplar model yielded a quantitative fit to
the learners’ classification and recognition data that was worse
than the one achieved previously (total — In L = 241.2;
classification sum of squared deviations [SSE] = .096, recog-
nition SSE = .349). Although these analyses do not rule out
the hypothesis that some subjects may have made extensive
use of the configural property. it does not appear to provide
the sole or primary account of the present data. Regardless of
the extent to which subjects treated eye height and nose length
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as individual dimensions as opposed to treating them in a
configural manner, the exemplar model provides an excellent
characterization of the classification and recognition data.

Summary

This experiment provided support for the exemplar-based
approach to predicting and relating perceptual classification
and recognition. According to the model, classification and
recognition decisions are based on similarity comparisons to
stored exemplars; but whereas classification judgments in-
volve a relative-similarity rule, recognition judgments involve
an absolute summed-similarity rule. In addition to accounting
for a low correlation between recognition probabilities and
classification confidence, the model proved capable of pre-
dicting fine-grained differences in these judgments on the
basis of fine-grained differences in similarities among items.
Evidence was also provided that the learners fine-tuned their
attentional weightings of the component dimensions of the
objects to optimize their classification judgments, and some
tendencies in that direction were observed for recognition.
Finally, the exemplar model accurately predicted prototype
phenomena in the classification and recognition data and was
superior to a central-tendency prototype model in quantitative
accuracy.

Experiment 1B

One of the fundamental variables affecting learning and
memory is frequency or repetition. The purpose of Experi-
ment 1B was to explore the role of individual item frequency
in perceptual classification and recognition and to use the
frequency manipulations to provide further tests of the ex-
emplar-based approach to modeling performance in these
tasks. Estes (1986a, 1986b) and Nosofsky (1988c) tested a
version of the context theory which assumed that repeating
an exemplar during classification learning leads to strength-
ening the representation of that exemplar in memory. In these
previous theoretical investigations, the exemplar memory
strengths were assumed to be directly proportional to the
relative frequencies with which the exemplars were presented
during training, as in a pure multiple-trace model of memory
(e.g., Hintzman, 1986, 1988; Hintzman & Block, 1971). I
weaken this assumption in the present work by allowing the
memory strength for a high-frequency item to be a free
parameter. In the present development, the degree to which
item 7 activates exemplar j in memory is given by

a; = M;s; + ¢, (7

where M, is the memory strength associated with exemplar j,
$; is the similarity between items / and j, and ¢, is the random
variable defined earlier. Thus, the degree to which exemplar j
is activated is a joint function of its strength in memory, its
similarity to the presented item i, and random noise.

In Experiment 1B, Face 7 from Category 2 was presented
five times as often as any of the other exemplars during the
training phase (see Figure 3). I decided to vary the presentation
frequency of an atypical face to avoid potential ceiling effects

on the frequency manipulation. The critical predictions stem-
ming from the frequency-sensitive exemplar model are that
in relation to the Experiment 1A baseline condition, Category
2 response probabilities and “old” recognition probabilities
associated with Face 7, and stimuli that are highly similar to
Face 7, will increase. Little effect of the frequency manipula-
tion is predicted for items that are dissimilar to Face 7. That
is, the mode! (Equation 7) predicts an interactive effect of
similarity and frequency. A good metaphor is that Face 7 will
act as a magnet in the psychological space, drawing nearby
stimuli toward it.

In experiments involving the classification of Munsell
colors, Nosofsky (1988c¢) reported previous tests of the fre-
quency-sensitive exemplar model that supported these quali-
tative predictions. The present experiment extends this earlier
work in several respects. First, Nosofsky’s (1988¢) demonstra-
tions were limited to showing that manipulations of exemplar
frequencies and similarities significantly influenced typicality
and confidence judgments, whereas the focus in the present
experiment is on actual choice probabilities. Second, whereas
the previous design included only training items, the present
experiment tests how frequency and similarity interact to
determine generalization to transfer stimuli. Finally, by also
testing in the present experiment how frequency and similar-
ity influence people’s recognition judgments, further con-
straints are placed on the proposed exemplar approach to
relating classification and recognition,

Method

Subjects

The subjects were 80 undergraduates from Indiana University who
either participated for course credit or were paid. All subjects were
tested individually.

Stimuli and Apparatus

The stimuli and apparatus were the same as in Experiment 1A.

Procedure

The procedure was the same as in Experiment 1A, except that
Face 7 was presented five times as often as any of the other faces
during the training phase. There were 12 blocks of training trials,
with 14 trials per block. Face 7 was presented five times in each block,
and the remaining nine faces were presented once each. Assignment
of faces to trial numbers was randomized within each block.

Results

Effects of Exemplar Frequency

To facilitate discussion, Experiment 1A will be referred to
as the equal-frequency condition (EF) and Experiment 1B as
the high-frequency-7 condition (HF7). The probability with
which each face was classified in Category 1 and was recog-
nized as “old” during the transfer phase of Condition HF7 is
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reported in Table 1. For convenience in making comparisons.
Figure 7 plots the classification and recognition probabilities
observed in Condition HF7 against those observed in Condi-
tion EF. In the figure. the solid circles are used to highlight
critical stimuli for which the frequency manipulation was
expected to have large effects, namely. Faces 7. 14. 15, 21,
and 28. Face 7 was the frequency-manipulated stimulus,
whereas Faces 14, 15, 21, and 28 were highly similar to Face
7. differing from it on only one (physical) dimension and
matching it on the remaining three dimensions (see Figure
3). If there were no changes in classification or recognition
probabilities across Conditions EF and HF7. then all points
plotted in Figure 7 would lie on the diagonal. The effect of
the frequency manipulation can be viewed by noting the
direction and extent to which the points depart from the
diagonal.

Regarding the classification results, the Category | response
probabilities show clear and sizable decrements in Condition
HF7 in relation to Condition EF for the critical stimuli
highlighted in Figure 7A. Furthermore. as predicted by the
exemplar model, the frequency manipulation interacted with
similarity in influencing the classification probabilities. It was
not simply the case that all classification probabilities in
Condition HF7 were lowered substantially in relation to the
ones observed in Condition EF; rather, the effect of the
frequency manipulation depended on stimulus. To demon-
strate this point. a difference score was calculated for each
stimulus by subtracting the Category | response probability
in Condition EF from the one in Condition HF7. For the five
critical stimuli the average difference score was —.174,
whereas for the remaining 29 noncritical stimuli the average
difference score was only —.046, ((32) = —4.42, p < .001.
Nevertheless, Figure 7A shows clear effects of the frequency
manipulation on stimuli other than the five critical faces. As
will be seen in ensuing theoretical analyses, the exemplar
model does indeed predict many of these effects. Most nota-
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bly, large effects were also observed for Faces 11. 26, and 32

(average difference score = —.150). which correspond to the
cross-hatched circles in Figure 7A. With the exception of the
five critical faces, Faces 11. 26. and 32 were closest in

(weighted) distance to Face 7 in the psyvchological space. (The
only sizable misprediction across the 34 faces was for Face
23, which had a larger than predicted difference score.)

Regarding the recognition results, Figure 7B shows a general
lowering of the HF7 probabilities in relation to the EF prob-
abilities. an effect that is interpretable in terms of an overall
criterion shift. The important question is whether frequency
interacted with stimulus similarity in influencing the recog-
nition judgments. A difference score was calculated for each
stimulus by subtracting the recognition probability in Con-
dition EF from the one in Condition HF7. For the five critical
stimuli the average difference score was —.014, whereas for
the remaining 29 stimuli the average difference score was
—.057. This result is in the predicted direction but falls short
of statistical significance. #(32) = —1.53, .05 < p < .10 (one-
tailed test).

A potential problem with the preceding analyses is that
changes in probability are not equivalent at all regions of the
scale. Because the probability measure has a floor and ceiling
(at 0.0 and 1.0), a change in probability, say. from .10 to .05
is clearly more significant than a change from .30 to .45. To
remove this potential confounding, new analyses were con-
ducted in which the individual probabilities were transformed
to = scores. (The z transformation has the effect of stretching
the probability scale at its edges.) Then, as in the previous
analyses, differences in = scores between Conditions EF and
HF7 were computed. For classification, the average z-score
difference for the five critical stimuli was —.564 and for the
29 remaining stimuli it was —.192, 1(32) = =3.69, p < 0l.
For recognition, the average z-score difference for the five
critical stimuli was —.040 and for the remaining 29 stimuli it
was —. 191, 1(32) = 1.72, p < .05 (one-tailed test).
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Figure 7. Observed Category | response probabilities for Condition HF7 plotted against observed
Category | response probabilities for Condition EF (Panel A). and observed “old" recognition proba-
bilities for Condition HF7 plotted against observed “old™ recognition probabilities for Condition EF
(Panel B). (In both panels. the results for the 5 critical stimuli [the high-frequency item and its neighbors]
are marked by the solid circles. whereas the results for the 29 noncritical stimuli are marked by the
open circles. The cross-hatched circles mark results for stimuli that are proximal to the high-frequency

item but not as proximal as the critical stimuli.)
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In summary, the difference-score analyses using both the
raw probability data and the z-transformed data support the
exemplar model’s predictions of an interactive effect of fre-
quency and similarity, although the effect on recognition is
clearly weaker than the effect on classification. Discussion of
possible reasons for the relatively weak effect on recognition
is withheld until after the collection of additional data in
Experiment 2.

Theoretical Analyses

The frequency-sensitive exemplar model (Equations 1, 2,
4-7) was fitted to the classification and recognition data
obtained in Condition HF7 with maximum likelihood as the
criterion of fit. The memory strength for Face 7 (M, in
Equation 7) was a free parameter, whereas the memory
strengths for the remaining nine training faces were set at 1.0.
(The strength parameter for Face 7 was held fixed across
classification and recognition.) The observed classification
and recognition probabilities are plotted against the predicted
probabilities in Figure 8, and the predicted probabilities are
also reported in Table 1. As was the case in Experiment 1A,
the exemplar model provides good fits to both sets of data,
accounting for 96.5% of the variance in the classification
probabilities and for 95.4% of the variance in the recognition
probabilities. Once again, these accurate quantitative fits were
achieved despite the fact that the correlation between recog-
nition and classification confidence was low, r = .50. The
model was also fitted to the learners-only data, that is, the
data for those subjects who were the top 40 performers during
the second half of the training phase. For these subjects, the
exemplar model accounted for 98.3% of the classification-
probabilities variance and for 93.3% of the recognition-prob-
abilities variance.

The maximum likelihood parameters and summary fits for
the exemplar model are reported in Table 3. The patterns of
attention weights closely parallel the ones observed in Exper-
iment 1A. Again, for the learners, the best fitting distribution
of attention weights comes close to the ideal-observer distri-
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bution, and there were tendencies in that direction for recog-
nition.

A frequency-sensitive prototype model was also tested. The
prediction equations were the same as in Appendix C, except
that in calculating the central tendency for Category 2, a
weighted average over the exemplars was used. Specifically,
the weight given to Face 7 in calculating the central tendency
was allowed to be a free parameter. To the extent that Face 7
is highly weighted, the central tendency shifts in its direction.
The maximum likelihood parameters and summary fits for
the frequency-sensitive prototype model are reported in Table
3. Again, this model performed worse than did the exemplar
model at predicting the classification and recognition proba-
bilities.

Exemplar strength. The central question of interest in this
experiment concerned the role of frequency in classification
and recognition, and the extent to which the frequency effects
could be modeled in terms of changing exemplar strength. As
reported in Table 3, the maximum likelihood strength param-
eter for Face 7 was M; = 1.464. Use of this free parameter
was critical for accurately characterizing the classification and
recognition data. A restricted version of the model in which
the strength parameter was assumed to be directly propor-
tional to the relative presentation frequency of Face 7 (i.e.,
M; = 5.0) performed dramatically worse than the full model,
x*(1, N = 10,880) = 516.7, p < .001. The restricted model
predicted changes in classification and recognition probabili-
ties for Face 7 and its neighbors that were far too extreme.
Thus, there appears to be a negatively accelerated, increasing
relation between represented and actual frequency. In other
words, once exemplar strength reaches certain levels, addi-
tional presentations of an item may lead to diminishing
increases in exemplar strength. In part, this negatively accel-
erated relation may be reflecting a phenomenon in which
subjects devote less attention and rehearsal to the highly
frequent items that are already well stored in memory.

A frequency-insensitive model with M, = 1.0 also per-
formed significantly worse than the full model, x*(1, N =
10,880) = 15.1, p < .01. This model failed to account for the
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Figure 8. Scatterplot of observed against predicted classification and recognition probabilities in

Experiment 1B (Condition HF7).



This document is copyrighted by the American Psychological Association or one of its alied publishers.
Thisarticleisintended solely for the personal use of the individual user and is not to be disseminated broadly.

16 ROBERT M. NOSOFSKY
Table 3
Maximum Likelihood Parameters and Summary Fits, Experiment 18
Parameters Fits
Model 4 ¢ wy W, Wi Wy X, b M, SSE % Var -In L
All-subjects analyses
Context
Classification .267° 1.077* 15 15 .29 41 173 1.464* 097 96.5 129.2
Recognition 267 1.0772 A3 .56 .23 .08 5.322 1.464* 076 95.4 119.2
Prototype
Classification .186° 770 .16 .14 .40 .30 .044 1.123* 175 93.7 181.0
Recognition .186° 77 .25 .55 12 .07 1.231 1.123* 182 89.0 156.0
Learners-only analyses
Context
Classification .298* 1.491° .25 .02 .62 11 269 1.544* 073 98.3 81.8
Recognition .298* 1.4917 .06 .57 28 .08 4.430 1.544* 110 93.3 100.1
Prototype
Classification .191* .887* .26 .01 .63 .10 1.191 1.386* 1t4 97.4 112.4
Recognition 191 .887% .18 53 .20 10 .059 1.386% 216 86.8 117.3

Note.
log-likelihood.
2 These parameters were held fixed across classification and recognition

clear interactive effects of frequency and similarity that were
observed in the data. When separate exemplar-strength pa-
rameters were allowed, the maximum likelihood estimates
were M, = 1.583 for classification and M; = 1.369 for
recognition; however, this model with separate strength pa-
rameters did not fit significantly better than the one that
assumed constant exemplar strength, x*(1, N = 10,880) =
0.76, p > .20. Thus, although the qualitative effects of the
frequency manipulation were weaker for recognition than for
classification, the quantitative modeling suggests caution in
overinterpreting the result.

To gain additional perspective on the frequency manipu-
lation, theoretical analyses were conducted that directly com-
pared the Conditions EF and HF7 classification and recogni-
tion data. First, the exemplar model was fitted simultaneously
to the EF and HF7 classification data, with all parameters
held constant across conditions except for the exemplar-
strength parameter and the category response-bias parameter
(b in Inequality 5). As reported in Table 4, impressive fits to
both data sets were achieved, with the maximum likelihood

Table 4

SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =

estimate of Af; being 2.028. Thus, the qualitative changes in
classification probabilities that resulted from the frequency
manipulation are parsimoniously described by an exemplar
model with constant sensitivity, attention weight, and vari-
ance parameters, with only the exemplar-strength and re-
sponse-bias parameters varying. When the model was refitted
to both sets of classification data with the strength parameter
held fixed at M, = 1.0, the quantitative fit was dramatically
worse, x*(1, N = 10,880) = 31.59, p < .001. This model-
fitting analysis corroborates the previous qualitative observa-
tions made with regard to Figure 7.

The exemplar model was also fitted simultaneously to the
EF and HF7 recognition data, with all parameters held con-
stant across conditions except for the exemplar-strength pa-
rameter and the recognition criterion {x. in Inequality 6).
Again, impressive fits to both data sets were achieved (Table
4), with the maximum likelihood estimate of M- being 1.309.
Holding fixed M- at 1.0 led to a significantly worse fit, x*(1,
N =10,880) = 6.19, p < .05. However, in agreement with the
previous qualitative analyses, this quantitative modeling sug-

Maximum Likelihood Parameters and Summary Fits for the Context Model When the Conditions EF and HF7 Classification

and Recognition Data Are Fitted Conjointly

Parameters Fits

Condition I c w, W, W, W, b M, SSE % Var -In L
Classification

EF 3472 1.370° 220 .15 .28¢ .35 .169 1.000 108 96.1 133.2

HF7 .347% 1.370® 220 .15 .28 350 —.008 2.028 .094 96.6 132.5
Recognition

EF 2582 1.117° 15 482 254 g 4,727 1.000 122 92.2 138.2

HF7 258 1.117# 15 .48° 250 18 5.020 1.309 079 95.2 120.8

Note.

SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =

log-likelihood. The value of M, was held fixed at 1.000 in Condition EF.

® These parameters were held fixed across Conditions EF and HF7.
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gests a weaker interactive effect of frequency and similarity
on recognition than on classification.

Discussion

Broadly, the results of Experiment 1B provide additional
support for the exemplar approach to relating classification
and recognition. Good quantitative fits to both sets of data
were achieved, and the fits were superior to those of a central-
tendency prototype model. The interactive effect of frequency
and similarity on classification and recognition performance
was also well captured by the model and was interpretable in
terms of changes in exemplar strength resulting from the
frequency manipulation. A cause for concern, however, is
that the effect of the frequency manipulation was weaker for
recognition than for classification, as indicated by both the
qualitative and quantitative analyses. Although suggestive,
more evidence is needed before considering possible reasons
for this unexpected result. The purpose of Experiment 2 was
to follow up on the studies of Experiments 1A and 1B by
using a new category structure and to obtain additional evi-
dence bearing on the main issues that have been studied.

Experiment 2

A new category structure was designed for testing the ex-
emplar model of classification and recognition. The same set
of schematic faces from Experiment 1 was used. The category
structure is illustrated in Figure 9, which shows plots of
Dimensions 2 versus 4 and Dimensions 1 versus 3. The
training exemplars of Category 1 were Faces 12, 19, 22, 27,
and 28 (enclosed by circles), whereas the Category 2 training
exemplars were Faces 8, 17, 23, 25, and 32 (enclosed by
triangles).

As shown in Figure 9A, the categories of exemplars are well
separated in the plot of Dimension 2 (eye separation) versus
Dimension 4 (mouth height). Indeed, over a wide range of
parameter values, the exemplar model predicts that subjects
would optimize their classification performance by attending
selectively to these psychological dimensions. Thus, whereas
for the category structure that was tested in Experiment 1 the
learners focused attention on the dimensions of eye height
and nose length, it was expected in the present experiment
that they would attend primarily to eye separation and mouth
height.

Although eye separation and mouth height are highly di-
agnostic for classification, it turns out that the other two
dimensions are more diagnostic for discriminating old items
from new items. This point is illustrated in Figure 9B, which
shows that the old training exemplars form a diagonal running
from the lower left to the upper right of the eye height-nose
length psychological space, with many of the new items lying
at the opposite corners of this space. Thus, the combination
of values on the eye-height and nose-length dimensions allows
for a fairly good separation between the sets of old and new
exemplars. Indeed, over a wide range of parameter values, the
exemplar model predicts that subjects would optimize their
recognition performance by attending selectively to eye height
and nose length. The central prediction in this experiment,
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Figure 9. Nlustration of the category structure tested in Experiment

1. (Stimuli enclosed by circles denote training exemplars for Category
1, and stimuli enclosed by triangles denote training exemplars for
Category 2.)

therefore, is that whereas subjects will focus on eye separation
and mouth height for classification purposes, there will be
some shifts of attention to eye height and nose length for
recognition purposes.

As was the case in Experiment 1, two conditions were
tested. In Condition EF all training exemplars were presented
with equal frequency, whereas in Condition HF19 Face 19
was presented five times as often as the other exemplars. The
purpose of the frequency manipulation was to obtain addi-
tional evidence bearing on the interactive roles of similarity
and frequency in determining classification and recognition.
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Method

Subjects

The subjects were 160 undergraduates from Indiana University
who participated as part of an introductory psychology course re-
quirement. There were 80 subjects each in Conditions EF and HF19.

Stimuli and Apparatus

The stimuli and apparatus were the same as in Experiment 1.

Procedure

The procedure was the same as in Experiment 1, except that the
new category structure illustrated in Figure 9 was tested. In Condition
EF all exemplars were presented with equal frequency during training,
whereas in Condition HF19 Face 19 was presented five times as often
as any of the other exemplars.

Results and Theoretical Analyses

Condition EF

The probability with which each stimulus was classified in
Category 1 and was judged as “old” in Condition EF is
presented in Table 5. As was the case in Experiment 1, there
was a low correlation between the classification confidence
measure and the probability of “old” recognition responses
(r = .22). Various examples exist in which classification
confidence is low but recognition probability is high (e.g.,
Faces 16, 24, 25, and 34), and likewise in which classification
confidence is high yet recognition probability is low (e.g.,
Faces 5, 6, and 21).

Despite the low classification-recognition correlation, the
exemplar model achieves fairly good quantitative fits to both
sets of data, although the fits are not as impressive as those
obtained in Experiment 1. The predicted Category 1 and
“old” recognition response probabilities are presented along
with the observed probabilities in Table 5, and scatterplots of
the observed against predicted classification and recognition
probabilities are shown in Figure 10. The exemplar model
accounts for 86.3% of the variance in the classification data
and for 81.5% of the variance in the recognition data. By
comparison, the prototype model accounted for only 77.2%
of the variance in the classification data and 47.3% of the
variance in the recognition data. An augmented version of
the exemplar model, which yields an appreciably better fit to
the classification data than the standard version, is discussed
in Appendix D. Because none of the major conclusions are
changed and the augmented model involves the addition of
some post hoc assumptions, I prefer to focus on the standard
model in the main text.

The maximum likelihood parameters and summary fits for
the exemplar model as well as the prototype model are re-
ported in Table 6. Again, the best fitting distributions of
attention weights differ considerably for classification and

recognition. As predicted, for classification subjects attended
primarily to eye separation and mouth height. Indeed, they
came close to theoretically optimizing their classification per-
formance: With the best fitting weights, the predicted propor-
tion of correct classification responses is .791, which is close
to the optimal of .819. The best fitting distribution of classi-
fication weights is plotted against the optimal distribution in
Figure 11. As can be seen, the correspondence is quite good.

Also as predicted, subjects increased their attention to the
dimensions of eye height and nose length in making their
recognition judgments (see Table 6). Impressively, whereas
subjects devoted nearly half of their attentional resources to
mouth height for the classification task, this dimension was
given zero weight for recognition. The best fitting distribution
of recognition weights is not the theoretically optimal distri-
bution, as can be seen in Figure 11. Nevertheless, had subjects
adopted the same distribution of weights for recognition as
they had adopted for classification, the predicted hit minus
false-alarm rate would have been only .086. With the distri-
bution of weights that was actually used, the predicted hit
minus false-alarm rate was .229. Thus, subjects improved
their recognition performance considerably by shifting some
attention to the new dimensions. (The theoretically optimal
hit minus false-alarm rate was .283.)

Condition HF19

The probability with which each stimulus was classified in
Category 1 and was judged as “old” in Condition HF19 is
reported in Table 5. To facilitate comparisons, Figure 12 plots
these classification and recognition probabilities against those
observed in Condition EF. The figure also highlights with
solid circles the critical stimuli for which the exemplar model
predicts the largest increases in classification and recognition
probabilities. The critical stimuli were selected on the basis of
their weighted distance to the high-frequency item (Face 19).
The weights used in calculating the distances were the maxi-
mum likelihood parameters estimated in Condition EF. For
classification, six faces were proximal (weighted distance less
than .30) to Face 19 (Faces 11, 16, 19, 25, 26, and 29),
whereas for recognition, five faces were proximal (Faces 13,
19, 22, 25, and 29).

Difference-score analyses analogous to those already de-
scribed in Experiment 1 were conducted. For classification
the frequency effect was robust: The average difference score
for the 6 critical faces was .195, and for the remaining 28
noncritical faces it was —.030, 1(32) = 4.81, p < .01. Indeed,
the effect of the frequency manipulation extended even to the
six faces that were next closest to the high-frequency face,
which are represented by the cross-hatched circles in Figure
12A. As can be seen, there is a strong tendency for all of the
solid and cross-hatched circles to lie above the diagonal in
Figure 12A, whereas the open circles corresponding to non-
proximal stimuli lie close to the diagonal or below it.

For recognition the average difference score for the 5 critical
faces was .096 and for the remaining 29 noncritical faces it
was —.026, 1(32) = 3.22, p < .0l. This pattern of results is
similar to the one observed in Experiment 1. Interactive effects
of frequency and similarity were observed for both the clas-
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Table 5

Observed and Predicted Category 1 Response Probabilities and “Old” Recognition Probabilities for Each Face in Experiment 2

Condition EF Condition HF19

Condition EF Condition HF19

Face P(Cy) P(old) P(Cy) P(old) Face P(C)) P(old) P(Cy) P(old)
1 469 195 .549 .163 18 .366 .541 250 520
.660 126 748 151 .381 .563 189 579

2 304 .666 159 .645 19 734 .687 969 7191
253 639 151 761 774 .604 963 788

3 559 .295 575 234 20 097 666 055 .644
456 .369 430 342 095 671 .069 730

4 614 .286 .604 217 21 837 .354 831 362
375 .263 415 .082 944 .394 938 294

5 127 304 .642 230 22 .860 742 947 827
.843 .264 698 132 925 818 969 781

6 .178 .445 133 .396 23 .093 779 .052 795
156 406 101 327 .094 .838 .044 75

7 .840 539 .836 .504 24 .806 57 .876 176
855 .610 .881 531 633 715 811 767

8 128 .642 .085 667 25 419 .842 .606 .884
113 .556 126 .635 .394 .600 675 731

9 575 .491 .385 479 26 618 .345 .809 337
17 516 516 434 .744 .388 855 .396

10 619 .360 425 315 27 .796 .804 .869 .845
.681 325 541 264 675 781 731 794

11 618 .345 .809 337 28 .855 772 .843 767
g1 421 .881 381 .844 775 .844 706

12 .654 .505 .509 518 29 725 .566 .960 .637
763 581 656 .594 .838 638 .950 781

13 854 . 552 930 601 30 .366 541 250 520
937 673 .956 731 318 .643 222 513

14 417 .549 .559 .502 31 281 247 193 197
.338 S19 516 434 270 .164 126 .164

15 671 564 720 522 32 230 778 12 797
525 575 .660 491 283 799 .169 819

16 422 758 605 770 33 .567 373 .574 .288
394 .588 679 742 .369 331 .409 .308

17 125 .462 .081 474 34 .505 .603 .405 567
081 .588 .031 .566 .488 675 264 667

Note.

sification and recognition data, although the effects were again
larger for classification than for recognition. Regarding the
recognition data, note that the largest effect occurred for the
frequency-manipulated item itself, namely Face 19 (difference
score = .19). The average increase in recognition probability
for the four neighbors of Face 19 was .072. By comparison,
the average increase in probability with which the five neigh-
bors of Face 19 were classified in Category 1 was .196. Further

Top entries in each row are predicted probabilities; bottom entries are observed probabilities.

evidence that the frequency manipulation had a differential
effect for classification and recognition is provided in the
ensuing theoretical analyses.

In fitting the frequency-sensitive exemplar model to the
Condition HF19 data, it was found necessary to allow the
exemplar-strength parameter for Face 19 to vary freely across
classification and recognition. The predicted probabilities of
Category 1 responses and of “old” recognition judgments are
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Figure ]0. Scatterplot of observed against predicted classification and recognition probabilities in

Condition EF of Experiment 2.

shown with the observed probabilities in Table 5. Scatterplots
of the observed against predicted probabilities are presented
in Figure 13. Although there is room for improvement, the
fits are fairly good, with 91.9% and 89.0% of the variance in
the classification and recognition data accounted for, respec-
tively.

The maximum likelihood parameters and summary fits for
the frequency-sensitive model are reported in Table 6. The
distributions of attention weights for classification and rec-
ognition are similar to those derived in Condition EF. The
most notable result concerns the estimates for the exemplar-
strength parameter (M,s). For classification, the strength-
parameter estimate was M,, = 2.73, whereas for recognition
the M, estimate did not depart from its lower bound of 1.0.
(Slightly better fits to the recognition data can be achieved by
allowing M, to dip below 1.0, but the improvement is not
statistically significant.) The parameters and summary fits for
a restricted version of the exemplar model in which the M,

parameter was constrained to be constant across classification
and recognition are shown in Table 6. The decrement in fit
for this restricted model in relation to the full model with
separate exemplar-strength parameters was statistically signif-
icant, x*(1, N = 10,880) = 48.4, p < .01. This result should
be interpreted with caution, however, because Table 6 indi-
cates that there was little difference between the full and
restricted models when fit is measured in terms of the sum of
squared deviations between predicted and observed probabil-
ities.

The exemplar model was also fitted to the Conditions EF
and HF19 classification and recognition data simultaneously
(see Table 7). In fitting the model to the classification data,
all parameters were held constant across Conditions EF and
HF19 except for the exemplar-strength parameter and the
category response-bias parameter. The maximum likelihood
estimate of the strength parameter in Condition HFI19 was
M5 = 3.18. The fit for a version of the model in which M,

Table 6 .
Maximum Likelihood Parameters and Summary Fits for the Context Model and Prototype Model in Experiment 2
Parameters Fits
Model o c w, W, Wi Wy X b My SSE % Var <In L
Condition EF
Context
Classification .389° 1.1692 .108 463 .000 429 ~.071 .340 86.3 219.1
Recognition .389° 1.169* .294 .499 207 .000 4.748 212 81.5 174.4
Prototype
Classification .0442 .092* 128 478 011 .382 .003 567 77.2 303.7
Recognition .044* 092 .245 295 337 123 1.902 .603 47.3 309.9
Condition HF19
Context
Classification .406* 1.865* 126 587 .000 288 478 2.73 277 91.9 194.8
Recognition .406° 1.865* 414 378 208 000 3.187 1.00 187 89.0 168.9
Restricted context
Classification 3792 1.719* .142 660 .000 .198 13 1.54% .296 914 205.2
Recognition .379* 1.719* .290 529 180 .000 3.719 1.54? 211 87.6 182.6

Note.
log-likelihood.

 These parameters were held fixed across classification and recognition.

SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =
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Figure 11. Best fitting distributions of attention weights (solid lines)
plotted with ideal-observer distributions of attention weights (dashed
lines) in Condition EF of Experiment 2.

was held fixed at 1.0 was dramatically worse than that of the
full model, x*(1, N = 10,880) = 167.1, p < .01. In fitting the
model to the recognition data, all parameters were held con-
stant across Conditions EF and HF19 except for the strength
parameter and the recognition criterion. The maximum like-
lihood estimate of M5 in Condition HF19 was 1.40, which
leads to a significantly better fit to the recognition data than
if the M, parameter is held fixed at 1.0, x*(1, N = 10,880) =
7.12, p < .05. However, the magnitude of the best fitting
exemplar-strength parameter for recognition, as well as the
magnitude of the improvement in fit, seems small in relation
to what was observed for the classification data.

To summarize, the theoretical analyses indicate that the
frequency manipulation exerted a major impact on subjects’
classification responses, and this impact appears to be inter-
pretable in terms of changes in category response bias and
exemplar strength across Conditions EF and HF19. Simple
changes in bias and exemplar strength may not tell the whole
story, however, because both the qualitative and model-based

analyses suggest that the frequency manipulation had a
weaker effect on recognition than on classification. This pat-
tern of results is similar to the one observed previously in
Experiment 1 and may indicate shortcomings in the present
theoretical account of relations between classification and
recognition.

General Discussion

The goal of this research was to provide rigorous quantita-
tive tests of an exemplar-similarity model for relating percep-
tual classification and recognition memory. On the basis of
similarity-ratings data, an MDS solution was derived for 34
schematic faces. This MDS solution was then used in con-
junction with the exemplar model to predict classification
and recognition performance. It was assumed that classifica-
tion judgments were based on the similarity of a probe to the
exemplars of a target category in relation to exemplars of a
contrast category, whereas recognition judgments were based
on absolute summed similarity to all stored examplars. Be-
cause classification and recognition involve different decision
rules, performance in the two tasks may often be lowly
correlated, as was observed in the present study. Despite the
low correlations, fairly good quantitative accounts of the
recognition and classification data were achieved in the pres-
ent research in terms of the unifying assumption that both
types of judgments are based on similarity comparisons with
stored exemplars. The present demonstrations go beyond
earlier ones reported by Nosofsky (1988a) by showing that
detailed quantitative predictions of classification and recog-
nition performance for individual items can be achieved
within this proposed theoretical framework.

The model-based analyses also pointed toward the impor-
tance of selective attention processes in determining the clas-
sification-recognition relation. In previous work concerned
with relations between identification and classification per-
formance, Nosofsky (1986, 1987, 1989) observed that sub-
jects’ attentional weightings of the component dimensions of
the stimuli shifted systematically with the structure of the
categories to be learned. The present work shows that atten-
tional resources may be allocated differentially for recognition
judgments as well. Indeed, evidence was provided in the
present study that the distributions of attention over the
psychological dimensions differed depending on whether sub-
jects made classification or recognition judgments. The utility
of attending to particular dimensions varies with task goals.
A dimension that is highly diagnostic for discriminating be-
tween categories may be useless for discriminating between
old and new items. The present study provided support for
the hypothesis that the learners distributed attention over the
psychological dimensions to optimize their classification per-
formance (cf. Nosofsky, 1984, 1986; Reed, 1972; Shepard et
al., 1961), and some tendencies in that direction were ob-
served for recognition. Note that recognition judgments were
not made until after all training exemplars had been pre-
sented. Thus, the attention weights must be reflecting, at least
in part, processes operating at the time of retrieval and deci-
sion making rather than solely at time of storage of the
exemplar information. An important issue for future work
involves the development of process models that specify
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Figure 12. Observed Category | response probabilities in Condition HF19 plotted against observed
Category | response probabilities in Condition EF (Panel A), and observed “old” recognition probabil-
ities in Condition HF 19 plotted against observed “old” recognition probabilities in Condition EF (Panel
B). (In both panels, the results for the critical stimuli [the high-frequency item and its neighbors] are
marked by the solid circles, and the results for the noncritical stimuli are marked by the open circles.
The cross-hatched circles mark results for stimuli that are proximal to the high-frequency item but not

as proximal as the critical stimuli.)

mechanisms of weight change as a function of classification
and recognition experience.

The present research also pointed toward the importance
of individual item frequency in classification and recognition.
Systematic changes in classification and recognition probabil-
ities were observed as a function of a frequency manipulation
for an individual item. These changes were well predicted by
a model which assumed that the exemplar memory strength
associated with an item increased as its presentation frequency
was increased. Because exemplar strength was assumed to
combine multiplicatively with interitem similarity, the model
predicted an interactive effect of frequency and similarity,
and this interactive effect was observed.

Perhaps the major shortcoming of the present theoretical
account, however, involves the complex effect that frequency
and similarity exerted on recognition performance, and in
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particular the reason that the frequency effects were weaker
for recognition than for classification in both Experiments |
and 2. A post hoc explanation is the following. Various
researchers have suggested that perceptual differentiation may
result from increased experience with objects (e.g., Gibson &
Gibson, 1955). Indeed, in model-based analyses of identifi-
cation confusion data, Nosofsky (1987) provided evidence of
decreases in similarities among objects as a function of learn-
ing. To the extent that increased perceptual differentiation
occurred in the local region of the psychological space around
the high-frequency items, recognition probabilities for highly
similar distractor items would tend to be lowered. Thus, with
regard to recognition, the frequency manipulation may have
exerted competing influences: increased exemplar strength for
the high-frequency items but decreasing perceptual similarity
between the strengthened items and their neighbors in the
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Figure 13. Scatterplot of observed against predicted classification and recognition probabilities in

Condition HF 19 of Experiment 2.
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Table 7
Maximum Likelihood Parameters and Summary Fits for the Context Model When the Conditions EF and HF19
Classification and Recognition Data Are Fitted Conjointly

Parameters Fits

Condition o c wy W, Wi Wa b M SSE % Var -In L
Classification

EF 3418 1.095* 1270 .479* .000° .394° —-.058 1.000 .338 86.4 217.0

HF19 3410 1.095* 1270 .479* .000° 3942 1.023 3.180 .308 91.0 201.9
Recognition

EF .464* 1.675* .356* .434° 2112 .000* 3.511 1.000 .204 82.2 172.7

HF19 .464° 1.675* .356* 4340 2112 .000* 3.677 1.404 216 87.3 177.5

Note. SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =

log-likelihood. The value of M, was held fixed at 1.000 in Condition EF,

* These parameters were held fixed across Conditions EF and HF19,

psychological space (cf. Nosofsky, 1988b, 1988c; Shiffrin,
Ratcliff, & Clark, 1990). Furthermore, it can be argued that
this increasing perceptual differentiation would not weaken
the exemplar-strength effect in the classification paradigm,
because classification and recognition involve different task
goals. In deciding category membership for a novel item that
is similar to a strong item, an observer may be able to
perceptually discriminate the objects. But from a cognitive,
judgmental standpoint, the high similarity of the novel item
to the strong training exemplar should still lead the observer
to classify it in the strong exemplar’s category. In other words,
two forms of similarity may be involved: a “perceptual”
similarity that places limits on an observer’s ability to discrim-
inate items, and a “cognitive” similarity that leads to gener-
alizations in decisions about class membership (cf. Ennis,
1988; Estes, 1986a; Nosofsky, 1987; Shepard, 1986).

Another important question for future research concerns
the generality of the summed-similarity rule for recognition.
People may avail themselves of a number of alternative
strategies in making recognition judgments. Indeed, various
researchers have suggested that in addition to basing recog-
nition judgments on a global familiarity index, people may
make use of search and retrieval strategies (e.g., Atkinson &
Juola, 1974; Mandler, 1980; Tulving & Thomson, 1971). The
global familiarity rule may be prevalent in classification learn-
ing situations, where it is presumably difficult to gain unique
access to memory representations of similar stimuli. But a
complete account of the classification-recognition relation
may require recourse to search and retrieval strategies as well,
particularly if highly distinctive training items are used. Fur-
thermore, a natural extension of the present investigation,
already initiated by Clark (1988), is to study how people recall
individual category exemplars in addition to how they classify
and recognize them. And in the act of recall, search strategies
are likely to be paramount.
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Appendix A

The physical specifications for the 34 schematic faces and the MDS
solution for the faces that was derived from the similarity judgment
data are provided in Table Al. With regard to the physical specifica-
tions, eye height is measured in millimeters from the top of the

outline of the face; eye separation is measured in millimeters between
the center of the two eyes; nose length is measured in millimeters;
and mouth height is measured in millimeters from the bottom of the
outline of the face.

Table Al

Physical Specifications and Multidimensional Scaling (MDS) Coordinates for the 34 Faces

Dimension 1 Dimension 2 Dimension 3 Dimetision 4

Face EH MDS ES MDS NL MDS MH MDS
1 235 -1.025 21.5 0.493 13.5 0.048 16.5 -0.666
2 19.5 -0.172 1.5 -0.557 18.0 0.337 12.0 0.163
3 235 —0.980 16.5 0.275 13.5 -0.005 12.0 =0.067
4 23.5 —-0.951 16.5 0.259 18.0 0.399 12.0 0.093
5 23.5 -0.960 16.5 0.198 18.0 0.380 7.5 0.527
6 15.0 0.665 11.5 —0.441 9.0 -0.508 16.5 -0.396
7 19.5 -0.059 16.5 0.243 9.0 ~0.602 7.5 0.624
8 15.0 0.586 11.5 —=0.511 18.0 0.381 16.5 -0.507
9 15.0 0.823 11.5 -0.539 18.0 0.332 7.5 0.633
10 15.0 0.823 1.5 ~0.504 9.0 —0.487 7.5 0.776
11 19.5 -0.227 21.5 0.589 9.0 -0.529 16.5 -0.431
12 23.5 —1.041 11.5 —0.538 9.0 =0.449 7.5 0.629
13 15.0 0.788 21.5 0.597 13.5 0.062 12.0 0.175
14 19.5 -0.199 16.5 0.186 9.0 -0.572 16.5 -0.429
5 19.5 -0.106 16.5 0.150 9.0 —0.604 12.0 0.129
16 15.0 0.622 16.5 0.192 13.5 0.003 16.5 -0.497
17 23.5 -1.158 11.5 -0.526 9.0 -0.371 16.5 -0.530
18 15.0 0.765 11.5 -0.491 13.5 0.086 12.0 0.083
19 15.0 0.553 21.5 0.623 18.0 0.461 16.5 -0.412
20 19.5 -0.275 1L.5 -0.578 18.0 0.295 16.5 ~0.471
21 19.5 0.018 21.5 0.617 9.0 ~0.586 7.5 0.621
22 15.0 0.665 21.5 0.507 18.0 0.476 12.0 0.116
23 19.5 -0.207 11.5 —-0.546 13.5 -0.064 16.5 -0.488
24 15.0 0.683 16.5 0.215 13.5 0.069 12.0 0.167
25 15.0 0.495 16.5 0.218 18.0 0.445 16.5 —0.481
26 19.5 -0.227 21.5 0.589 9.0 —0.529 . 16.5 -0.431
27 15.0 0.723 16.5 0.188 18.0 0.362 12.0 0.142
28 19.5 -0.020 16.5 0.211 13.5 -0.095 7.5 0.723
29 15.0 0.591 21.5 0.645 13.5 0.025 16.5 -0.438
30 15.0 0.765 11.5 -0.491 13.5 0.086 12.0 0.083
31 23.5 —1.114 11.5 -0.520 18.0 0.636 12,0 -0.028
32 19.5 —0.154 11.5 ~0.562 13.5 -0.043 12.0 0.057
33 22.7 —0.856 16.5 0.197 16.2 0.241 12.0 0.007
34 15.9 0.704 12.5 -0.287 12.6 -0.164 11.1 0.178

Note. EH = eye height, ES = eye separation, NL = nose length,

and MH = mouth height.

Appendix B

Given the assumptions stated in the text, the random variable E, ;
— E;,is normally distributed with mean Y,ec,S; — Ljec,s;and variance
1002, The probability of making a Category 1 response given pres-
entation of stimulus / is found, therefore, by integrating this normal
random variable from & to o, or alternatively, integrating a standard-
ized normal random variable from [Yec,55 — Sec,s; + b}/vV100 to
. Because of the symmetry of the standardized normal, this is
equivalent to computing the integral from — 10 [Yjec,5i — Zjec,Si
— b]/v10¢ of a standardized normal random variable. Analogously,
the theoretical expression for the probability of an “old” recognition
response is found by computing the integral from — to [Yjec,s; +

YiecSy = X)/ V100 of a standardized normal random variable.

A nutnerical approximation (accurate to within 7.5 x 10~%) for
compiting P(x) = [*. Z{t)d!, wheré Z(¢) is the staridardized normal
random variable [i.e., Z(t) = 1 /«/51_17 €™"72), and where x = 0, is the
following (from Zelen & Severo, 1972, p. 932):

P(x) = | — Z(x)(bit + bat® + bt® + bat* + bst?),
where ¢ = (I + px)™', p = 2316419, b, = 0.319381530, b

~0.356563782, by = 1.781477937, by = —1.821255978, and bs
1.330274429.

[}
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Appendix C

The psychological prototypes are computed by averaging over the
MDS coordinate values associated with the five exemplars of each
category. Thus, the coordinates for the Category | prototype are p,
= —.818, p» = .134, p;3 = .240, and p,, = .010; the coordinates for
the Category 2 prototype are p,, = .568, pp = —.350, p»3 = —.177,
and p,s = .226. The distance between stimulus / and prototype j is
computed by using a (weighted) Euclidean metric:

2]1/2

Xim = Djm

4
dy = t{ Z W

m=|

where the parameters are defined as before. This distance is trans-
formed to a similarity measure by using an exponential decay func-
tion, s; = exp(—d,). The degree to which stimulus / activates prototype
Jjisgiven by a; = 5, + ¢;, where the ¢;s are independent and identically
distributed normal random variables with mean 0 and variance o
The evidence for Category 1 is equal to the degree to which Prototype
1 is activated, and likewise for the evidence for Category 2. The
decision rules for classification and recognition are the same as for
the exemplar model (Inequalities 5 and 6). The predicted classification
and recognition probabilities are computed as explained in Appendix
B, except the decision variables have variance 2¢2, rather than 1007,

Appendix D

In exploratory analyses, it was discovered that a substantially better
fit to the Conditions EF and HF19 classification data could be
achieved by incorporating an additional process into the formal
modeling. A central theme in previous tests of the exemplar model
and of the present work has been that similarities among exemplars
are modifiable by selective attention. The attention process has been
formalized by using weight parameters in the distance function (Equa-
tion 1). The geometric interpretation of the weights is one of stretching
or shrinking of the psychological space along its coordinate axes. This
formalization has assumed that the attention process acts globally on
each of the psychological dimensions. However, with regard to mod-
eling classification data, researchers such as Luce, Green, and Weber
(1976), Medin and Edelson (1988), Nosofsky (1983), and Nosofsky,
Clark, and Shin (1989) have argued for the potential importance of
value-specific selective attention. By this I mean devoting attention
to a particular value or local region of a psychological dimension, as
opposed to attending globally to the entire dimension. With reference
to Figure 9A, note that the very large values of eye separation and
mouth height are sufficient cues for membership in Category 2. It
was hypothesized that subjects might have noticed this relation and
selectively attended to these values when learning the classification.
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Figure DI.

To formalize the value-specific selective attention process, it is
assumed that there is local stretching of the psychological space in
the region of the attended values. Specifically, the eye separation
coordinates for all stimuli having the large values of eye separation
were incremented by a free parameter v, as were the mouth-height
coordinates for all stimuli having the large values of mouth height.
The maximum likelihood parameters and summary fits for this
augmented version of the exemplar model are reported in Table D1.
Adding the value-specific selective attention parameter dramatically
improved the fit of the exemplar model to the classification data of
both Conditions EF and HF19. Scatterplots of the observed against
predicted probabilities for the augmented model are shown in Figure
DI1. Comparison with Figures 10A and 13A reveals a noticeable
improvement. The remaining parameters have values that were sim-
ilar to ones estimated previously when fitting the standard model, so
the earlier conclusions regarding the patterns of global selective
attention and the role of frequency remain unchanged. This explor-
atory analysis should be regarded as only suggestive, and further
research is clearly needed to provide systematic evidence for the
operation of value-specific selective attention processes.
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Scatterplot of observed against predicted classification probabilities in Conditions EF and

HF19 of Experiment 2 for the exemplar model with value-specific selective attention.
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Table D1
Maximum Likelihood Parameters and Summary Fits for the Context Model With Value-Specific Selective Attention
Parameters Fits
Condition EF o c W, W, 7 W, X, b v My SSE % Var  -In L
EF
Classification  .437° 1.333* 132 439 .000 429 -.239 247 .059 97.6 [15.2
Recognition 437 1.333* 313 481 .206 000 4.291 .201 82.5 169.9
HF19
Classification  .369* 1.395° 187 582 .002 229 .206 311 2.536 165 95.2 151.0
Recognition .369° 1.395* 400 332 268 000 4.047 781 211 87.6 175.0

Note. SSE = sum of squared deviations between predicted and observed probabilities; % Var = percentage of variance accounted for; In L =
log-likelihood.
* These parameters were held fixed across classification and recognition.

Received September 19, 1989
Revision received April 9, 1990
Accepted April 10, 1990 =





