ire

ed

3).

in,

te-

\nd

at-
in
WS
| &
10N
ga-
na-

10l-

ern

3),

s

CHAPTER 9

Models of Categorization

John K. Kruschke

In: Ron Sun (Ed.), 2008. The Cambridge Handbook of
Computational Psychology. New York: Cambridge University Press.

1. Introduction

This chapter surveys a variety of formal
models of categorization, with emphasis on
exemplar models. The chapter reviews ex-
emplar models’ similarity functions, learn-
ing algorithms, mechanisms for exemplar
recruitment, formalizations of response
probability, and response dynamics. The
intended audience of this chapter is stu-
dents and researchers who are beginning
the daunting task of digesting the literature
regarding formal models of categorization.
There are numerous variations for formaliz-
ing the component processes in exemplar
models of categorization, and one of the
contributions of the chapter is a direct com-
parison of component functions across mod-
els. For example, the similarity functions of
several different models are expressed in a
shared notational format, and formulas for
the special case of present/absent features
are derived, which permits direct compari-
son of their behaviors. No previous review
cuts across models this way, also including
comparisons of learning, exemplar recruit-
ment, and so forth.

By decomposing the models and display-
ing corresponding components side by side,
the chapter intends to reveal some of the
issues that motivate model builders, and
to identify some of the unresolved issues
for future investigators. Along the way, a
few promising but undeveloped ideas are
pointed out, such as an identity-sensitive
similarity function (Kruschke, 1993), a new
gradient-descent learning rule for the Super-
vised and Unsupervised Stratified Adaptive
Incremental Network (SUSTAIN) model
(Love, Medin, & Gureckis, 2004), an atten-
tionally modulated exemplar recruitment
mechanism (Kruschke, 2003b), a proposal
for cascaded activation in Attentional Learn-
ing Covering map (ALCOVE; Kruschke,
1992), among others.

Whereas this chapter is specifically in-
tended to survey exemplar model for-
malisms, it avoids discussions of the various
empirical effects explained or unexplained
by each model variation. A survey of empir-
ical phenomena can be found in the highly
readable book by Murphy (2002). A chap-
ter by Goldstone and Kersten (2003) de-

scribes the various roles of categorization in
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cognition. Another chapter by Kruschke
(2005) surveys models of categorization
with special emphasis on the role of selective
attention and attentional learning. Previous
reviews by Estes (1993, 1994) emphasize
particular exemplar models and associated
empirical results through the early 1990s.

1.1. Everyday Categorization

Everyone does categorization. For example,
if you were in an office, and your companion
pointed to the piece of furniture by the desk
and asked, “What’s that?” you would eas-
ily reply, “It's a chair.” Such facility in cate-
gorization is not to be taken sitting down:
There are hundreds of different styles of
chairs, many of them novel, seen from thou-
sands of different angles, yet all can be effort-
lessly categorized as chair. Whereas people
include many items in the category chair,
they also exclude similar items that are cat-
egorized instead as a park bench or a car seat.
Putting those examples behind us, we con-
clude, a posteriori, that categorization is a
complex process.

Categorization is not just an armchair
amusement. It has consequences with costs
or benefits. If you mistakenly categorize a
dog as a chair and try sitting on it, the
category of teeth might suddenly leap to
mind. You might think it is ridiculous to
confuse a dog with a chair, but there are
children’s chairs manufactured to resemble
dogs. Moreover, categorizing a dog as a dog
is not always easy; a Labrador is doggier than
a Pekinese. A humorous consequence of cat-
egory atypicality was revealed in a 1933 car-
toon by Rea Gardner in the New Yorker
Magazine: A rotund wealthy lady enters a
posh restaurant clutching her tiny lap dog,
to which the snooty maitre d’ remarks, “I'm
sorry, Madam, but if that's a dog, it’s not
allowed.” For a more thorough review of
the many uses and consequences of categori-
zation, see the chapter by Goldstone and
Kersten (2003).

1.2. Categorization in the Laboratory

Models of categorization are usually de-
signed to address data from laboratory ex-

periments, so “categorization” might be best
defined as the class of behavioral data gener-
ated by experiments that ostensibly study
categorization. Perhaps the iconic catego-
rization experiment is one that presents a
stimulus to an observer and asks him or her
to select a classification label for the stim-
ulus. In some experiments, corrective feed-
back is then supplied.

There are many kinds of procedures
and measurements in categorization experi-
ments, which can assay many different as-
pects of behavior. One such measure is
the proportion of times each category la-
bel is chosen when a stimulus is presented
repeatedly on different occasions. Experi-
menters can also measure confidence rat-
ings, response times, typicality ratings, eye
gaze, recognition accuracy or rating, and so
forth. Those dependent variables can be as-
sessed as a function of many different in-
dependent variables. For example, behavior
can be tracked as a function of the number
of stimulus exposures, whereby the experi-
menter can assess learning, priming, habitu-
ation, and so forth. Experimenters can also
manipulate category structure, that is, how
the stimuli from different categories are sit-
uated relative to each other. (For example,
the categories “stars in Orion” and “stars in
the Big Dipper” are fairly easy to distinguish
because their structures put them in distinct
regions of the sky. But the categories “stars
closer than 50 light years” and “stars farther
than 50 light years” are more difficult to dis-
tinguish because stars from those categories
are scattered in overlapping regions of the
sky.) The variety of independent variables is
bounded only by the experimenter’s imagi-
nation. A very accessible review of the em-
pirical literature has been presented by Mur-

phy (2002).

1.3. Informal and Formal Models

It is the constellation of categorization phe-
nomena that theorists want to explain. In-
formal theories provide some insights into
the possible shapes behind that constella-
tion. For instance, one may informally hy-
pothesize that a bird is defined by necessary
and sufficient features: A bird is something
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that flies, sings, and has feathers. By that
definition, however, a bird can be an opera
diva wearing a feather boa in an airplane.
So, instead, one might informally hypothe-
size that a bird is defined by similarity to a
prototype: A bird is something like a robin,
which is an often-seen bird for North Amer-
icans.

Informal theories are a very useful first
step in creating explanations of complex
behaviors. Unfortunately, informal theories
rarely make precise predictions and are often
difficult to distinguish empirically. Some-
times, it is only intuition that generates pre-
dictions from an informal theory, so differ-
ent theorists can make different predictions
from the same informal theory.

All branches of science progress from in-
formal theory to formal model. If all that
[saac Newton did was propose informally
that there is a mysterious force that acts on
apples and the moon in the same way, it is
unlikely that his theory would be remem-
bered today. It was the precision and verac-
ity of his formal model of gravity that made
his idea famous. Whereas Newton invented
a formal model of how apples and moons
interact among themselves, cognitive scien-
tists have been inventing formal theories of
how apples and moons are mentally catego-
rized by observers. Just as there are many
possible aspects of objects that could be for-
mally specified in a model of gravitational
behavior, there are many aspects of mental
processing that could be formally specified
in a model of categorical behavior.

1.4. Types of Representation and Process

Any model must assume that the stimu-
lus is represented by some formal descrip-
tion.! This input representation could be de-

1 This representational assumption for 2 model does
not necessarily imply that the mind makes a for-
mal representation of the stimulus. Only the formal
model requires a formal description. This is exactly
analogous to formal models of motion: Newton'’s
formal model uses representations of mass and dis-
tance to determine force and acceleration, but the
objects themselves do not necessarily measure their
masses and distances and then compute their force
and acceleration. The representations in the model
help us understand the behavior, but those repre-

rived from multidimensional scaling (e.g.,
Kruskal, 1964; Shepard, 1962). For exam-
ple, an animal might be represented by its
precise coordinates in a psychological space
that includes dimensions of size, length of
hair/fur, and ferocity. Other methods for de-
riving a stimulus representation include fea-
ture extraction from additive clustering or
factor analysis. Any model must also assume
a formal representation of the cognizer’s re-
sponse. In the case when the cognizer is
asked to produce a category label for a pre-
sented stimulus, the formal representation
of the response could be a simple 1/0 cod-
ing for the presence/absence of each possible
category label.

Some key differences among models are
the representations and transformations that
link the input and response representa-
tions. These intermediate representations
and transformations are supposed to de-
scribe mental processes.? In general, a model
of categorization specifies three things:
(1) the content and format of the internal
categorical knowledge representation, (2)
the process of matching a to-be-classified
stimulus to that knowledge, and (3) a pro-
cess of selecting a category (or other re-
sponse) based on the results of the matching
process.

It can be useful to categorize models of
categorization according to the content and
format of their internal knowledge. Essen-
tially, this content and format describe the
type of representation that models use to
mediate the mapping from input to output.
The usual five types of representation are ex-
emplars, prototypes, rules, boundaries, and
theories. Many models of categorization are
explicitly designed to be a clear case of one
of those representational types, and some
models are explicitly designed to be hy-
brids of those types, whereas yet other mod-
els are not easily classiied as one of the

five.

sentations need not be reified in the behavior being
modeled.

2 Just as input and output representations are in
the model but not necessarily in the world, an
intermediate transformation and representation in
the model need not be reified in the mind being
modeled.
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1.4.1. EXEMPLAR MODELS

The canonical exemplar model simply stores
every (distinct) occurrence of a stimulus and
its category label. To classify a stimulus, the
model determines the similarity of the stim-
ulus to all the known exemplars, aggregates
the similarities, and then decides the cate-
gorization of the stimulus. Exemplar mod-
els are the primary focus of this chapter
and will be discussed extensively later. The
other types of models are only briefly de-
scribed to establish a context for exemplar
models.

1.4.2. PROTOTYPE MODELS

A prototype model operates analogously to
an exemplar model, but instead of storing in-
formation about every instance, the model
only stores a summary representation of the
many instances in a category. This represen-
tative stimulus could be a central tendency
that expresses an average of the category.
This average need not be the same as any
actually experienced instance. The represen-
tative prototype could instead be a modal
stimulus defined either as the most frequent
instance or as a derived stimulus that is a
combination of all the most frequent fea-
tures. In the latter case, this modal stimu-
lus need not be the same as any actually
experienced instance. Finally, the prototype
could instead be an “ideal” exemplar or car-
icature that indicates not only the content
of the items in the category but also em-
phasizes those features that distinguish the
category from others. This ideal need not be
actually attained by any real instance of the
category.

In “pure” prototype models, the models
take a stimulus as input, compute its similar-
ity to various explicitly specified prototypes,
and then generate categorical response ten-
dencies. A famous early application of a
prototype model to human classification of
schematic faces was conducted by Reed
(1972). Any one-layer feed-forward connec-
tionist model can be construed as a proto-
type model; an example is the component-
cue model of Gluck and Bower (1988), in
which a category is defined by a vector of
weighted connections from features. (For

a discussion of connectionist models, see
Chapter 2 in this volume.)

Pure prototype models have a single ex-
plicit prototype per category. It is possible
instead to represent a category with mul-
tiple prototypes, especially if the category
is multimodal or has “jagged” boundaries
with adjacent categories. Taken to the limit,
this multiple-prototype approach can as-
sign one prototype per instance, so it be-
comes an exemplar model. Some examples
of models that recruit multiple prototypes
during learning of labeled categories will be
discussed later, but there are also models
that recruit multiple prototypes while trying
to learn clusterings among unlabeled items
(e.g., Carpenter & Grossberg, 1987; Rumel-
hart & Zipser, 1985).

In another form of prototype model, the
prototypes for the categories are implicit and
dynamic (and in fact, it might be debatable
to assert that these models “have” prototypes
at all). An example of this sort of model
is a recurrent connectionist network. When
a few nodes in the network are clamped
“on,” activation spreads via weighted con-
nections to other nodes. Some other nodes
will be stably activated, whereas other nodes
will be suppressed. If each node represents
a feature, then the collection of co-activated
nodes can be interpreted as having filled in
the typical features of the category to which
the initially clamped-on features belonged.
Models that implement this approach in-
clude the “brain state in a box” model of An-
derson et al. (1977) and the constraint-satis-
faction network of Rumelhart et al. (1986).

1.4.3. RULE MODELS

Another type of model that specifies a cat-
egory by a summary of its content is a rule
model. A rule is a list of necessary and suffi-
cient features for category membership. For
example, a bachelor is anything that is hu-
man, male, unmarried, and eligible. (No-
tice that the features themselves are cat-
egories.) Examples of rule models include
the hypothesis-testing approach of Levine
(1975) and the RULEX model of Nosofsky
et al. (Nosofsky & Palmeri, 1998; Nosofsky,
Palmeri, & McKinley, 1994).
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1.4.4. BOUNDARY MODELS

Unlike the previously described types
of models, a boundary model does not
explicitly specify the content of a category
but instead specifies the boundaries between
categories. For example, one might define
a skyscraper as any building that is at least
twenty stories tall. The value, twenty sto-
ries, is the boundary between skyscraper and
non-skyscraper. Sometimes, boundary mod-
els are also referred to as rule models, be-
cause the boundary is a specific condition
for category membership just like necessary
and sufficient features are a specific condi-
tion. The usage here emphasizes that rules
specify interior content, whereas boundaries
specify edges between. The best developed
boundary models have been expounded in a
series of publications by Ashby and collab-
orators (e.g., Ashby & Gott, 1988; Ashby &
Maddox, 1992)

1.4.5. CONTENT/BOUNDARY DUALITY

AND ON-THE-FLY EQUIVALENCE

In some cases, it is only a matter of empha-
sis to think of a model as specifying content
or boundary, because there may be ways to
convert a content model to an equivalent
boundary model and vice versa. For exam-
ple, suppose two categories are represented
by one prototype for each category, and the
categorization is made by classifying a stim-
ulus as whichever prototype is closer. From
this it can be easily inferred that the model
makes a linear boundary between the two
categories, and an equivalent model states
that the stimulus is classified by whichever
side of the linear boundary it falls on.

It might be possible in principle to con-
vert any content model to an equivalent
boundary model and vice versa, but that
does not mean that the two types of mod-
els are equally useful. Especially when cate-
gory structure is complex, when there are
many categories involved, and when new
categories might be created, it is probably
easier to describe a category by content than
by boundary. For example, if new category
members are observed that are somewhat
different from previously learned instances,
it is easy to simply add the new items to

memory, but potentially difficult to add ex-
plicit “dents” in all the category boundaries
between that category and many others. The
actual difficulty depends on the particular
formalization of boundaries, so this intuitive
argument must be considered with caution.

There is another way in which a pure ex-
emplar model encompasses the others. If a
cognizer has perfect memory of all instances
encountered, then the cognizer could, in
principle, generate prototypes, rules, or the-
ories at any moment, on the fly, and use
those derived representations to categorize
stimuli. Although this process is possible,
presumably it would generate long response
latencies compared with a process that has
those representations immediately available
because of previously deriving them during
learning.

1.4.6. THEORY MODELS

The fifth approach to models of categoriza-
tion is the “theory theory.” This approach
asserts that people have theories about the
world, and people use those theories to cat-
egorize things. This approach can explain a
variety of complex phenomena that are dif-
ficult for simpler models to address. The pri-
mary statement of this approach was writ-
ten by Murphy and Medin (1985), and
more recent reviews have been writtten by
Murphy (1993, 2002). Theory theories have
had limited formalizations, however, in part
because it can be difficult to formally spec-
ify all the details of a complex knowledge
structure. Some recent models that include
formalizations of previous knowledge, if not
full-blown theories, are those by Heit and
Bott (2000); Heit, Briggs, and Bott (2004)
and Rehder (2003a, 2003b).

1.4.7. HYBRID MODELS

The various representations and processes
described in previous sections have differ-
ent properties, and it may turn out to be the
case that no single representation captures
all of human behavior. It is plausible that the
breadth of human behavior is best explained
by a model that uses multiple representa-
tions. The challenge to the theorist then
goes beyond specitying the details of any one
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representational type. The theorist must also
specify exactly how the different represen-
tations interact and the circumstances under
which each subsystem is selected for action
or learning. Only a few combinations of rep-
resentation have been explored.

Busemeyer, Dewey, and Medin (1984)
combined prototype and exemplar mod-
els and found no consistent benefit of in-
cluding prototypes. A model proposed by
Smith and Minda (2000) combined pro-
totypes with punctate exemplars, in which
only exact matches to the exemplars have
an influence; but Nosofsky (2000) showed
that this particular hybrid model has serious
shortcomings.

Other models have combined rules or
boundaries with exemplars or multiple pro-
totypes. For example, the COVIS model
(Ashby et al, 1998; Ashby & Maddox,
2005) includes two subsystems, an explicit
verbal subsystem that learns boundaries
aligned with stimulus dimensions and an im-
plicit system that learns to map exemplars
or regions of stimulus space to responses. As
another example, a “mixture of experts” ap-
proach (Erickson & Kruschke, 1998, 2002;
Kalish, Lewandowsky, & Kruschke, 2004;
Kruschke, 2001a; Kruschke & Erickson,
1994; Yang & Lewandowsky, 2004) com-
bines modules that learn boundaries and
modules that learn exemplar mappings. The
mixture-of-expert approach also incorpo-
rates a gating system that learns to allocate
attention to the various modules.

1.5. Learning of Categories

A model of categorization can specify a map-
ping from input to output without specify-
ing how that mapping was learned. Theo-
ries of learning make additional assumptions
about how internal representations change
with exposure to stimuli. Different types of
representation may require different types
of learning. This section merely mentions
some of the various possibilities for learning
algorithms. Examples of each are described
in Section 2.

Perhaps the simplest learning mechanism
is a tally of how many times a particu-

lar feature co-occurs with a category label.
Somewhat more general are simple Heb-
bian learning algorithms that increment a
connection weight by a constant amount
whenever the two nodes at the ends of that
connection are co-activated. More sophis-
ticated Hebbian algorithms adjust the size
of the increment so that the magnitude of
the weight is limited. Notice that in these
schemes the weights are adjusted indepen-
dently of how well the system is performing
its categorization.

Alternatively, learning could be driven by
categorization performance, not by mere co-
occurrence of stimuli. The model can com-
pare its predicted categorization with the
actual category and, from the discrepancy,
adjust its internal states to reduce the error.
Thus, error minimization can be one goal
for learning. In other approaches to learn-
ing, the goal is to adjust the internal repre-
sentation such that it maximizes economy
of description or the amount of information
transmitted through the system.

Yet another scheme is learning by
Bayesian updating of beliefs regarding al-
ternative hypotheses. In the previous non-
Bayesian schemes, learning was a matter of
adjusting the values of a set of parameters,
such as associative weights. By contrast, in
a Bayesian framework, there are a large set
of hypothetical fixed parameter values, each
with a certain degree of belief. Bayesian
learning consists of shifting belief away from
hypotheses that fail to fit observations, to-
ward hypotheses that better fit the observa-
tions.

2. Exemplar Models

The previous section provided a brief infor-
mal description of some of the concepts that
will be formally expressed in the remain-
der of the chapter. From here on, the chap-
ter unabashedly employs many mathemati-
cal formulas to express ideas.

In recent decades, theories of categoriza-
tion emphasized rule-based theories (e.g.,
Bourne, 1966; Bruner, Goodnow, & Austin,
1956), then changed to prototype-based
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theories (e.g., Reed, 1972; Rosch & Mervis,
1975), and then moved to boundary (e.g.,
Ashby & Gott, 1988) and exemplar theories
(e.g., Medin & Schaffer, 1978; Nosofsky,
1986). Although a variety of representa-
tions have been formalized, exemplar mod-
els have been especially richly explored in
recent years, in no small part because they
have been shown to fit a wide variety of
empirical data. Exemplar models also form
a nice display case for illustrating the is-
sues mentioned in the preceding introduc-
tory paragraphs.

2.1. Exemplary Exemplar Models

Exemplar models have appeared in domains
other than categorization, such as percep-
tion, memory, and language (e.g., Edelman
& Weinshall, 1991; Hintzman, 1988; Logan,
2002; Regier, 2005). Within the categoriza-
tion literature, however, a dominant family
line of exemplar models centers on the Gen-
eralized Context Model (GCM; Nosofsky,
1986). The GCM is a formal generalization
of the context model of Medin and Schaf-
fer (1978). In these models, a stimulus is
stored in memory as a complete exemplar
that includes the full combination of stim-
ulus features. It is not the case that each
feature is stored independently of other fea-
tures. Thus, the “context” for a feature is
the other features with which it co-occurs.
Exemplar representation allows the models
to capture many aspects of human catego-
rization, including the ability to learn non-
linear category distinctions and correlated
features, while at the same time producing
typicality gradients.

In the context model and GCM, perhaps
just as important as exemplar representation
is selective attention to features. With selec-
tive attention, the same underlying exem-
plar representation can be used to represent
different category structures in which dif-
ferent features are relevant or irrelevant to
the categorization. The context model and
GCM had no learning mechanism for atten-
tion, however. Kruschke (1992) provided
such a learning mechanism for attention in
the ALCOVE model and at the same time

provided an error-driven learning mecha-
nism for associations between exemplars
and categories (unlike the simple frequency
counting used in the GCM). Hurwitz
(1994) independently developed a similar
idea but based on the formalism of the
context model, not the GCM. Attentional
shifting in ALCOVE was assumed to be
gradual over trials, but human attentional
shifting is probably much more rapid within
trials while retention is gradual across trials.
Rapid attention shifts were implemented
in the Rapid Attention Shifts 'N’ Learn-
ing (RASHNL) model of Kruschke and Jo-
hansen (1999). The basic formulas for the
GCM and ALCOVE are presented next,
so that subsequent researchers’ variations of
these formulas can be provided.

The GCM assumes that stimuli are
points in an interval-scaled multidimen-
sional space. For example, a stimulus might
have a value of 47 on the dimension of per-
ceived size and a value of 225 on the dimen-
sion of perceived hue. Formally, exemplar x
has value x; on dimension i.

The similarity between memory exem-
plar x and stimulus y is computed in two
steps. First, the psychological distance be-
tween x and y is computed:

dix,y) =) ailx — il (9.1)

where «; is the attention allocated to di-
mension i. Equation 9.1 simply says that
for each dimension i, the absolute differ-
ence between x and y is computed, and then
those dimensional differences are added up
to determine the overall distance. Each di-
mension contributes to the total distance
only to the extent that it is being attended
to; the degree of attention to dimension i
is captured by the coefficient o; (which
is non-negative). Notice that when o; gets
larger, the difference on dimension i is
weighted more heavily in the overall dis-
tance function. Equation 9.1 applies when
the dimensions are psychologically separa-
ble; that is, when they can be selectively
attended. In some applications, the atten-
tion strengths are assumed to sum to 1.0, to
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GCM/ALCOVE: ¢=0.5,0=(0.5,0.5)

Figure 9.1. Similarity function in Generalized Concept Model (GCM) and Attentional Learning
Covering (ALCOVE) map. A memory exemplar is located at position x = (0, 0), and the height of
the surface is the similarity of stimulus y = (y,, y2) to x. The closer y is to (0, 0), the more similar it
is to x, so that the similarity peaks when y = x at (0, 0). Notice that the level contours, which can be
glimpsed on the floor of the plot, are diamond shaped. These diamonds mark points of equal
distance from the exemplar, using the “city-block” metric of Equation 9.1. The curved surface drops
exponentially as a function of distance, as dictated by Equation 9.2.

reflect the notion that dimensions compete
for attention.

After the distance is computed, the sim-
ilarity is determined as an exponentially de-
caying function of distance:

s(x, ¥) = exp(—c d(x, 7)) (02)
where ¢ > 0 is a scaling parameter. Thus,
when the distance is zero, that is, d(x, y) =
0, then the similarity is 1, that is, s(x, y) =
1. As the distance increases, the similarity
drops off toward zero. The rapidity of the
decrease in similarity, as a function of dis-
tance, is governed by the scaling parame-

ter, c: When c is large, the similarity drops
off more rapidly with distance. The expo-
nential form of the similarity function has
been motivated both empirically and theo-
retically (cf. Shepard, 1987; Tenenbaum &
Griffiths, 2001a, but note that those analy-
ses refer to generalization regarding a single
category, not exemplars). Figure 9.1 shows a
plot of this similarity function for an exem-
plar set arbitrarily at x = (0, 0). The caption
of the figure provides detailed discussion.
After similarity is computed, a categor-
ical response is then generated on the ba-
sis of which category’s exemplars are most
similar to the stimulus and most frequently
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observed. In a sense, the exemplars “vote”
for the category with which they are associ-
ated. The strength of the vote is determined
by how strongly the exemplar is activated
(by similarity) and how strongly it is asso-
ciated with the category (by frequency of
co-occurrence). The probability of choosing
a category is then just the proportional num-
ber of votes it gets. Formally, in the original
GCM (Nosofsky, 1986), the probability of

category R given stimulus y is

ﬁR erR NRXS(XI y)
Zr ﬂr Zker NrkS(k, y)

where B, is the response bias for category 7,
and N,;, is the frequency that exemplar k has
occurred as an instance of the category r.
This rule is an extension of the similarity-
choice model for stimulus identification
(Luce, 1963; Shepard, 1957) and is often
referred to as the ratio rule. The numerator
of Equation 9.3 simply expresses the total
weighted vote for category R, and the de-
nominator simply expresses the grand total
votes cast. Thus, Equation 9.3 expresses the
proportion of votes cast for category R.

In summary, Equations 9.1, 9.2, and 9.3
describe how the GCM transforms a stimu-
lus representation, y, to a categorical choice
probability, p(R|y). The transformation
is mediated by similarity to exemplars in
memory.

In the GCM, the attention weights («; in
Equation 9.1) were either freely estimated
to best fit data or set to values that opti-
mized the model’s performance for a given
category structure. The ALCOVE model
(Kruschke, 1992) instead provided a learn-
ing algorithm for the attention and associa-
tive strengths. For a training trial in which
the correct classification is provided (as in
human learning experiments), ALCOVE
computes the discrepancy, or error, between
its predicted classification and the actual
classification. The model then adjusts the
attention and associative weights to reduce
the error. To describe this error reduction
formally, let the correct (i.e., teacher) cat-
egorization be denoted 1, such that 1, = 1
when category k is correct and t, = 0 oth-

?(Rly) =

(9.3)

erwise. The model’s predicted category ac-
tivation, given stimulus vy, is defined to be
the sum of the weighted influences of the
exemplars. Denote the associative weight to
category k from exemplar x as wj,. Then
the predicted activation of category k is
ar = Y, Wk S(x, ¥). Notice that this sum is
the same as the sum that appears in the
GCM'’s Equation 9.3 if wgy = Nj.. When
a stimulus is presented, the model’s error in
categorization is then defined as

E=5) (t—a). (9.4)
k

The model strives to reduce this error
by changing is attention and associative
weights.

Of the many possible methods that could
be used to adjust attention and associative
weights, ALCOVE uses gradient descent on
error. Generally in gradient descent, a pa-
rameter value is changed in the direction
that most rapidly reduces error. Because the
gradient (i.e., derivative) of a function spec-
ifies the direction of greatest increase, gradi-
ent descent follows the negative of the gra-
dient. Gradient descent yields the following
formulas for changing weights and attention:

Awpx = Ay (te — @) s(x, ) (9.5)
Aa; = —Ay Z Z (tr — ar)
x k
X Wiy $(x, ¥) ¢|xi — il (9.6)

where A, and A, are constants of propor-
tionality, called learning rates, that are freely
estimated to best fit human learning data.
Equation 9.5 says that the change in weight
Wiy, Which connects exemplar x to cate-
gory k, is proportional to the error (t — a)
in the category node and the similarity
s(x, y) in the exemplar node. Equation 9.6
says that the error at the category nodes
is propagated backwards to the exemplar
nodes. Define the error at each exemplar
as &x = ) ), (tk — ak) Wy s(x, ¥) c. Then the
change in attention to dimension 1 is simply
the sum, over exemplars, of each exemplar’s
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error, times its closeness to the stimulus on
that dimension: Aa; = —A4 Y, &xlxi — ¥il.

The RASHNL model (Kruschke & Jo-
hansen, 1999) is an extension of ALCOVE
that makes large attentional shifts on each
trial and better mimics individual differ-
ences and human probabilistic category
learning than ALCOVE. In particular,
RASHNL includes a mechanism that grad-
ually reduces the learning and shifting rates,
so that a large shift of attention can be
“frozen” into the learned structure.

The previous section summarized the
GCM and ALCOVE models. They pro-
vide a reference point for exploring other
exemplar models. The discussion of other
exemplar models will emphasize the follow-
ing processes: computing similarity, learn-
ing associations and attention, recruiting ex-
emplars, choosing a response category, and
their timing, that is, temporal dynamics.
Each of these five aspects will be explored
at length in the following sections. One of
the goals is to show in detail how each of
the five aspects can be formalized in a vari-
ety of ways. This side-by-side comparison of
the internal components of each model is in-
tended to clarify how the models do indeed
have components, rather than being indivisi-
ble all-or-nothing entities. The juxtaposition
of components also reveals the variety of for-
malisms that has evolved over the years and
is suggestive of variation for future intelli-
gent designers.

2.2. Similarity

The GCM and its relatives, such as
ALCOVE, assume that stimuli can be rep-
resented as points on “interval” scales, such
as size. Stimuli that are instead best rep-
resented on “nominal” scales, such as po-
litical party (e.g., Republican, Democrat,
Libertarian, or Green Party), are not di-
rectly handled. Moreover, in the GCM and
ALCOVE, all that affects similarity is dif-
ferences between stimuli; the number of di-
mensions on which stimuli match has no im-
pact. Empirical evidence demonstrates that
the number of matching features can, in

fact, affect subjective similarity (e.g., Gati
& Tversky, 1984; Tversky, 1977).

Various researchers have contemplated
alternative stimulus representations and
similarity functions in attempts to expand
the range of applicability of exemplar mod-
els. The variations can be analyzed on two
factors (among others). First, the similar-
ity models can address stimuli represented
on either continuous, interval-scaled dimen-
sions or discrete, nominally scaled dimen-
sions. Second, similarity models can be sen-
sitive to either stimulus differences only
or stimulus commonalities as well. For ex-
ample, imagine two schematic drawings of
faces, composed merely of an oval outline
and two dots that indicate eyes. The sepa-
ration of the eyes differs between the two
faces. The perceived similarity of these two
faces is some baseline value denoted s;,. Now
imagine including in both faces identical
lines for mouths and noses. Still, the only
difference between the faces is the eye sep-
aration; both faces merely have additional
identical features. The perceived similarity
of the augmented faces is denoted s,. If
Sa 7 sp, then the similarity is affected by the
number of matching features or dimensions.

Similarity models that are sensitive to the
number of matching features can be further
partitioned into two types. One type is sen-
sitive to stimulus commonalities only when
there is at least one difference between stim-
uli. In this type of model, when the stimuli
are identical, then the similarity of the stim-
uli is 1.0 regardless of how many features or
dimensions are present. In other words, the
self-similarity of any stimulus is 1.0 regard-
less of how rich or sparse the stimulus is. In a
different type of model, even self-similarity
is affected by how many stimulus features
or dimensions are present.

Table 9.1 lays out the two characteris-
tics of similarity functions, with the columns
corresponding to the type of scale used for
representing the stimuli and the rows cor-
responding to how the similarity function
is affected by the number of matching fea-
tures or dimensions. The following para-
graphs will first describe variations of models
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Table 9.1: Characteristics of similarity functions for various models

Scale for stimulus representation

Similarity is

sensitive to: Binary features

Continuous

N-ary features (interval) scale

Mismatches only
Navarro, 2002)

Featural ALCOVE (Lee &

GCM (Nosofsky,
1986), ALCOVE
(Kruschke, 1992)

Number of matches, WRM (Lamberts, 1994),  SUSTAIN (Love

but only with a
mismatch present 1994)

Number of SDM (Kanerva, 1988),

matches, including ~ ADDCOVE (Verguts
self-similarity et al., 2004)

Configural Model (Pearce, et al., 2004)

Rational Model APPLE (Kruschke,
(featural version;  1993)
Anderson, 1990)

that handle continuous scaled stimuli and
then describe several models that handle
nominally scaled stimuli. Finally, a hybrid
model will be presented.

A stimulus will be denoted y and the
value of its i?* feature is y;. A copy of that
stimulus in memory is called an exemplar
and will be denoted x = {x;}. This nota-
tion can be used regardless of whether the
features are represented on continuous or
nominal scales. In the special circumstance
that every feature is simply present or ab-
sent, the presence of the i'* feature is in-
dicated by y; = 1, and its absence is indi-
cated by y; = 0. As a reminder that this is
a special situation, the stimulus will be de-
noted as uppercase Y (instead of lowercase
v). When dealing with present/absent fea-
tures, the number of features that match
or differ across the stimulus Y and a mem-
ory exemplar X can be counted. The set of
present features that are shared by X and Y
is denoted X NY, and the number of those
features is denoted nyny. Some models are
also sensitive to the absence of features. The
set of features absent from a stimulus is de-
noted Y, and the number of features absent
from both X and Y is denoted nyy. The set
of features present in X but absent from Y is
denoted X—Y = XNY, and the number of

such features is denoted nx_y.

Similarity functions must specify, at least
implicitly, the range of features over which
the similarity is computed. In principle,
there are an infinite number of features ab-
sent from any two stimuli (e.g., they both
have no moustache, they both have no freck-
les, they both have no nose stud, etc.) and an
infinite number of features present in both
stimuli (e.g., they are both smaller than a
battleship, they are both mounted on shoul-
ders, they are both covered in skin, etc.).
The following discussion assumes that the
pool of candidate features over which simi-
larity is computed has been prespecified.

2.2.1. CONTINUOUS SCALE, SENSITIVE
TO DIFFERENCES ONLY
In the GCM and ALCOVE, stimuli are rep-
resented as values on continuously scaled di-
mensions. The similarity between a stimu-
lus and an exemplar declines from 1.0 only
if there are differences between the exem-
plar and the stimulus. If the exemplar and
stimulus have no differences, then their sim-
ilarity is 1.0, regardless of how many dimen-
sions are involved. Therefore, the GCM and
ALCOVE are listed in the upper right cell
of Table 9.1.

Although the GCM/ALCOVE similarity
function is meant to be applied to dimen-
sions with continuous scales, it will be useful
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for comparison with other models to con-
sider the special case when all dimensions
have only present/absent values. To simplify
even further, assume that o; = 1 foralli and
thatc = 1. In this special case, Equations 9.1
and 9.2 reduce to

S(X, Y) = exp(—[nx_‘y + TIY_.xD. (97)
Clearly, the similarity depends only on the
number of differing features and not on
the number of matching features. The term
in Equation 9.7 will arise again when dis-
cussing the featural ALCOVE model of Lee
and Navarro (2002).

2.2.2. CONTINUOUS SCALE, SENSITIVE

TO MATCHES

The similarity function in GCM/ALCOVE
proceeds in two steps. First, as expressed in
Equation 9.1, the model computes an over-
all distance between exemplar and stimulus
by summing across dimensions. Second, as
expressed in Equation 9.2, the model gener-
ates the similarity by applying an exponen-
tially decaying function to the overall dis-
tance.

In the Approximately ALCOVE (APPLE)
model of Kruschke (1993), that ordering of
computations is reversed. First, a similarity
is computed on each dimension separately,
using an exponentially decaying function of
distance within each dimension:

si(x, y) = exp(—a;lx — yil). (9.8)

Second, an overall similarity is computed by
combining the dimensional similarities via a

sigmoid (also known as squashing or logistic)
function:

s(x, y)

= sig( ,ZSi (x, ¥); &, 9)

[i+ew (e St ol)]"

(9.9)

where the gain, g > 0, is the steepness of the
sigmoid and 6 is a threshold that is typically
somewhat less than the number of dimen-
sions being summed.

Figure 9.2 shows a plot of this similar-
ity function, which should be contrasted
with the GCM/ALCOVE similarity func-
tion shown in Figure 9.1. This similarity
function has some attractive characteristics,
one being that individual featural matches
can have disproportionately strong influence
on overall similarity. This is revealed in Fig-
ure 9.2 as the “ridges” where either x; = y,
or x; = y;. Another useful property of the
similarity function is that self-similarity (i.e.,
when y = x) can vary from exemplar to ex-
emplar if they have different thresholds or
gains. In particular, the self-similarity can
be less than 1.0 when the threshold, 6, is
high. Finally, when there are more dimen-
sions on which the stimuli match, then the
similarity is larger. This can be inferred from
Equation 9.9: When there are more dimen-
sional s;(x, y) terms contributing to the sum,
the overall s(x, y) is larger. Thus, APPLE’s
similarity function operates on continuously
scaled stimuli and is affected by the number
of matching dimensions, even for identical
stimuli. Therefore, it is listed in Table 9.1 in
the lower right cell.

When the continuously scaled dimen-
sions assumed by APPLE are reduced to
present/absent features represented by 1/0
values, the similarity function can be ex-
pressed in terms of the number of matching
and differing features. Simplify by assuming
a; = 1 for all i, then Equations 9.8 and 9.9
imply

s(X,Y) = Sig(”XﬂY + nxnay
1
+ ;("xw + ny-x); g, 9) (9.10)

where e = 2.718 is the base of the expo-
nential function. Clearly, this similarity is
a function of both the number of match-
ing features and the number of mismatching
features.
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APPLE: g=7, 6=1, 0=(0.5,0.5)

=(0,0)

s(x,y) for x

Figure 9.2. Similarity function in Approximately ALCOVE (APPLE), from Equations 9.8
and 9.9, using specific parameter values indicated in the title of the figure. Compare with

Figure 9.1.

2.2.3. NOMINAL SCALE, SENSITIVE TO
DIFFERENCES ONLY

Whereas the GCM, ALCOVE, and APPLE
apply to stimuli represented on continuous
scales, there are also many models of cate-
gorization that apply to stimulus represen-
tations composed of nominally scaled di-
mensions. This section reviews several such
models that are sensitive only to stimulus
differences, not to stimulus commonalities

(analogous to GCM/ALCOVE). A later sec-:

tion addresses similarity functions in which
commonalities do have an influence (analo-
gous to APPLE).

Lee and Navarro (2002) discussed a fea-
tural ALCOVE model in which stimuli are
represented as features derived from addi-
tive clustering techniques. Let x; denote the
presence or absence of feature i in stimu-

lus x, such that x; = 1 if x has features i,
and x; = 0 otherwise. The distance between
exemplar x and stimulus y is given by

d(x,y) = Zai [ (1 =) + (1 —x)y]-
' 9.11)

Notice in Equation 9.11 that the term inside
the square brackets is simply 1 if feature i
mismatches and O otherwise. The distance
is algebraically equivalent to ) . e;|x; — vil,
which is an expression seen before in Equa-
tion 9.1 and which will be seen again in
Equation 9.14. Lee and Navarro (2002) pre-
ferred to express the distance as shown in
Equation 9.11 because it suggests discrete
values for x; and y; rather than continuous
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values. Lee and Navarro (2002) then de-
fined similarity as the usual exponentially
decaying function of distance. In the spe-
cial case that a; = 1 for all i, the similar-
ity function becomes exactly Equation 9.7.
This similarity function is not sensitive to
matching features, so this model is listed in
the upper left cell of Table 9.1. Lee and
Navarro (2002) collected human learning
data for stimuli that were well described by
present/absent features, and found that AL-
COVE with the featural representation fit

the data better than the original continuous-
scaled ALCOVE.

2.2.4. NOMINAL SCALE, SENSITIVE

TO MATCHES

Several models are considered in this sec-
tion. This section first describes models that
assume binary valued (present/absent) fea-
tures and then moves on to models that as-
sume features with m values. Within each of
those, the discussion first addresses models
that are sensitive to the number of matching
features only when at least one mismatch
is present and then addresses models that
are sensitive to the number of matching fea-
tures, even when there are no mismatching
features.

Pearce (1987) developed a model in
which similarity is a function of both match-
ing and distinctive features. He defined the
similarity of two stimuli, X and Y, to be

f(XNY)f(XNY)
fFX)f(Y)

s(X Y) = (9.12)

where f(X) is a monotonic function of the
number of features in X and of the individ-
ual saliences of the features.

Pearce (1994) proposed a specific version
of that function in his configural model of
associative learning. First, restrict consider-
ation to a situation where all features are
equally salient. Let the number of features
in stimulus X be denoted nx. When exem-
plar X is perceived, its features compete for
limited attention, such that each feature is
activated to a level 1/,/nx. This level of ac-

tivation implies that the sum of the squared

activations is unity. Every distinct stimulus
recruits a copy of that stimulus activation in
exemplar memory. Pearce (1994) referred
to those exemplars as configurations of fea-
tures, hence, the moniker of the configural
model.

The similarity of a memory exemplar and
a stimulus was then defined to be simply
the sum over features of the products of
the feature activations. Because absent fea-
tures have zero activation, the sum over
all features reduces to a sum over match-
ing present features; hence, the similarity is
given by:

s(X,Y)
Sy L
iexny VX /1Y
1 1
=n —
xm/m v <
_ [ nxny nxny ]'/2
(nxny + nx-y) (nxny +ny-x) |
(9.13)

Notice that the similarity increases when the
number of matching features increases, as
long as there is at least one differing feature.
Hence, the configural model is listed in the
middle-left cell of Table 9.1.

Young and Wasserman (2002) compared
Pearce’s (1994) model and ALCOVE on a
task involving learning about stimuli with
present/absent features. ALCOVE was not
designed for present/absent features, and
Pearce’s model does not have selective
attention. Young and Wasserman (2002)
found that neither model accurately cap-
tured the learning trends in their set of cate-
gory structures, but suggested that it might
be possible to modify the attentional capac-
ity constraints in the models to address their
findings.

Lamberts (1994) explored another sim-
ilarity function that is sensitive to match-
ing features and distinctive features. Again,
consider features that are binary valued, ei-
ther present or absent, and coded as 1 or 0,
respectively. In Lamberts’s Weighted Ratio
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Model (WRM), the similarity of exemplar x
to stimulus y is given by

s(x, y)

- wYiei(l = lx —yl)
Couyiai(l ==y + (1 — )Y ailx — il
(9.14)

where (1 — |x; — y;]) is 1 if and only if the
exemplar and stimulus match on dimen-
sion i, and |x; — y;| is 1 if and only if the ex-
emplar and stimulus differ on dimension i.
The value of i (between 0 and 1) in Equa-
tion 9.14 determines the influence of match-
ing features relative to differing features.
As in previous sections, «; is the attention
allocated to dimension i. Lamberts (1994)
explored some aspects of this similarity
function in model fitting, but the similarity
function has not been extensively pursued
in subsequent work.

Notice that in Equation 9.14, the compo-
nent of the denominator that measures feat-
ural differences, )", a;|x; — y;l, is the same as
Equation 9.1 and is algebraically equivalent
to Equation 9.11 used by Lee and Navarro
(2002). The WRM goes beyond the GCM
by including the influence of matching fea-
tures in addition to mismatching features.
The number of matching features only af-
fects the similarity, however, when there is
at least one mismatch; therefore, the WRM
is listed in the middle-left cell of Table 9.1.
Again it is worth emphasizing that, despite
the comparison of the WRM with the GCM,
the GCM applies to continuous dimensions,
whereas the WRM applies to present-absent
features.

The similarity function of the WRM
can be expressed in terms of the number
of matching and differing features. Just as
Pearce (1994) assumed equal salience for all
features, set o; = 1 for all i, which implies
that Y, &i(1 — |x — yil) = nxny + nx,y and
Y i %i|xi — yil = nx-y + ny-x. When pu=
0.5, Equation 9.14 becomes

nxny + nxny
nxny + nxny + nx-y + ny-x
(9.15)

s(x, y) =

Equation 9.14 reduces to the similarity func-
tion of the configural model under slightly
different special circumstances. First, sup-
pose that ng,y = 0; second, set u = 2/3,
that is, put twice as much weight on match-
ing features than differing features; third,
suppose nx—y = ny-x. Then the WRM sim-
ilarity of Equation 9.15 becomes

nxny o nxny
nxny +nx-y  nxny +ny-x
(9.16)

s(x, y) =

When those final two (equal) expressions
in Equation 9.16 are multiplied times each
other and square-rooted, the result is an ex-
pression that matches the configural model’s
similarity in Equation 9.13. In their general
forms, however, the WRM similarity allows
differential salience (i.e., attention) to fea-
tures and differential weighting of matching
and differing features, whereas the configu-
ral model predicts that the effect of increas-
ing nx-y can be different than the effect of
increasing ny-x.

The Sparse Distributed Memory (SDM)
model of Kanerva (1988) can be interpreted
as a form of exemplar model. In SDM, stim-
uli are assumed to be represented as points
in a high-dimensional binary-valued space,
such that y; € {1, 0}. Memory exemplars are
represented by weights such that x; = 1 for
a present feature, but, unlike previous mod-
els, x; = —1 for an absent feature (and x; = 0
for a feature about which the exemplar is in-
different, but such a case will not be consid-
ered here). A memory exemplar is activated
when Y, x;y; > 6y, where 6, is the thresh-
old of the exemplar. This activation can be
interpreted as the similarity of the stimulus
to the exemplar; here, the similarity has just
two values. Thus,

1 if Zi XYi = 9x
0 otherwise

s(X, Y) =
= step (nxny — ny-x —6x) (9.17)
where step(n) =1 when n > 0 and

step(n) = 0 when n < 0. Clearly, the sim-
ilarity function in SDM is sensitive to both
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matching and differing features, and it is
listed in the lower-left cell of Table 9.1.
SDM has not been extensively applied to
many behavioral phenomena, but it is in-
cluded here as an example of the variety of
possible similarity functions.

Verguts et al. (2004) developed a varia-
tion of ALCOVE that they called Additive
ALCOVE (ADDCOVE) because the first
step in its similarity computation is an addi-
tive weighting of features. Specifically, sup-
pose a stimulus consists of features x;. The
corresponding exemplar in memory is given

feature weights w; =x/,/>; 9«:12~ = x;/|Ix|.
When presented with stimulus y, a baseline

exemplar activation is computed by adding
weighted features as follows:

a(xl Y) = Z ”2—“}’1

i

(9.18)

When x and y consist of 0/1 bits, Equa-
tion 9.18 becomes

ay) =Y —

iexny VX

= anY/\/n_, (919)

which is like the configural model (Equa-
tion 9.13), except that here, y; =1, not
1/./ny.

These baseline activations are then nor-
malized relative to other exemplar activa-
tions. Included in the set of other exemplar
activations is a novelty detector, which has
an(y) = 0|yl = /ny with € close to 1.0, for
example, 0.99. The similarity of exemplar x
to stimulus y is then given as

k

s(x, y) = a(x, y)? / [Z a(k, )’ + aN(y)"’]

(9.20)

where the index, k, varies over all exemplars
in memory. When x and y consist of 0/1 bits,

Equation 9.20 becomes

s(x, y)
_ (nxy//ix )
[Zk (nkey/ /A ) + (0/ny )]
_ (nxny/+/nxay + nx-y)?
T [Zk(kny/rkay + nk—y)® + (0 /nv)?]
(9.21)

As can be gleaned from Equation 9.21,
this similarity function depends on both the
shared and the distinctive features between
the exemplar and the stimulus.

Notice that the similarity function of
Equation 9.21 can be asymmetric: s(x, y) #
s(y, x) when X=Y # Y—X. In other words,
if a memory exemplar has, say, one feature
that a stimulus does not have, but that stim-
ulus has two features that the memory ex-
emplar does not have, then the similarity
of the stimulus to the exemplar is differ-
ent from the similarity of the exemplar to
the stimulus. This asymmetry might be use-
ful for addressing analogous asymmetries in
human similarity judgments. (Another ex-
ample of an asymmetric similarity function
can be found in Sun, 1995, p. 258.) Inter-
estingly, moreover, the similarity in Equa-
tion 9.21 also depends on what other ex-
emplars are currently in memory. Thus, a
stimulus might be fairly similar to an ex-
emplar at one moment, but after another
highly similar exemplar is added to mem-
ory, the similarity to the first exemplar will
be reduced.

The SUSTAIN model of Love et al. (2004)
employs a similarity function that oper-
ates on multivalued (not just binary valued)
nominal dimensions. Different nominal di-
mensions can have different numbers of val-
ues. For example, the dimension of marital
status might have three values (single, mar-
ried, divorced), and the dimension of politi-
cal affiliation might have four values (Demo-
crat, Republican, Green, Libertarian). If di-
mension i has m; values, then a stimulus is
represented by a bit vector of length )", m;
that has 1’s in positions of present features
and 0’s elsewhere.
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In SUSTAIN, what is here being referred
to as “exemplars” are not just copies of in-
dividual stimuli, but are instead central ten-
dencies of clusters of stimuli. In certain con-
ditions, SUSTAIN could recruit a cluster
node for every presented instance and could
therefore become a pure exemplar model.
The representation for a cluster is also a vec-
tor of ), m; values, but the values are the
means (between O and 1) of the instances
represented by the cluster. The components
of the vectors are denoted x;,, where the
subscript indicates the v element of the it
dimension. The similarity of a cluster node
x to a stimulus vy is then defined as

s(xl y) = Z.lay

i

X Zaiy exp <_-5ai Z %y — yivl)

vEl

(9.22)

where ¥ > 0 governs the relative dominance
of the most attended dimension over the less
attended dimensions. Notice that if x =y
then s(x, y) = 1 regardless of how many di-
mensions are involved.

It should be noted that Love et al. (2004)
never asserted that Equation 9.22 is a model
of similarity; rather, they simply defined the
activation of a cluster node when a stimulus
is presented. It is merely by analogy to other
models that it is here being called similar-
ity. Moreover, the final activation of cluster
nodes in SUSTAIN is another step away:
There is competition and then only the win-
ner retains any activation at all. Because the
SUSTAIN model incorporates several other
mechanisms that distinguish it from other
exemplar models, it is not clear which as-
pects of the specific formalization in Equa-
tion 9.22 are central to the model’s behavior.
The function is described here primarily as
an example of how similarity can be defined
on multivalued nominal dimensions.

SUSTAIN's similarity function can be re-
lated to previous approaches that assumed
binary valued features. Suppose that ev-

ery feature is binary valued, suppose that
a; = 1 for all features, and suppose that
clusters represent single exemplars (so that
x; € {0, 1}). Then Equation 9.22 becomes

(nxny + nxqy) + %(nX—Y + ny-x)
(nxny + nxay) + (Mx-y + ny-x)
(9.23)

s(x,y) =

where e = 2.718 is the base of the exponen-
tial function. This special case of the sim-
ilarity function clearly decomposes the in-
fluence of matching and differing features.
The numerator of this equation appeared
before, specifically in Equation 9.10, which
expressed the APPLE model when applied
to the special case of binary features. The
APPLE model compresses the range of that
numerator by passing it through a sigmoidal
squashing function. The SUSTAIN model
compresses the range of that numerator by
dividing by the total number of features.
However, unlike APPLE, the ratio in SUS-
TAIN is only sensitive to the number of
matching features when there is at least one
mismatching feature; hence, SUSTAIN is
listed in the center cell of Table 9.1.

Another approach to similarity, and the
last that will be considered here, is provided
by the rational model of Anderson (1990,
1991). Like SUSTAIN, the rational model
recruits cluster nodes as training progresses.
In the limit, it can recruit one cluster per
(distinct) exemplar and behave much like
the GCM (Nosofsky, 1991).

The rational model takes a Bayesian ap-
proach, which entails fundamental onto-
logical differences from the previous ap-
proaches. (For a discussion of Bayesian
models more generally, see Chapter 3 in
this volume.) The goal of the rational model
is to mimic the probability distribution of
features observed in instances. Each clus-
ter node represents the probability of sam-
pling any particular feature value, and the
model overall represents the probability of
instances as a mixture of cluster-node dis-
tributions. But that statement does not cap-
ture an important subtlety of the Bayesian



284 KRUSCHKE

approach: Each cluster node represents an
entire distribution of beliefs about possible
probabilities of features values.

For example, suppose a cluster node is
representing the distribution of heads and
tails (i.e., the feature values) in a sequence
of coin flips (i.e., the instances). Denote the
underlying probability of heads as 6, and the
probability of tailsas 6, (= 1 — 6;). One pos-
sible belief about the underlying probability
of heads is that 6, = 0.5, that is, the coin
is fair. But there are other possible beliefs
that the coin is biased, such as 8; = 0.1 or
6, = 0.9. The cluster node represents the
degree of belief in every possible value of
6, and 6,. By assumption, the model be-
gins (before seeing any instances) with be-
liefs spread out uniformly over all possible
values of 6. Gradually, the model loads up
its beliefs onto those values of 6 that best
mimic the observed values, simultaneously
reducing its belief in values of 6 that do not
easily predict the observed values. Figure 9.3
illustrates this process of updating belief dis-
tributions.

In general, when a feature has V values,
any particular belief specifies the probabil-
ity 6, of each of the V feature values. A
cluster node represents a degree of belief
in every possible particular combination of
probabilities. The degree of belief is a distri-
bution over the space of all possible values
of 1, ...,0y. Such a distribution could, in
principle, be specified in a variety of ways;
typically, the specification of the distribu-
tion will involve parameter values. Ander-
son (1990) uses the Dirichlet distribution,
which has parameters, a,, one per feature
value, that determine the distribution’s cen-
tral tendency and shape. In the earlier ex-
ample with two scale values (i.e., heads and
tails), the Dirichlet distribution has two pa-
rameters, a; and a; (and in this case is com-
monly called the Beta distribution). Exam-
ples of the Dirichlet distribution are shown
in Figure 9.3. Anderson assumes that clus-
ters begin with unbiased beliefs, parameter-
ized by a, = 1 for all values v. With each
observation of an instance, the distribution
of beliefs is updated according to Bayes’ the-
orem. Conveniently, the updated (“poste-

rior”) distribution of beliefs turns out also
to be a Dirichlet distribution in which the
a parameter of the observed feature value is
incremented by one. Again, see the caption
of Figure 9.3 for an example of this pro-
cess. Thus, after m, instances with value v,
the parameters of the belief distribution are
a, =m, + 1.

The value 6, is, by definition, the prob-
ability that the feature value would be
generated by the cluster if the value 6, were
true. So the cluster’s predicted probability
of feature value v is the integral over all
possible values of 6, weighted by the prob-
ability of believing it is true. Thus, p(v) =
f---fd@l--'dgvev p(91, ..., Oviay, ...,av).
For the Dirichlet distribution, the integral
simplifies to

p(v) = a, / Ta

= (m, + 1)/2 (my, +1). (9.24)

w

To reiterate, Equation 9.24 provides the
probability that a cluster would generate
feature value v within a particular featural
dimension.

Stimuli do not usually have just one feat-
ural dimension, however. For example, they
might have the features of political party,
marital status, ethnicity, and so forth. The
rational model assumes that, within any
cluster, the features are independent of each
other. Because of this assumed indepen-
dence, the probability of observing value v,
on feature 1 in conjunction with value v,
on feature 2, and so forth, is the product
of their individual probabilities: p({v4}) =
[ 14 #(va). Anderson used that overall prob-
ability of the stimulus as a measure of how
similar the stimulus is to the cluster. For-
mally, for a stimulus y = {v;} and a cluster
x = {ay,}, the “similarity” of y to x is

s(x, y) = l_l p(vd)
d

1
=Tt (9.25)
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Figure 9.3. Each panel corresponds to the state of a cluster node in Anderson’s (1990) rational
model. Here, the cluster node is representing a single featural dimension that has two possible values.
In each panel, the horizontal axis shows 6, which indicates the probability that the feature takes on
its first value. (Of course, 8, = 1 — 6,.) The vertical axis indicates the degree of belief in values of ;.
Before observing any instances, the cluster begins in the top-left state, believing uniformly in any
possible value of 8, which is parameterized as a; = 1 and a; = 1. If the first observed instance
displays value 1, then the cluster node adjusts its distribution of beliefs to reflect that observation,
moving to the left-middle state, parameterized as a; = 2 and a, = 1. If the next observed instance
displays value 2, then the cluster node changes its beliefs to the center state, parameterized as a; = 2
and a; = 2. At this point, because 50% of the instances have shown value 1, the cluster believes most
strongly that 8, = 0.50, but because there have only been two observations, beliefs are still spread out
over other possible values of 6.

Anderson intended this as similarity only =~ When the cluster represents a single exem-
metaphorically and not as an actual model  plar, it implies that m, = O for all v but one.
of similarity ratings (Anderson, 1990,  If the represented instance occurred r times,
p. 105). then m, = r for the feature value that actu-

Consider the special circumstances  ally appeared in the instance. In this partic-
wherein all dimensions are binary valued  ular situation, the similarity formula can be
and a cluster represents a single exemplar.  expressed in terms of the number of features
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that match or mismatch between the cluster
and the stimulus. Equation 9.25 becomes

T-l-l nxny +nxny
s(x, y) = <r+2)

1 nx-y+ny-x
. (r + 2) '

Because similarity of an instance to its corre-
sponding exemplar is influenced by how of-
ten the instance has previously appeared, the
rational model is listed in the lower-center

cell of Table 9.1.

(9.26)

2.2.5. HYBRID SCALE
Nosofsky and Zaki (2003) proposed a sim-
ilarity function that incorporates aspects
of the standard spatial similarity metric of
Equation 9.2 with coefficients that express
discrete-feature matching and mismatching.
Their hybrid similarity function defined sim-
ilarity as

sh(x, ¥) = CD exp(—c d(x,y)) (9.27)
where C > 1 expresses the boost in similar-
ity from matching features, and 0 < D < 1
expresses the decrease in similarity from dis-
tinctive features. Notice in particular that
the similarity of an item to itself is C > 1.
Nosofsky and Zaki (2003) found that the
hybrid-similarity model fit their recognition
data very well, whereas the standard simi-
larity function did not.

2.2.6. ATTENTION IN SIMILARITY

Finally, a crucial aspect of similarity that
has not been yet emphasized is selective
attention to dimensions or features. Most
of the models reviewed earlier do explic-
itly allow for differential weighting of di-
mensions. Even the SDM model permits
differential feature weights (Kanerva, 1988,
p. 46). Only the configural model (Pearce,
1994) and the rational model (Anderson,
1990) do not have explicit mechanisms for
selective attention.® This lack of selective at-

3 Anderson (1990, pp. 116-117) describes a way to
differentially weigh the prior importance of each

tention leaves those models unable to gener-
ate some well-established learning phenom-
ena, such as the relative ease of categories for
which fewer dimensions are relevant (e.g.,
Nosofsky et al., 1994). See Chapter 9 in this
volume for a review that emphasizes the role
of attention.

2.2.7. SUMMARY OF SIMILARITY
FORMALIZATIONS

One of the contributions of this chapter is
a review of these various models of similar-
ity in a common notation to facilitate com-
paring and contrasting the approaches. In
particular, expressions were derived for the
similarity functions in terms of the number
of matching and mismatching features when
the models are applied to the special case of
present/absent features, with equal atten-
tion on all the features. This restriction to
a special case permits a direct comparison
of the similarity functions in terms of the
influence of the number of features in each
stimulus, the number of distinctive features,
and so forth.

If nothing else, what can be concluded
from the variety of similarity functions re-
viewed in this section is that the best for-
mal expression of similarity is still an open
issue. The shared commitment in this vari-
ety is the claim that categorization is based
on computing the similarity of the stim-
ulus to exemplars in memory. Although
the review of similarity functions has re-
vealed that there are a variety of formaliza-
tions that different researchers have found
useful in different circumstances, what is
lacking is specific guidance regarding which
formalization is appropriate for which sit-
uation. A general answer to this question
is a foundational issue for future research.
A thought-provoking review of how peo-
ple make similarity judgments has been

featural dimension, but this is opposite from learned
selective attention. In Anderson’s approach, the
model begins with strong prior selectivity that
subsequently gets overwhelmed with continued
learning. But in human learning, the prior state
is, presumably, noncommittal regarding selectiv-
ity and subsequently gets stronger with continued
learning.
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provided by Medin, Goldstone, and Gentner
(1993). A perspective on similarity judg-
ment, as a case of Bayesian integration over
candidate hypotheses for generalization, has
been presented by Tenenbaum and Griffiths
(2001a).

2.3. Learning of Associations

Exemplar models assume that at least three
aspects of the model get learned. First,
the stimulus exemplars themselves must be
stored. This aspect is discussed in a sub-
sequent section. Second, once the exem-
plars are in memory, the associations be-
tween exemplars and category labels must
be established. Third, the allocation of at-
tention to stimulus dimensions must be de-
termined. In principle, other aspects of the
model could also be adjusted through learn-
ing. For example, the steepness of the gen-
eralization gradient (e.g., parameter c¢ in
Equation 9.2) could be learned, or the de-
cisiveness of choice (e.g., parameter ¢ in
Equation 9.36) could be learned. These in-
triguing possibilities will not be further ex-
plored here.

This section focuses on how the associ-
ations between exemplars and category la-
bels are learned. Learned attentional allo-
cation can also be implemented as learned
associations to attentional gates, and there-
fore attentional learning is also a topic of
this section. (For a discussion of associative
learning in humans and animals, see Chapter
22 in this volume.)

Associative strengths can be adjusted
many different ways. Perhaps the simplest
way is adding a constant increment to the
weight whenever both its source and tar-
get node are simultaneously activated. More
sophisticated schemes include adjusting the
weight so that the predicted activation at
the target node better matches the true tar-
get activation. These and other methods are
discussed en route.

2.3.1. CO-OCCURRENCE COUNTING

The GCM establishes associations between
exemplars and categories by simply counting
the number of co-occurrences. This can be

understood in the context of Equation 9.3,
wherein the effective associative influence
between exemplar x and response r is N,
that is, the number of times that response
r has occurred with instance x. Somewhat
analogously, in SDM (Kanerva, 1988), asso-
ciative weights from exemplar nodes to out-
put nodes are incremented (by 1) if both the
exemplar and the output are co-activated,
and associative weights are decremented
(by 1) if either is active whereas the other
is not.

A related approach is taken by the ra-
tional model (Anderson, 1990, p. 136).
When implemented in a network architec-
ture, the weight from cluster node k to
category-label node r can be thought of as
p(rik) = (m, + 1)/ 3_,(m¢ + 1), where m; is
the number of times that category label £ has
co-occurred with an instance of cluster k.
Thus, the change in the associative weight
is affected only by the co-occurrence of the
cluster and the label. (The assignment of the
stimulus to the cluster is affected by past
learning, however.)

In all these models, regardless of whether
the model is classifying a stimulus well or
badly, the associative links are incremented
the same amount. Other models adjust their
weights only to the extent that there is er-
ror in performance (as described in the next
section).

In none of these models is there learned
allocation of selective attention. In the
GCM, attention is left as a free parameter
that is estimated by fits to data. In some early
work (e.g., Nosofsky, 1984), it was assumed
that attention is allocated optimally for the
categorization, but there was no mechanism
suggested for how the subject learns that op-
timal allocation.

2.3.2. GRADIENT DESCENT ON ERROR

ALCOVE uses gradient descent on error
to learn associative weights and attentional
strengths. On every trial, the error between
the correct and predicted categorization is
determined (see Equation 9.4), and then
the gradient of that error is computed, fol-
lowed by adjustments in the direction of
the gradient (see Equations 9.5 and 9.6).



288 KRUSCHKE

RASHNL also uses gradient descent, iter-
ated to achieve large shifts of attention on
single trials.

In the SUSTAIN model of Love et al.
(2004), only the winning cluster (exemplar)
node learns, and only its output weights
learn by gradient descent on categorization
error. The dimensional attention strengths
and cluster coordinates learn (almost) by
gradient ascent on similarity. That is, the
attention strengths are adjusted to increase
the similarity of the winning cluster node to
the stimulus, and the coordinates of the win-
ning cluster node are moved to increase its
similarity to the stimulus. The particular for-
mulas used in SUSTAIN for learning atten-
tion and cluster coordinates are not exactly
gradient ascent on similarity, however. The
goal for the remainder of this section is to
demonstrate how gradient ascent on simi-
larity yields learning formulas that are much
like the ones used in SUSTAIN.

The SUSTAIN model adjusts the win-
ning cluster’s coordinates, x;,, by applying
a learning formula from Kohonen (1982):

Axiy =1 (Vv — xiv) (928)
where 7 is a constant of proportionality.
(The Kohonen learning rule can be derived
as gradient ascent on a Gaussian density
function with respect to its mean.) Gradi-
ent ascent on the winning cluster’s similar-
ity, with respect to its coordinates, yields
almost the same formula:

Ax; s(x
chxaxiv (/y)

= n; sgn(Viy — Xiv) (9.29)
where sgn(z) is the sign of z, such that
sgn(z) =+1 if z>0, sgn(z)=-1 if
z<0, and sgn(z)=0 if z=0. Equa-
tion 9.29 involves coefficients 7; that de-
pend on the dimension i: 7; =.5a)""
exp(—.5¢; 3¢ 1%iw — Yiul)/ 20, @ -

To adjust attention, Love et al. (2004,
p. 314, discussion of their Equation 3) con-
sider the gradient of each dimension’s in-
dividual similarity with respect to atten-

tion, and heuristically use the formula (their
Equation 13):

Aa; x exp(—a;d;) (1 —a;d;).  (9.30)
This can be recognized as a truncated form
of gradient ascent on the winning cluster’s

overall similarity to the stimulus, as follows.
Computation of the derivative yields

)
Aa; —_—
Q'] X aa, (x/ y)

= 5o [exp(-asd)

x (ya}/'l - aj’dj) - ya}/_ls(x, y)]
(9.31)

where d; =(1/2) >, 1%jo; = ¥jul- In the
special circumstances when y =1 and
> ;. a; =1, Equation 9.31 reduces to

Aaj x exp(—a;d;) (1 —ajd;) — s(x, v),
(9.32)

which is very similar to the formula used by
Love et al. (2004).

In summary, although it is not clear that
the formulas used by SUSTAIN always in-
crease the similarity of the winning cluster
to the stimulus (because the formulas do not
implement gradient ascent), the formulas
are analogous to true gradient ascent on sim-
ilarity. The goal of the formulas in SUSTAIN
is to increase the winning cluster’s repre-
sentativeness of the instances it wins. True
gradient ascent on similarity would be one
way to achieve that goal. Notice, however,
that increasing the similarity of the winning
cluster to the stimulus might not necessarily
reduce error in predicting the category label.

2.3.3. SYSTEMATIC OR RANDOM
HILL-CLIMBING

Error reduction can be achieved without
explicit computation of the gradient. In
principle, any method for function opti-
mization could be used. Indeed, if the pa-
rameter space is small enough, a dense
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search of parameter combinations could be
undertaken. But when the parameter space
is large, as in most learning situations, there
are various “hill-climbing” algorithms that
probe the error near the current parameter
values and creep their way down the error
surface (e.g., Press et al. 1992, pp. 394-
455). Some algorithms, for example, nu-
merically estimate the gradient of the error
without an explicit formula for the gradient
by trying two different values of a parame-
ter, say w and w + Aw; computing the error
generated by each value, E and E + AE; and
approximating the gradient as AE/Aw. The
algorithms then use the estimates of gradi-
ent (and sometimes also curvature) to make
systematic jumps to new parameter values.

Other algorithms do not bother comput-
ing the gradient at all and simply probe
nearby values of the parameters, chang-
ing to those values if the error is reduced.
The algorithms differ in how they de-
cide which nearby values to probe. The
Stochastic COntext DEpendent Learning
(SCODEL) model of Matsuka (2005) is a
noisy hill-climbing algorithm for learning
associative weights and attention strengths
in ALCOVE. SCODEL randomly tries new
values that are close to its current values. If
a candidate value decreases error, then the
value is kept. But even if the candidate value
increases error, there is a nonzero proba-
bility that the change is kept. This proce-
dure can allow the model to jump over local
minima in the error surface and produces
large individual differences between differ-
ent runs of the model that may mimic the
large variance seen in human learners.

2.3.4. BAYESIAN LEARNING
A rather different approach to learning is
taken by Bayesian parameter estimation. In a
Bayesian conceptualization, the mind of the
learner is conceived to contain a large set of
hypotheses, with each hypothesis specifying
particular parameter values. Learning does
not change the parameter values within each
hypothesis. Instead, learning changes how
strongly one believes each hypothesis.

This type of idea was encountered ear-
lier in the context of the rational model

(Anderson, 1990). There were various hy-
potheses about the underlying probabilities,
8,, of encountering feature values v. For ex-
ample, the model could believe strongly that
a feature value v has probability 6, = 0.2
and believe only weakly that the feature
value has probability 6, = 0.9. The degree
of belief was governed by a parameterized
(Dirichlet) distribution, and Bayesian learn-
ing adjusted the parameters of the distri-
bution (see the discussion accompanying
Figure 9.3).

Instead of entertaining hypotheses about
feature probabilities, consider hypotheses
about the magnitude of associative weights
in an associative network. For example, one
might have two hypotheses about an associ-
ation between an exemplar and a category.
Hypothesis H+ specifies an associative
weight of +1, and hypothesis H— specifies
an associative weight of —1. At first, one
might have no preference for one hypothe-
sis over the other. This state of beliefs can be
expressed as p(H+) = .5 and p(H-) = .5.
Suppose that a learning trial is then experi-
enced, in which the instance occurs and is
taught to be a member of the category. This
occurrence is consistent with H+, so be-
liefs should shift toward H+; perhaps then
p(H+) =.9 and p(H—) = .1. Notice that
none of the associative weights has changed,
but the degree of belief in each one has
changed.

A useful property of Bayesian learning is
that changes in degree of belief about one
hypothesis must affect degree of belief in
other hypotheses. This is because it is as-
sumed that the hypotheses in the hypothe-
sis space are mutually exclusive and exhaust
all possible hypotheses. So if evidence com-
pels you to believe less strongly in one hy-
pothesis, you must believe more strongly in
other hypotheses. Conversely, if evidence
makes you believe more strongly in one
hypothesis, you must believe less strongly
in other hypotheses. There has been much
empirical research demonstrating that peo-
ple are not very accurate Bayesian reason-
ers (e.g.,, Edwards, 1968; Van Wallendael
& Hastie, 1990). But in simple situations,
people do show Bayesian-like trade-offs in
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beliefs. For example, when you find an ob-
ject d’art fallen from its shelf, you might
hypothesize that the cause was either the
cat or the toddler. When you then see the
cat lying on the shelf where the object d’art
was, you exonerate the toddler. Conversely,
if you learn that the cat has the alibi of hav-
ing been outside, the toddler is implicated
more strongly.

Bayesian learning of associative weights in
connectionist networks has been actively ex-
plored in recent years (e.g., MacKay, 2003;
Neal, 1996). Psychologists have successfully
applied other Bayesian models of learning
to associative and causal learning paradigms
(e.g., Anderson, 1990, 1991; Courville
et al.,, 2004; Courville, Daw, & Touret-
zky, 2004; Dayan & Kakade, 2001; Dayan,
Kakade, & Montague, 2000; Gopnik et al.,
2004; Sobel, Tenenbaum, & Gopnik, 2004;
Steyvers et al., 2003; Tenenbaum & Grif-
fiths, 2001b, and Chapter 3 in this volume).

In most existing Bayesian models of cat-
egory learning, the model has a (possibly
infinite) set of hypotheses in which each
hypothesis constitutes a complete map-
ping from stimulus to categorical response.
Bayesian learning consists of updating the
degree of belief in each of these complete
mappings. An alternative new approach
uses Bayesian updating within successive
subcomponents of the mapping Kruschke
(2006). For example, a model such as
ALCOVE can be thought of as a succession
of two components: The first component
maps a stimulus to an allocation of attention
across stimulus dimensions; the second com-
ponent maps attentionally weighted simi-
larities to categorical responses (Kruschke,
2003a). In a typical globally Bayesian ap-
proach to ALCOVE, a hypothesis would
consist of particular weights on the atten-
tion in combination with particular weights
on category associations, thatis, a hypothesis
would be a complete mapping from stim-
ulus to response. In a locally Bayesian ap-
proach, there are hypotheses about atten-
tion weights separate from hypotheses about
category association weights, and Bayesian
updating occurs separately on the two hy-
pothesis spaces. The hypothesis space re-

garding category associative weights is up-
dated by using the corrective feedback about
the categories. But the hypothesis space re-
garding attention strengths needs target at-
tention values, analogous to the target cate-
gory values used for the associative weights.
The target attention strengths are deter-
mined by choosing those values that max-
imize (or at least improve) the predictive
accuracy of the current associative beliefs.
Thus, the internal attentional targets are
chosen to be maximally consistent with cur-
rent beliefs, and only then are beliefs up-
dated with respect to external targets. The
approach combines the ability of Bayesian
updating to exhibit trade-offs among hy-
potheses, with the ability of selective atten-
tion to produce phenomena such as trial-
order effects seen in human learning. See
Kruschke (2006) for a description of var-
ious phenomena addressed by the locally
Bayesian approach.

2.4. Exemplar Recruitment

The previous section described learning of
associative strengths, assuming that the ex-
emplars were already in memory. But get-
ting those exemplars into memory is itself
a learning process. This section describes a
variety of exemplar recruitment models.

2.4.1. NO RECRUITMENT: PRE-LOADED
EXEMPLARS

In SDM (Kanerva, 1988), memory consists
of a set of randomly scattered exemplars, but
these memory exemplars need not be copies
of presented instances. Instead, the memory
exemplars are pre-loaded and form a cov-
ering map of the stimulus space. This idea
influenced the development of ALCOVE.
SDM generates interesting behavior because
it assumes high-dimensional spaces for in-
put, exemplars, and output.

One interpretation of the GCM assumes
that every distinct trial instance is pre-
loaded as an exemplar in memory. This sim-
plification, although expedient for illustrat-
ing the power of the model, is logically
dissatisfying because it assumes knowledge
is in the model before it could have been
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learned. The original ALCOVE model fi-
nessed the issue by assuming the stimulus
space was initially covered by a random cov-
ering map of exemplars as in SDM,; that cov-
ering map was the impetus for ALCOVE'’s
name. It turned out that fits to selected data
sets were affected little by whether a ran-
dom covering map or a set of pre-loaded
exemplars was used, so most reported fits of
ALCOVE use the exemplar version.

2.4.2. INCESSANT RECRUITMENT

Instead of thinking of the GCM as pre-
loading the exemplars and then increment-
ing their weights on subsequent presen-
tations, the GCM can be thought of as
recruiting a new exemplar with every train-
ing instance and creating a link that has
weight +1 between the newly recruited
exemplar and the correct category node
(Nosofsky, Kruschke, & McKinley, 1992,
p. 215). The associative weights of exem-
plars are unaffected by the specifics of subse-
quent training. In this way, exemplar learn-
ing and associative learning occur with the
same magnitude on every trial. Denote the
t™ repetition of instance x by x!, where
the superscript is merely an index, not a
power. Then Equation 9.3 becomes

ﬂR ZXER Zn{\]x s(xt, y)
R = .
) = e 5 s(, 5)
(9.33)

This is formally equivalent to constant in-
crements on the associative weights (via co-
occurrence counting), but a benefit is that
each instance merely recruits a new exem-
plar, rather than having to check if there is
already an exemplar that matches it.

2.4.3. NOVELTY DRIVEN RECRUITMENT

The ADDCOVE model (Verguts et al,,
2004), described earlier beginning with
Equation 9.18, has exemplar recruitment.
When a stimulus occurs that does not match
an existing exemplar in memory, then a new
exemplar is recruited into memory that ex-
actly copies the current stimulus. Notice
that this recruitment process is driven by

stimulus novelty alone, regardless of the per-
formance of the model. Thus, if a novel stim-
ulus appears, a new exemplar is recruited
even if the novel item is correctly classified
by the model (but the newly recruited ex-
emplar might not learn a very large associa-
tive weight to the category nodes if there is
little error).

2.4.4. PERFORMANCE DRIVEN
RECRUITMENT

Incessant recruitment does not solve a ba-
sic problem of frequency counting models:
They can become entrenched by large num-
bers of repeated items in early training. If the
correct categorization changes, the model
can only slowly learn the change by accu-
mulating vast numbers of subsequent coun-
tervailing exemplars. People, however, are
quick to relearn after shifts in categories.
One solution to this problem is to allow the
exemplars to be probabilistically forgotten
(e.g., Estes, 1994, p. 63) or for the asso-
ciative strengths to decay (Nosofsky et al.,
1992). In either of those approaches, the ini-
tial learning of any exemplar is full strength.
As an alternative new approach, suppose
that the initial learning of exemplars should
depend on the current performance of the
model. An exemplar should be recruited for
a stimulus depending on the degree of error
generated on that stimulus.* When there is a
large error, there should be a high probabil-
ity of recruiting an exemplar. When there is
a small error, there should be a small proba-
bility of recruiting an exemplar. A challenge
to this proposed approach is that probabilis-
tic mappings would continually generate er-
ror and endlessly recruit exemplars.

The SUSTAIN model of Love et al.
(2004) recruits new cluster nodes under
certain conditions, depending on the type
of training. For supervised training, that
is, when category labels are provided as
feedback, a new cluster node is recruited
when an instance is presented for which the

4 Previous exemplar theorists have described proba-
bilistic remembering of features or exemplars (e.g.,
Hintzman, 1986, 1988), but not such that the prob-
ability depends on the momentary accuracy of the
model.
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maximally activated category label is not the
correct label. For unsupervised training, a
new cluster node is recruited when an in-
stance is sufficiently novel, that is, when no
existing cluster node is strongly activated
(analogous to ADDCOVE). In the unified
SUSTAIN (uSUSTAIN) model of Gureckis
and Love (2003), the recruitment condi-
tion for supervised training is modified to
be more consistent with the character of the
unsupervised condition. A new cluster node
is recruited when no existing cluster node
for that category label is strongly activated.
The recruitment rule presumes determin-
istic mappings of instances to category la-
bels, so that there is no ambiguity regarding
which label a cluster belongs to.

An attentionally based approach to ex-
emplar recruitment was proposed by Kr-
uschke (2003b, 2003c¢). In this framework,
every node in the network has its output
gated by a corresponding attentional multi-
plier. Even the exemplars are attentionally
modulated. When an instance is presented at
the input nodes, a novel candidate exemplar
node is recruited. Attention is distributed
to the novel candidate exemplar node, and
to all previously recruited nodes, according
to the similarity of the nodes to the input
and according to any previously learned al-
location of attention. When the corrective
feedback is provided, the discrepancy be-
tween the correct and predicted output is
computed, and attention is shifted to reduce
that discrepancy. If the error-reducing at-
tentional shift causes a shift away from the
candidate exemplar node, toward previously
existing nodes, then the candidate is imme-
diately retired. But if the error-reducing at-
tentional shift brings more attention to the
candidate node, it is retained.

Another model with performance-based
exemplar recruitment is the rational model
of Anderson (1990, 1991). When an in-
stance appears, the rational model computes
the probability that the instance belongs to
each cluster and the probability that the
instance belongs to a novel cluster. If the
highest probability is for a novel cluster,
the model recruits a new cluster and assigns
the instance to that cluster. Equation 9.25

stated the probability of an instance y =
{vgq} for a particular cluster node x, that is,
p({va}lx) = [ 14 px(va). For cluster recruit-
ment, however, what is needed is the prob-
ability of the cluster given the instance, that
is, the reverse conditional probability. Bayes'’
theorem provides the relation between re-
versed conditional probabilities: p(x|{vs}) o
p({va}lx) p(x) where p(x) is the probability
of the cluster prior to seeing an information
about the particular instance.

Anderson (1990, 1991) derived an ex-
pression for the prior cluster probabilities
analogous to those used for feature values
within clusters, but now with a free param-
eter called a coupling probability, which is a
fixed background probability ¢ (0 <c¢ < 1)
that two random instances come from the
same cluster. The probability that a ran-
dom instance belongs to an existing clus-
ter x, prior to actually having any informa-
tion about the instance, is p(x) = cq./((1 —
¢) +cq), where g is the total number of
instances seen so far, and g, is the num-
ber of instances assigned to cluster x. The
probability that a random instance belongs
to a novel cluster xp, prior to actually hav-
ing any information about the instance, is
p(x0) = (1 —¢)/((1 —¢) + ¢q). Notice that
before seeing any instances, when g = 0, the
probability of assigning the first instance to
a novel cluster is p(xp) = 1.0. After see-
ing one instance, that is, when g = 1, then
the background probability of another in-
stance being in the same cluster is p(x) = ¢,
and the probability of being in a different
cluster is p(xp) = 1 — ¢. After seeing many
instances, g, dominates ¢, so p(x) & g./q
and p(xp) = 0. To recapitulate: A new clus-
ter node is recruited for instance {v;} when
p({va}ixo) p(x0) > p({va}lx) p(x) for all ex-
isting clusters x. Although p(x) can increase
across trials as more instances are included
in the cluster, p({vs}|x) can decrease be-
cause the cluster can become more sharply
tuned to the specific instances it represents
(cf. Equation 9.26). In particular, new clus-
ters can be recruited when existing clus-
ters are tuned to particular feature combina-
tions, and the current instance is not similar
enough to any existing cluster.
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It might turn out to be the case that an
entirely different approach mimics human
performance best. For example, rather than
explicitly constructing new nodes “from
thin air,” it might be possible to perform
something functionally analogous in a dis-
tributed representation. In such a scheme,
there would be a fixed array of represen-
tational nodes, but their various parameter
values (weights, thresholds, gains, etc.) are
adjusted such that the array as a whole be-
haves as if a new exemplar node were re-
cruited. Alas, it remains for future research
to evaluate the relative merits of these vari-
ous recruitment algorithms.

2.5. Response Probability

Exemplar models are committed to the no-
tions of exemplar representation and selec-
tive attention to features. They are not com-
mitted to a particular response function,
however. Different response functions have
been explored.

One simple modification to the ratio rule
(Equation 9.3) is the inclusion of a guessing
parameter, G:

PR (Xrer Nrxs(x, ¥) + G)
Zr 'Br (Zker MkS(k, y) + G)
(9.34)

?(Rly) =

The guessing parameter keeps the choice
probabilities early in learning (when the N,
are small) close to chance levels, instead of
being unduly influenced by just a few cases.
The guessing parameter also reduces the ex-
tremity of choices when a stimulus is pre-
sented that is not very similar to any mem-
ory exemplars (Nosofsky et al., 1992).
Ashby and Maddox (1993) extended the
original GCM response rule to modulate its
decisiveness with a power parameter y:

v

(e st ) . (935)
Zr (ZkEr s(kl y))

When y is large, it converts a small advan-

tage in summed similarity to a strong pref-
erence; conversely, when y is small, choice

p(Rly) =

probabilities are less extreme. Nosofsky and
Palmeri (1997) provided a process interpre-
tation of the y parameter in terms of how
much exemplar-based evidence needs to be
accumulated before a response is made. The
y parameter is especially useful for fitting
data from individual subjects, as opposed to
group average data (for a review, see Nosof-
sky & Zaki, 2002) and can be crucial for
fitting other data, such as inferences of miss-
ing features (Kruschke, Johansen, & Blair,
1999).

Another variation of the ratio rule for re-
sponse choice was used in the ALCOVE
model (Kruschke, 1992). There, the re-
sponse function is the normalized exponen-
tial, or softmax rule,

exp (¢ Y, wrxs(x, ¥))
Y, exp(o Y, wis(x, )’
(9.36)

p(Rly) =

which has been used previously in connec-
tionist models (e.g., Bridle, 1990). The ex-
ponential transformation is especially im-
portant in models for which the summed
similarities can be negative because of neg-
ative associative weights. This is not an is-
sue in the GCM, but in ALCOVE, it is
crucial because learned association weights
can become negative. The ¢ parameter in
Equation 9.36 governs the decisiveness of
the model: When ¢ is large, a small advan-
tage in summed similarity translates into a
big choice preference; conversely, when ¢ is
small, choice preferences are muted.

Wills et al. (2000) examined the ratio rule
in a general way and presented empirical re-
sults that they argued were difficult for the
ratio rule to explain. They proposed instead
a winner-take-all response network, which
implements competition between response
nodes in a recurrent network.

Juslin, Wennerholm, and Winman
(2001) appended an additional response
strategy called eliminative inference, which
supercedes the ratio rule when the stimulus
is too different from known exemplars. The
reasoning goes as follows: When a stimulus
appears that is clearly unlike previously



204 KRUSCHKE

learned stimuli, then the response given to
it should also be unlike previously learned
responses. That is, for an unknown stimulus,
eliminate the known categories, and guess
at random from the remaining categories.
There clearly are circumstances in which
people will spontaneously use this strategy
(Juslin et al., 2001; Kruschke & Bradley,
1995), but its impact on categorization
phenomena more broadly has not been
demonstrated (Kruschke, 2001b). More
generally, however, this raises the point that
there are many possible response strategies
that people could use, in addition to or
instead of the ratio rule.

2.6. Response Time and Choice as a
Function of Time

The GCM has no temporal dynamics within
or across trials. ALCOVE and RASHNL
have dynamics across trials because they
learn, but they have no dynamics within
trials. Thus, these models make no predic-
tions about response times after onset of a
stimulus.

The Exemplar-Based Random Walk
model (EBRW; Nosofsky & Palmeri, 1997;
Nosofsky & Stanton, 2005) addresses the
dynamics of the response process. In the
EBRW, exemplars are conceived to be in-
stantly and fully activated by the onset of
the stimulus, but then the response is gen-
erated by an iterative race to cross response
thresholds for each category. Think of each
category as having its own horse, racing to
cross its response threshold. The race is con-
ceptualized as a series of brief moments of
time. In each moment of time, a spinner is
spun that points to one of the exemplars at
random. The pointed-at exemplar belongs
to one of the categories, and the horse for
that category moves ahead one unit toward
its response threshold (and the other horses
move back one unit). The probability of
the spinner pointing to an exemplar, that
is, the amount of space an exemplar gets
on the spinner, is proportional to the exem-
plar’s similarity to the stimulus. More ex-
actly, the EBRW is applied to two-category
situations, and when one horse is moved
ahead, the other horse is moved backward.

It is as if there is just one horse, moving ei-
ther toward one threshold for category A or
moving in the opposite direction toward the
threshold for category B. The response time
is assumed to be proportional to the number
of iterations needed until a category thresh-
old is crossed. If the response thresholds for
A and B are y units away from the starting
position (in opposite directions), then the
probability of choosing category A turns out
to be exactly the choice rule described ear-
lier in Equation 9.35 (for a derivation, see
Nosofsky & Palmeri, 1997).

Other models of response dynamics in-
clude models with recurrent activation and
lateral inhibition (Usher & McClelland,
2001; Wills et al., 2000). These models are
based on different assumptions than the dif-
fusion/race model assumptions of EBRW.
Usher and McClelland (2001) compared
the recurrent activation approach with the
diffusion model approach (but not the
EBRW itself). Wills et al. (2000) applied
a winner-take-all recurrent activation net-
work to responses in category learning, but
their emphasis was response proportions,
not response times.

The EBRW has been applied to domains
with integral dimensions, where it is not un-
reasonable to suppose that exemplars are
activated in one fell swoop. When stimu-
lus dimensions are separable, however, then
issues about the temporal processing of di-
mensions loom large. The EBRW was in-
tended primarily as a model of response time
dynamics and not so much as a model of per-
ceptual dynamics.

The Extended Generalized Context
Model (EGCM) of Lamberts (1995, 1997,
2000) addresses the dynamics of exemplar
processing, not just response processing. In
the EGCM (Lamberts, 1995, 1998), simi-
larity is a function of time:

S(t, X, y) = exp <—'C Zai[”i(t)lxi - J/zl])

1

(9.37)

where «; is the utility of dimension i for
the categorization, just as in the GCM or
ALCOVE, but a new term, m;(t), is the
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(cumulative) inclusion probability of dimen-
sion i at time z. Lamberts (1995, 1998) sug-
gests that the inclusion rate for a dimension
should be constant through time and that
therefore the cumulative inclusion probabil-
ity can be expressed as

7i(t) = 1 — exp(—qit) (9.38)

where g; is the inclusion rate for dimension i.
The inclusion rate for a dimension is tied to
its physical salience, irrespective of the di-
mension’s relevance for the particular cate-
gorization. Notice that a dimension with a
fast inclusion rate has a relatively high prob-
ability of being included in the similarity
computation. When the time t is small, the
inclusion probabilities of all dimensions are
small, so the similarity is close to 1 for all
exemplars. When the time ¢ is very large,
the inclusion probabilities of all dimensions
are nearly 1, so the similarities shrink to the
values they would be in the basic GCM.
One of the interesting predictions of the
EGCM is that categorization tendencies can
change nonmonotonically after stimulus on-
set. One such situation can occur because
salient dimensions (i.e., those with high in-
clusion rates) dominate response tendencies
early in processing, but those salient dimen-
sions might not be the most relevant to the
categorical distinction. That is, the relevant
dimensions with high &; might be nonsalient
dimensions with low m; when t is small.
Nonmonotonic response tendencies can also
be produced when an exemplar of one cat-
egory is set in the midst of several exem-
plars from a different category. Early in pro-
cessing, all the m; are small, and therefore
the surrounded exemplar is highly similar
to its many neighbors that belong to the
other category. Consequently, it is classified
as a case of the neighbor’s category. Later
in processing, the m; have grown large, and
the surrounded exemplar is less similar to its
neighbors. Consequently, it is classified in its
own correct category. Lamberts and collab-
orators have documented several such non-
monotonicities; for example, Experiment 2
of Lamberts and Freeman (1999) examined
a case of a surrounded exemplar. The EBRW
cannot account for these nonmonotonici-

ties because its similarity values are fixed
through time, and its random walks are (on
average) monotonically related to the rela-
tive similarities.

The EGCM (Lamberts, 1995, 1998)
models similarity and choice tendency as
a function of time, but it does not predict
specific latencies to respond. The EGCM
Response Time (EGCM-RT) (Lamberts,
2000) is a model of response time per
se. It generates RTs by sampling elements
from separable dimensions, and after each
sample determining a probability of stop-
ping (i.e., making a response) that is re-
lated to the current summed similarity of the
stimulus to all exemplars (Lamberts, 2000,
Equation 14, p. 230). Lambert's mecha-
nism for gradual dimension accumulation
was combined with the EBRW’s response
race mechanism into a model called “EBRW
with perceptual encoding” (EBRW-PE) by
Cohen and Nosofsky (2003). They found
comparable fits to data by EBRW-PE and
EGCM-RT, and suggested that although
future experiments might better distin-
guish the models, the random-walk response
mechanism in the EBRW-PE is more thor-
oughly studied in the literature than the
stopping-rule mechanism in EGCM-RT. Fu-
ture research will have to explore potential
differences between the models; but there
are yet other possibilities for dynamic mech-
anisms to consider, described next.

In the connectionist literature, process-
ing analogous to Lamberts’s inclusion rate
can be found in McClelland’s cascaded acti-
vation approach (McClelland, 1979). That
approach assumes that the i** node’s net in-
put accumulates through time, according to
the temporal integration equation

net;(t) =« Z wija;i(t)
i
+ (1 —«)net;(t — 1) (9.39)

where w;; is the connection weight to node i
from node j, a;(t) is the activation of node j
at time t, and « is the cascade rate for
the node. It can easily be seen from Equa-
tion 9.39 that net; = > ;jwija; is a stable
value: Just plug that into the right side and
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notice that it comes out again on the left
side. Moreover, this value is reached asymp-
totically. At each moment in time, the net
input is (instantaneously) transformed into
activation by the usual sigmoidal squashing
function:

a(t) = 1/[1 + exp(-net(1)].  (9.40)
McClelland and Rumelhart (1988, pp. 153-
155, 304-305) showed that cascaded activa-
tion networks can produce nonmonotonic
outputs through time. In particular, con-
sider two hidden nodes that converge on a
single output node. The first hidden node
has large positive incoming weights and a
weak positive outgoing weight to the out-
put node. The second hidden node has small
positive incoming weights, but a strong neg-
ative outgoing weight to the output node.
When the input nodes are activated, the
first hidden node will become activated
more quickly than the second hidden node,
because the first hidden node has larger in-
coming weights. Hence, the output node
will initially feel the positive connection
from the first hidden node and be acti-
vated. Later, however, the second hidden
node will become as activated as the first
hidden node, and then its stronger nega-
tive output weight will be felt at the out-
put. Hence, the output activation will have
changed from initially growing to asymp-
totically low. Such nonmonotonicities were
exhibited by a model of memory for arith-
metic described by Dallaway (1992, 1994).
His network, when queried with “3 x 8 ="
initially activated a response of 27 before
settling to the correct response of 24.

Although it has not been previously de-
scribed in the literature, it would be straight-
forward to implement cascaded activation
in the ALCOVE or APPLE networks. Sim-
ply let each dimensional distance accumu-
late through time:

di(t, x,y) =k ailx — yi| + (1 — «)

xdi(t—1,x,y). (9.41)

This formula has dimensional salience al-
ready implicit in the stimulus coordinates,

because a more salient dimension has feature
values that are farther apart in psychological
space. Alternatively, salience could be ex-
plicitly marked by another multiplicative
factor, analogous to the inclusion rate in the
ECGM. The cascaded dimensional distance
is used in the natural ways in ALCOVE
and APPLE: For ALCOVE, the overall dis-
tance is d(t, x, y) = Y _; di(t, x, ¥) (cf. Equa-
tion 9.1), and for APPLE, si(t,x,y) =
exp (—di(t, x, v)) (cf. Equation 9.8). At
asymptote, d;(t, x, y) converges to o;|x; —
yi|, so asymptotic choice proportions are
as in the original models. Presumably, the
cascaded activation versions of the models
would generate dynamic behaviors much
like the EGCM, but combined with the ad-
ditional ability to learn associative weights
and attentional allocations. (Learning takes
place once the activations have reached
asymptote, without any change in algo—
rithm.) Analogous cascaded similarity func-
tions could be implemented in a variety of
models discussed earlier.

3. Conclusion

This chapter began with a quick overview of
the representational options for models of
categorization. These options included ex-
emplars, prototypes, rules, boundaries, and
theories. A mutual goal of different formal
models is to account for detailed quanti-
tative data from laboratory experiments in
categorization. These data can include in-
formation about what stimuli or categories
are learned more or less easily, the degree to
which categorical responses are generalized
from learned stimuli to novel stimuli, and
the speed with which categorical responses
are made.

Although a variety of representational
formats have been formalized, exemplar
models have been especially richly explored
by many researchers. The main goal of the
chapter has been to slice across numerous
exemplar models, to excise their functional
components, and to examine those com-
ponents side by side. The main functional
components included the computation of
similarity, the learning of associations and
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attention, the recruitment of exemplars, the
determination of response probability, and
the generation of response times. This dis-
section revealed a variety of formalizations
available for expressing any given psycho-
logical process. The analysis also suggested
numerous directions for novel research.
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