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CHAPTER 9 

Models of Categorization 

John K. Kruschke 

In: Ron Sun (Ed.), 2008. The Cambridge Handbook of 

Computational Psychology. New York: Cambridge University Press. 

1. Introduction 

This chapter surveys a variety of formal 
models of categorization, with emphasis on 
exemplar models. The chapter reviews ex­
emplar models' similarity functions, learn­
ing algorithms, mechanisms for exemplar 
recruitment, formalizations of response 
probability, and response dynamics. The 
intended audience of this chapter is stu­
dents and researchers who are beginning 
the daunting task of digesting the literature 
regarding formal models of categorization. 
There are numerous variations for formaliz­
ing the component processes in exemplar 
models of categorization, and one of the 
contributions of the chapter is a direct com­
parison of component functions across mod­
els. For example, the similarity functions of 
several different models are expressed in a 
shared notational format, and formulas for 
the special case of present/absent features 
are derived, which permits direct compari­
son of their behaviors. No previous review 
cuts across models this way, also including 
comparisons of learning, exemplar recruit­
ment, and so forth. 

By decomposing the models and display­
ing corresponding components side by side, 
the chapter intends to reveal some of the 
issues that motivate model builders, and 
to identify some of the unresolved issues 
for future investigators. Along the way, a 
few promising but undeveloped ideas are 
pointed out, such as an identity-sensitive 
similarity function (Kruschke, 1993), a new 
gradient-descent learning rule for the Super­
vised and Unsupervised Stratified Adaptive 
Incremental Network (SUSTAIN) model 
(Love, Medin, & Gureckis, 2004), an atten­
tionally modulated exemplar recruitment 
mechanism (Kruschke, 2003b), a proposal 
for cascaded activation in Attentional Learn­
ing Covering map (ALCOVE; Kruschke, 
1992), among others. 

Whereas this chapter is specifically in­
tended to survey exemplar model for­
malisms, it avoids discussions of the various 
empirical effects explained or unexplained 
by each model variation. A survey of empir­
ical phenomena can be found in the highly 
readable book by Murphy (2002) . A chap­
ter by Goldstone and Kersten (2003) de­
scribes the various roles of categorization in 



KRUSCHKE 

cognition. Another chapter by Kruschke 
(2005) surveys models of categorization 
with special emphasis on the role of selective 
attention and attentionallearning. Previous 
reviews by Estes (1993, 1994) emphasize 
particular exemplar models and associated 
empirical results through the early 1990s. 

1.1. Everyday Categorization 

Everyone does categorization. For example, 
if you were in an office, and your companion 
pointed to the piece of furniture by the desk 
and asked, "What's that?" you would eas­
ily reply, "It's a chair." Such facility in cate­
gorization is not to be taken sitting down: 
There are hundreds of different styles of 
chairs, many of them novel, seen from thou­
sands of different angles, yet all can be effort­
lessly categorized as chair. Whereas people 
include many items in the category chair, 
they also exclude similar items that are cat­
egorized instead as a park bench or a car seat. 
Putting those examples behind us, we con­
clude, a posteriori, that categorization is a 
complex process. 

Categorization is not just an armchair 
amusement. It has consequences with costs 
or benefits. If you mistakenly categorize a 
dog as a chair and try sitting on it, the 
category of teeth might suddenly leap to 
mind. You might think it is ridiculous to 
confuse a dog with a chair, but there are 
children's chairs manufactured to resemble 
dogs. Moreover, categorizing a dog as a dog 
is not always easy; a Labrador is doggier than 
a Pekinese. A humorous consequence of cat­
egory atypicality was revealed in a 1933 car­
toon by Rea Gardner in the New Yorker 
Magazine: A rotund wealthy lady enters a 
posh restaurant clutching her tiny lap dog, 
to which the snooty maitre d' remarks, ''I'm 
sorry, Madam, but if that's a dog, it's not 
allowed." For a more thorough review of 
the many uses and consequences of categori­
zation, see the chapter by Goldstone and 
Kersten (2003). 

1.2. Categorization in the Laboratory 

Models of categorization are usually de­
signed to address data from laboratory ex-

periments, so "categorization" might be best 
defined as the class of behavioral data gener­
ated by experiments that ostensibly study 
categorization. Perhaps the iconic catego­
rization experiment is one that presents a 
stimulus to an observer and asks him or her 
to select a classification label for the stim­
ulus. In some experiments, corrective feed­
back is then supplied. 

There are many kinds of procedures 
and measurements in categorization experi­
ments, which can assay many different as­
pects of behavior. One such measure is 
the proportion of times each category la­
bel is chosen when a stimulus is presented 
repeatedly on different occasions. Experi­
menters can also measure confidence rat­
ings, response times, typicality ratings, eye 
gaze, recognition accuracy or rating, and so 
forth. Those dependent variables can be as­
sessed as a function of many different in­
dependent variables. For example, behavior 
can be tracked as a function of the number 
of stimulus exposures, whereby the experi­
menter can assess learning, priming, habitu­
ation, and so forth. Experimenters can also 
manipulate category structure, that is, how 
the stimuli from different categories are sit­
uated relative to each other. (For example, 
the categories "stars in Orion" and "stars in 
the Big Dipper" are fairly easy to distinguish 
because their structures put them in distinct 
regions of the sky. But the categories "stars 
closer than 50 light years" and "stars farther 
than 50 light years" are more difficult to dis­
tinguish because stars from those categories 
are scattered in overlapping regions of the 
sky.) The variety of independent variables is 
bounded only by the experimenter's imagi­
nation. A very accessible review of the em­
piricalliterature has been presented by Mur­
phy (2002). 

1.3. Informal and Formal Models 

It is the constellation of categorization phe­
nomena that theorists want to explain. In­
formal theories provide some insights into 
the possible shapes behind that constella­
tion. For instance, one may informally hy­
pothesize that a bird is defined by necessary 
and sufficient features: A bird is something 
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that flies, sings, and has feathers. By that 
definition, however, a bird can be an opera 
diva wearing a feather boa in an airplane. 
So, instead, one might informally hypothe­
size that a bird is defined by similarity to a 
prototype: A bird is something like a robin, 
which is an often-seen bird for North Amer­
icans. 

Informal theories are a very useful first 
step in creating explanations of complex 
behaviors. Unfortunately, informal theories 
rarely make precise predictions and are often 
difficult to distinguish empirically. Some­
times, it is only intuition that generates pre­
dictions from an informal theory, so differ­
ent theorists can make different predictions 
from the same informal theory. 

All branches of science progress from in­
formal theory to formal model. If all that 
Isaac Newton did was propose informally 
that there is a mysterious force that acts on 
apples and the moon in the same way, it is 
unlikely that his theory would be remem­
bered today. It was the precision and verac­
ity of his formal model of gravity that made 
his idea famous. Whereas Newton invented 
a formal model of how apples and moons 
interact among themselves, cognitive scien­
tists have been inventing formal theories of 
how apples and moons are mentally catego­
rized by observers. Just as there are many 
possible aspects of objects that could be for­
mally speCified in a model of gravitational 
behavior, there are many aspects of mental 
processing that could be formally specified 
in a model of categorical behavior. 

1.4. Types of R epresentation and Process 

Any model must assume that the stimu­
lus is represented by some formal descrip­
tion. I This input representation could be de-

I This representational assumption for a model does 
not necessarily imply that the mind makes a for­
mal representation of the stimulus. Only the formal 
model requires a formal description. This is exactly 
analogous to formal models of motion: Newton's 
formal model uses representations of mass and dis­
tance to determine force and acceleration, but the 
objects themselves do not necessarily measure their 
masses and distances and then compute their force 
and acceleration. The representations in the model 
help us understand the behavior, but those repre-

rived from multidimensional scaling (e.g., 
Kruskal, 1964; Shepard, 1962). For exam­
ple, an animal might be represented by its 
precise coordinates in a psychological space 
that includes dimensions of size, length of 
hair/fur, and ferocity. Other methods for de­
riving a stimulus representation include fea­
ture extraction from additive clustering or 
factor analysis. Any model must also assume 
a formal representation of the cognizer's re­
sponse. In the case when the cognizer is 
asked to produce a category label for a pre­
sented stimulus, the formal representation 
of the response could be a simple 1/0 cod­
ing for the presence/absence of each possible 
category label. 

Some key differences among models are 
the representations and transformations that 
link the input and response representa­
tions. These intermediate representations 
and transformations are supposed to de­
scribe mental processes. 2 In general, a model 
of categorization specifies three things: 
(1) the content and format of the internal 
categorical knowledge representation, (2) 
the process of matching a to-be-classified 
stimulus to that knowledge, and (3) a pro­
cess of selecting a category (or other re­
sponse) based on the results of the matching 
process. 

It can be useful to categorize models of 
categorization according to the content and 
format of their internal knowledge. Essen­
tially, this content and format describe the 
type of representation that models use to 
mediate the mapping from input to output . 
The usual five types of representation are ex­
emplars, prototypes, rules, boundaries, and 
theories. Many models of categorization are 
explicitly designed to be a clear case of one 
of those representational types, and some 
models are explicitly designed to be hy­
brids of those types, whereas yet other mod­
els are not easily classified as one of the 
five. 

sentations need not be reified in the behavior being 
modeled. 

2 Just as input and output representations are in 
the model but not necessarily in the world, an 
intermediate transformation and representation in 
the model need not be reified in the mind being 
modeled. 
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1.4.1. EXEMPLAR MODELS 

The canonical exemplar model simply stores 
every (distinct) occurrence of a stimulus and 
its category label. To classify a stimulus, the 
model determines the similarity of the stim­
ulus to all the known exemplars, aggregates 
the similarities, and then decides the cate­
gorization of the stimulus. Exemplar mod­
els are the primary focus of this chapter 
and will be discussed extensively later. The 
other types of models are only briefly de­
scribed to establish a context for exemplar 
models . 

1.4.2. PROTOTYPE MODELS 

A prototype model operates analogously to 
an exemplar model, but instead of storing in­
formation about every instance, the model 
only stores a summary representation of the 
many instances in a category. This represen­
tative stimulus could be a central tendency 
that expresses an average of the category. 
This average need not be the same as any 
actually experienced instance. The represen­
tative prototype could instead be a modal 
stimulus defined either as the most frequent 
instance or as a derived stimulus that is a 
combination of all the most frequent fea­
tures . In the latter case, this modal stimu­
lus need not be the same as any actually 
experienced instance. Finally, the prototype 
could instead be an "ideal" exemplar or car­
icature that indicates not only the content 
of the items in the category but also em­
phasizes those features that distinguish the 
category from others. This ideal need not be 
actually attained by any real instance of the 
category. 

In "pure" prototype models, the models 
take a stimulus as input, compute its similar­
ity to various explicitly speCified prototypes, 
and then generate categorical response ten­
dencies. A famous early application of a 
prototype model to human classification of 
schematic faces was conducted by Reed 
(1972). Anyone-layer feed-forward connec­
tionist model can be construed as a proto­
type model; an example is the component­
cue model of Gluck and Bower (1988), in 
which a category is defined by a vector of 
weighted connections from features. (For 

a discussion of connectionist models, see 
Chapter 2 in this volume.) 

Pure prototype models have a single ex­
plicit prototype per category. It is possible 
instead to represent a category with mul­
tiple prototypes, especially if the category 
is multimodal or has "jagged" boundaries 
with adjacent categories. Taken to the limit, 
this multiple-prototype approach can as­
sign one prototype per instance, so it be­
comes an exemplar model. Some examples 
of models that recruit multiple prototypes 
during learning of labeled categories will be 
discussed later, but there are also models 
that recruit multiple prototypes while trying 
to learn clusterings among unlabeled items 
(e.g., Carpenter & Grossberg, 1987; Rumel­
hart & Zipser, 1985) . 

In another form of prototype model, the 
prototypes for the categories are implicit and 
dynamic (and in fact, it might be debatable 
to assert that these models "have" prototypes 
at all). An example of this sort of model 
is a recurrent connectionist network. When 
a few nodes in the network are clamped 
"on/' activation spreads via weighted con­
nections to other nodes. Some other nodes 
will be stably activated, whereas other nodes 
will be suppressed. If each node represents 
a feature, then the collection of co-activated 
nodes can be interpreted as having filled in 
the typical features of the category to which 
the initially clamped-on features belonged. 
Models that implement this approach in­
clude the "brain state in a box" model of An­
derson et al. (1977) and the constraint-satis­
faction network of Rumelhart et al. (1986). 

1.4· 3· RULE MODELS 
Another type of model that specifies a cat­
egory by a summary of its content is a rule 
model. A rule is a list of necessary and suffi­
cient features for category membership. For 
example, a bachelor is anything that is hu­
man, male, unmarried, and eligible. (No­
tice that the features themselves are cat­
egories.) Examples of rule models include 
the hypothesis-testing approach of Levine 
(1975) and the RULEX model of Nosofsky 
et al. (Nosofsky & Palmeri, 1998j Nosofsky, 
Palmeri, & McKinley, 1994). 
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1.4+ BOUNDARY MODELS 

Unlike the previously described types 
of models, a boundary model does not 
explicitly specify the content of a category 
but instead specifies the boundaries between 
categories. For example, one might define 
a skyscraper as any building that is at least 
twenty stories tall. The value, twenty sto­
ries, is the boundary between skyscraper and 
non-skyscraper. Sometimes, boundary mod­
els are also referred to as rule models, be­
cause the boundary is a specific condition 
for category membership just like necessary 
and sufficient features are a specific condi­
tion . The usage here emphasizes that rules 
specify interior content, whereas boundaries 
specify edges between. The best developed 
boundary models have been expounded in a 
series of publications by Ashby and collab­
orators (e.g ., Ashby & Gott, 1988; Ashby & 
Maddox, 1992) 

1.4-5- CONTE T/BOUNDARY DUALITY 

AND ON-THE-FLY EQUIVALENCE 

In some cases, it is only a matter of empha­
sis to think of a model as specifying content 
or boundary, because there may be ways to 
convert a content model to an equivalent 
boundary model and vice versa. For exam­
ple, suppose two categories are represented 
by one prototype for each category, and the 
categorization is made by classifying a stim­
ulus as whichever prototype is closer. From 
this it can be easily inferred that the model 
makes a linear boundary between the two 
categories, and an equivalent model states 
that the stimulus is classified by whichever 
side of the linear boundary it falls on. 

lt might be possible in principle to con­
vert any content model to an equivalent 
boundary model and vice versa, but that 
does not mean that the two types of mod­
els are equally useful. Especially when cate­
gory structure is complex, when there are 
many categories involved, and when new 
categories might be created, it is probably 
easier to describe a category by content than 
by boundary. For example, if new category 
members are observed that are somewhat 
different from previously learned instances, 
it is easy to simply add the new items to 

memory, but potentially difficult to add ex­
plicit "dents" in all the category boundaries 
between that category and many others. The 
actual difficulty depends on the particular 
formalization of boundaries, so this intuitive 
argument must be considered with caution. 

There is another way in which a pure ex­
emplar model encompasses the others. If a 
cognizer has perfect memory of all instances 
encountered, then the cognizer could, in 
principle, generate prototypes, rules, or the­
ories at any moment, on the fly, and use 
those derived representations to categorize 
stimuli. Although this process is possible, 
presumably it would generate long response 
latencies compared with a process that has 
those representations immediately available 
because of previously deriving them during 
learning. 

1.4.6. THEORY MODELS 

The fifth approach to models of categoriza­
tion is the "theory theory." This approach 
asserts that people have theories about the 
world, and people use those theories to cat­
egorize things. This approach can explain a 
variety of complex phenomena that are dif­
ficult for simpler models to address. The pri­
mary statement of this approach was writ­
ten by Murphy and Medin (l985), and 
more recent reviews have been writtten by 
Murphy (1993,2002). Theory theories have 
had limited formalizations, however, in part 
because it can be difficult to formally spec­
ify all the details of a complex knowledge 
structure. Some recent models that include 
formalizations of previous knowledge, if not 
full-blown theories, are those by Heit and 
Bott (2000); Heit, Briggs, and Bott (2004) 
and Rehder (2003a, 2003b). 

1.4-7. HYBRID MODELS 

The various representations and processes 
described in previous sections have differ­
ent properties, and it may turn out to be the 
case that no single representation captures 
all of human behavior. It is plausible that the 
breadth of human behavior is best explained 
by a model that uses multiple representa­
tions. The challenge to the theorist then 
goes beyond specifying the details of anyone 
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representational type. The theorist must also 
specify exactly how the different represen­
tations interact and the circumstances under 
which each subsystem is selected for action 
or learning. Only a few combinations of rep­
resentation have been explored. 

Busemeyer, Dewey, and Medin (1984) 
combined prototype and exemplar mod­
els and found no consistent benefit of in­
cluding prototypes. A model proposed by 
Smith and Minda (2000) combined pro­
totypes with punctate exemplars, in which 
only exact matches to the exemplars have 
an influence; but Nosofsky (2000) showed 
that this particular hybrid model has serious 
shortcomings. 

Other models have combined rules or 
boundaries with exemplars or multiple pro­
totypes. For example, the COVIS model 
(Ashby et aL, 1998; Ashby & Maddox, 
2005) includes two subsystems, an explicit 
verbal subsystem that learns boundaries 
aligned with stimulus dimensions and an im­
plicit system that learns to map exemplars 
or regions of stimulus space to responses. As 
another example, a "mixture of experts" ap­
proach (Erickson & Kruschke, 1998, 2002; 
Kalish, Lewandowsky, & Kruschke, 2004; 
Kruschke, 2001a; Kruschke & Erickson, 
1994; Yang & Lewandowsky, 2004) com­
bines modules that learn boundaries and 
modules that learn exemplar mappings. The 
mixture-of-expert approach also incorpo­
rates a gating system that learns to allocate 
attention to the various modules. 

1.5. Learning of Categories 

A model of categorization can specify a map­
ping from input to output without specify­
ing how that mapping was learned. Theo­
ries of learning make additional assumptions 
about how internal representations change 
with exposure to stimuli. Different types of 
representation may require different types 
of learning. This section merely mentions 
some of the various possibilities for learning 
algorithms. Examples of each are described 
in Section 2. 

Perhaps the simplest learning mechanism 
is a tally of how many times a particu-

lar feature co-occurs with a category labeL 
Somewhat more general are simple Heb­
bian learning algorithms that increment a 
connection weight by a constant amount 
whenever the two nodes at the ends of that 
connection are co-activated. More sophis­
ticated Hebbian algorithms adjust the size 
of the increment so that the magnitude of 
the weight is limited. Notice that in these 
schemes the weights are adjusted indepen­
dently of how well the system is performing 
its categorization. 

Alternatively, learning could be driven by 
categorization performance, not by mere co­
occurrence of stimuli. The model can com­
pare its predicted categorization with the 
actual category and, from the discrepancy, 
adjust its internal states to reduce the error. 
Thus, error minimization can be one goal 
for learning. In other approaches to learn­
ing, the goal is to adjust the internal repre­
sentation such that it maximizes economy 
of description or the amount of information 
transmitted through the system. 

Yet another scheme is learning by 
Bayesian updating of beliefs regarding al­
ternative hypotheses. In the previous non­
Bayesian schemes, learning was a matter of 
adjusting the values of a set of parameters, 
such as associative weights. By contrast, in 
a Bayesian framework, there are a large set 
of hypothetical fixed parameter values, each 
with a certain degree of belief. Bayesian 
learning consists of shifting belief away from 
hypotheses that fail to fit observations, to­
ward hypotheses that better fit the observa­
tions. 

2. Exemplar Models 

The previous section provided a brief infor­
mal description of some of the concepts that 
will be formally expressed in the remain­
der of the chapter. From here on, the chap­
ter unabashedly employs many mathemati­
cal formulas to express ideas. 

In recent decades, theories of categoriza­
tion emphasized rule-based theories (e.g., 
Bourne, 1966; Bruner, Goodnow, & Austin} 
1956), then changed to prototype-based 
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theories (e.g., Reed, 1972; Rosch & Mervis, 
1975), and then moved to boundary (e.g., 
Ashby & Gott, 1988) and exemplar theories 
(e.g., Medin & Schaffer, 1978; Nosofsky, 
1986). Although a variety of representa­
tions have been formalized, exemplar mod­
els have been especially richly explored in 
recent years, in no small part because they 
have been shown to fit a wide variety of 
empirical data. Exemplar models also form 
a nice display case for illustrating the is­
sues mentioned in the preceding introduc­
tory paragraphs. 

2.1. Exemplary Exemplar Models 

Exemplar models have appeared in domains 
other than categorization, such as percep­
tion, memory, and language (e.g., Edelman 
& Weinshall, 1991; Hintzman, 1988; Logan, 
2002; Regier, 2005). Within the categoriza­
tion literature, however, a dominant family 
line of exemplar models centers on the Gen­
eralized Context Model (GCM; Nosofsky, 
1986). The GCM is a formal generalization 
of the context model of Medin and Schaf­
fer (1978). In these models, a stimulus is 
stored in memory as a complete exemplar 
that includes the full combination of stim­
ulus features . It is not the case that each 
feature is stored independently of other fea­
tures. Thus, the "context" for a feature is 
the other features with which it co-occurs. 
Exemplar representation allows the models 
to capture many aspects of human catego­
rization, including the ability to learn non­
linear category distinctions and correlated 
features, while at the same time producing 
typicality gradients. 

In the context model and GCM, perhaps 
just as important as exemplar representation 
is selective attention to features. With selec­
tive attention, the same underlying exem­
plar representation can be used to represent 
different category structures in which dif­
ferent features are relevant or irrelevant to 
the categorization. The context model and 
GCM had no learning mechanism for atten­
tion, however. Kruschke (1992) provided 
such a learning mechanism for attention in 
the ALCOVE model and at the same time 

provided an error-driven learning mecha­
nism for associations between exemplars 
and categories (unlike the simple frequency 
counting used in the GCM). Hurwitz 
(1994) independently developed a similar 
idea but based on the formalism of the 
context model, not the GCM. Attentional 
shifting in ALCOVE was assumed to be 
gradual over trials, but human attentional 
shifting is probably much more rapid within 
trials while retention is gradual across trials. 
Rapid attention shifts were implemented 
in the Rapid Attention Shifts 'N' Learn­
ing (RASHNL) model of Kruschke and Jo­
hansen (1999). The basic formulas for the 
GCM and ALCOVE are presented next, 
so that subsequent researchers ' variations of 
these formulas can be provided. 

The GCM assumes that stimuli are 
points in an interval-scaled multidimen­
sional space. For example, a stimulus might 
have a value of 47 on the dimension of per­
ceived size and a value of 225 on the dimen­
sion of perceived hue. Formally, exemplar x 
has value Xi on dimension i. 

The similarity between memory exem­
plar x and stimulus y is computed in two 
steps. First, the psychological distance be­
tween x and y is computed: 

(9 .1) 

where (Xi is the attention allocated to di­
mension i. Equation 9.1 simply says that 
for each dimension i, the absolute differ­
ence between x and y is computed, and then 
those dimensional differences are added up 
to determine the overall distance. Each di­
mension contributes to the total distance 
only to the extent that it is being attended 
to; the degree of attention to dimension i 
is captured by the coefficient (Xi (which 
is non-negative). Notice that when (Xi gets 
larger, the difference on dimension i is 
weighted more heavily in the overall dis­
tance function. Equation 9.1 applies when 
the dimensions are psychologically separa­
ble; that is, when they can be selectively 
attended. In some applications, the atten­
tion strengths are assumed to sum to 1.0, to 
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GCM/ALCOVE: c=0.5,o:=(0.5,0.5) 
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Figure 9 .1. Similarity function in Generalized Concept Model (GCM) and Attentional Learning 
Covering (ALCOVE) map. A memory exemplar is located at position x = (0, 0), and the height of 
the surface is the similarity of stimulus y = (YI, Yz) to x. The closer y is to (0, 0), the more similar it 
is to x, so that the similarity peaks when y = x at (0,0). Notice that the level contours, which can be 
glimpsed on the floor of the plot, are diamond shaped. These diamonds mark points of equal 
distance from the exemplar, using the "city-block" metric of Equation 9.1. The curved surface drops 
exponentially as a function of distance, as dictated by Equation 9.2. 

reflect the notion that dimensions compete 
for attention. 

After the distance is computed, the sim­
ilarity is determined as an exponentially de­
caying function of distance: 

sex, y) = exp( -c d(x, y)) (9.2) 

where c > 0 is a scaling parameter. Thus, 
when the distance is zero, that is, d(x, y) = 
0, then the similarity is I, that is, sex, y) = 
1. As the distance increases, the similarity 
drops off toward zero. The rapidity of the 
decrease in similarity, as a function of dis­
tance, is governed by the scaling parame-

ter, c: When c is large, the similarity drops 
off more rapidly with distance. The expo­
nential form of the similarity function has 
been motivated both empirically and theo­
retically (cf. Shepard, 1987; Tenenbaum & 
Griffiths, 20Gl a, but note that those analy­
ses refer to generalization regarding a single 
category, not exemplars). Figure 9.1 shows a 
plot of this similarity function for an exem­
plar set arbitrarily at x = (0,0). The caption 
of the figure provides detailed discussion. 

After similarity is computed, a categor­
ical response is then generated on the ba­
sis of which category's exemplars are most 
similar to the stimulus and most frequently 
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observed. In a sense, the exemplars "vote" 
for the category with which they are associ­
ated. The strength of the vote is determined 
by how strongly the exemplar is activated 
(by similarity) and how strongly it is asso­
ciated with the category (by frequency of 
co-occurrence). The probability of choosing 
a category is then just the proportional num­
ber of votes it gets. Formally, in the original 
GCM (Nosofsky, 1986), the probability of 
category R given stimulus y is 

p(RIY) = fJR L XER NRx sex, y) 
Lr fJr LkEr Nrk s(k, y) 

(9.3) 

where fJr is the response bias for category r, 
and Nk is the frequency that exemplar k has 
occurred as an instance of the category r. 
This rule is an extension of the similarity­
choice model for stimulus identification 
(Luce, 1963; Shepard, 1957) and is often 
referred to as the ratio rule. The numerator 
of Equation 9.3 simply expresses the total 
weighted vote for category R, and the de­
nominator simply expresses the grand total 
votes cast. Thus, Equation 9.3 expresses the 
proportion of votes cast for category R. 

In summary, Equations 9.l, 9.2, and 9.3 
describe how the GCM transforms a stimu­
lus representation, y, to a categorical choice 
probability, peR I y). The transformation 
is mediated by similarity to exemplars in 
memory. 

In the GCM, the attention weights (aj in 
Equation 9.1) were either freely estimated 
to best fit data or set to values that opti­
mized the model's performance for a given 
category structure. The ALCOVE model 
(Kruschke, 1992) instead provided a learn­
ing algorithm for the attention and associa­
tive strengths. For a training trial in which 
the correct classification is provided (as in 
human learning experiments), ALCOVE 
computes the discrepancy, or error, between 
its predicted classification and the actual 
classification. The model then adjusts the 
attention and associative weights to reduce 
the error. To describe this error reduction 
formally, let the correct (i .e., teacher) cat­
egorization be denoted tb such that tk = ] 
when category k is correct and tk = 0 oth-

erwise. The model's predicted category ac­
tivation, given stimulus y, is defined to be 
the sum of the weighted influences of the 
exemplars. Denote the associative weight to 
category k from exemplar x as Wh. Then 
the predicted activation of category k is 
ak = L x Wkx sex, y). Notice that this sum is 
the same as the sum that appears in the 
GCM's Equation 9.3 if Wkx = Nkx- When 
a stimulus is presented, the model's error in 
categorization is then defined as 

E = .5 L (tk - ak)2 . 
k 

(9.4) 

The model strives to reduce this error 
by changing is attention and associative 
weights. 

Of the many possible methods that could 
be used to adjust attention and associative 
weights, ALCOVE uses gradient descent on 
error. Generally in gradient descent, a pa­
rameter value is changed in the direction 
that most rapidly reduces error. Because the 
gradient (i.e. , derivative) of a function spec­
ifies the direction of greatest increase, gradi­
ent descent follows the negative of the gra­
dient. Gradient descent yields the following 
formulas for changing weights and attention: 

6.Wkx = Aw (tk - ak) sex, y) (9.5) 

6.aj = -Aa L L (tk - ak) 
x k 

where Aw and Aa are constants of propor­
tionality, called learning rates, that are freely 
estimated to best fit human learning data. 
Equation 9.5 says that the change in weight 
Wkx, which connects exemplar x to cate­
gory k, is proportional to the error (tk - ak) 
in the category node and the similarity 
sex, y) in the exemplar node. Equation 9.6 
says that the error at the category nodes 
is propagated backwards to the exemplar 
nodes. Define the error at each exemplar 
as ex. = Lk (tk - ak) Wkx s(x, y) c. Then the 
change in attention to dimension i is simply 
the sum, over exemplars, of each exemplar's 
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error, times its closeness to the stimulus on 
that dimension: 6.ai = -ACt L x €xlXi - Yil· 

The RASHNL model (Kruschke & Jo­
hansen, 1999) is an extension of ALCOVE 
that makes large attentional shifts on each 
trial and better mimics individual differ­
ences and human probabilistic category 
learning than ALCOVE. In particular, 
RASHNL includes a mechanism that grad­
ually reduces the learning and shifting rates, 
so that a large shift of attention can be 
"frozen" into the learned structure. 

The previous section summarized the 
GCM and ALCOVE models. They pro­
vide a reference point for exploring other 
exemplar models. The discussion of other 
exemplar models will emphasize the follow­
ing processes: computing Similarity, learn­
ing associations and attention, recruiting ex­
emplars, choosing a response category, and 
their timing, that is, temporal dynamics. 
Each of these five aspects will be explored 
at length in the following sections. One of 
the goals is to show in detail how each of 
the five aspects can be formalized in a vari­
ety of ways. This side-by-side comparison of 
the internal components of each model is in­
tended to clarify how the models do indeed 
have components, rather than being indivisi­
ble all-or-nothing entities. The juxtaposition 
of components also reveals the variety of for­
malisms that has evolved over the years and 
is suggestive of variation for future intelli­
gent designers. 

2.2. Similarity 

The GCM and its relatives, such as 
ALCOVE, assume that stimuli can be rep­
resented as points on "interval" scales, such 
as size. Stimuli that are instead best rep­
resented on "nominal" scales, such as po­
litical party (e.g., Republican, Democrat, 
Libertarian, or Green Party), are not di­
rectly handled. Moreover, in the GCM and 
ALCOVE, all that affects similarity is dif­
ferences between stimuli; the number of di­
mensions on which stimuli match has no im­
pact. Empirical evidence demonstrates that 
the number of matching features can, in 

fact, affect subjective similarity (e .g., Gati 
& Tversky, 1984; Tversky, 1977). 

Various researchers have contemplated 
alternative stimulus representations and 
similarity functions in attempts to expand 
the range of applicability of exemplar mod­
els . The variations can be analyzed on two 
factors (among others). First, the similar­
ity models can address stimuli represented 
on either continuous, interval-scaled dimen­
sions or discrete, nominally scaled dimen­
sions . Second, similarity models can be sen­
sitive to either stimulus differences only 
or stimulus commonalities as well. For ex­
ample, imagine two schematic draWings of 
faces, composed merely of an oval outline 
and two dots that indicate eyes. The sepa­
ration of the eyes differs between the two 
faces . The perceived similarity of these two 
faces is some baseline value denoted Sb. Now 
imagine including in both faces identical 
lines for mouths and noses . Still, the only 
difference between the faces is the eye sep­
aration; both faces merely have additional 
identical features . The perceived similarity 
of the augmented faces is denoted Sa. If 
Sa =I=- Sb, then the similarity is affected by the 
number of matching features or dimensions. 

Similarity models that are sensitive to the 
number of matching features can be further 
partitioned into two types. One type is sen­
sitive to stimulus commonalities only when 
there is at least one difference between stim­
uli. In this type of modet when the stimuli 
are identical, then the similarity of the stim­
uli is 1.0 regardless of how many features or 
dimensions are present. In other words, the 
self-Similarity of any stimulus is l.0 regard­
less of how rich or sparse the stimulus is. In a 
different type of model, even self-similarity 
is affected by how many stimulus features 
or dimensions are present. 

Table 9.1 lays out the two characteris­
tics of similarity functions, with the columns 
corresponding to the type of scale used for 
representing the stimuli and the rows cor­
responding to how the similarity function 
is affected by the number of matching fea­
tures or dimensions. The following para­
graphs will first describe variations of models 
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Table 9.1: Characteristics of similarity functions for various models 

Scale for stimulus representation 

Similarity is 
sensitive to: Binary features 

Continuous 
N-ary features (interval) scale 

Mismatches only Featural ALCOVE (Lee & 
Navarro, 2002) 

GCM (Nosofsky, 
1986), ALCOVE 
(Kruschke, 1992) 

Number of matches, 
but only with a 
mismatch present 

WRM (Lamberts, 1994), 
Configural Model (Pearce, 
1994) 

SUSTAIN (Love 
et aI., 2004) 

Number of 
matches, including 
self-similarity 

SDM (Kanerva, 1988), 
ADDCOVE (Verguts 
et a1., 2004) 

that handle continuous scaled stimuli and 
then describe several models that handle 
nominally scaled stimuli. Finally, a hybrid 
model will be presented. 

A stimulus will be denoted y and the 
value of its i th feature is Yi. A copy of that 
stimulus in memory is called an exemplar 
and will be denoted x = {Xj}. This nota­
tion can be used regardless of whether the 
features are represented on continuous or 
nominal scales. In the special circumstance 
that every feature is simply present or ab­
sent, the presence of the i th feature is in­
dicated by Yi = I, and its absence is indi­
cated by Yi = O. As a reminder that this is 
a special situation, the stimulus will be de­
noted as uppercase Y (instead of lowercase 
y). When dealing with present/absent fea­
tures, the number of features that match 
or differ across the stimulus Y and a mem­
ory exemplar X can be counted. The set of 
present features that are shared by X and Y 
is denoted X n Y, and the number of those 
features is denoted nXnY. Some models are 
also sensitive to the absence of features. The 
set of features absent from a stimulus is de­
noted Y, and the number of features absent 
from both X and Y is denoted nXnY. The set 
of features present in X but absent from Y is 
denoted X -, Y == X nY, and the number of 
such features is denoted nX~Y. 

Rational Model 
(featural version; 
Anderson, 1990) 

APPLE (Kruschke, 
1993) 

Similarity functions must specify, at least 
implicitly, the range of features over which 
the similarity is computed. In principle, 
there are an infinite number of features ab­
sent from any two stimuli (e.g., they both 
have no moustache, they both have no freck­
les, they both have no nose stud, etc.) and an 
infinite number of features present in both 
stimuli (e.g., they are both smaller than a 
battleship, they are both mounted on shoul­
ders, they are both covered in skin, etc.) . 
The following discussion assumes that the 
pool of candidate features over which simi­
larity is computed has been prespecified. 

2.2.1. CONTINUOUS SCALE, SENSITIVE 

TO DIFFERENCES ONLY 

In the GCM and ALCOVE, stimuli are rep­
resented as values on continuously scaled di­
mensions. The similarity between a stimu­
lus and an exemplar declines from 1.0 only 
if there are differences between the exem­
plar and the stimulus. If the exemplar and 
stimulus have no differences, then their sim­
ilarity is 1.0, regardless of how many dimen­
sions are involved. Therefore, the GCM and 
ALCOVE are listed in the upper right cell 
of Table 9.l. 

Although the GCM/ ALCOVE similarity 
function is meant to be applied to dimen­
sions with continuous scales, it will be useful 
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for comparison with other models to con­
sider the special case when all dimensions 
have only present/absent values . To simplify 
even further, assume that C'ti = 1 for all i and 
that c = 1. In this special case, Equations 9.1 
and 9.2 reduce to 

seX, Y) = exp( -[nx~y + ny~x]). (9.7) 

Clearly, the similarity depends only on the 
number of differing features and not on 
the number of matching features. The term 
in Equation 9.7 will arise again when dis­
cussing the featural ALCOVE model of Lee 
and Navarro (2002). 

2.2.2. CONTI UOUS SCALE, SE SITIVE 

TO MATCHES 

The similarity function in GCM/ ALCOVE 
proceeds in two steps. First, as expressed in 
Equation 9.1, the model computes an over­
all distance between exemplar and stimulus 
by summing across dimensions. Second, as 
expressed in Equation 9.2, the model gener­
ates the similarity by applying an exponen­
tially decaying function to the overall dis­
tance. 

In the Approximately ALCOVE (APPLE) 
model of Kruschke (1993), that ordering of 
computations is reversed. First, a similarity 
is computed on each dimension separately, 
using an exponentially decaying function of 
distance within each dimension: 

Second, an overall similarity is computed by 
combining the dimensional similarities via a 
sigmoid (also known as squashing or logistic) 
function: 

sex, y) 

= Sig ( I:>i(X, y);g, e) 
I 

(9.9) 

where the gain, g > 0, is the steepness of the 
sigmoid and e is a threshold that is typically 
somewhat less than the number of dimen­
sions being summed. 

Figure 9 .2 shows a plot of this similar­
ity function, which should be contrasted 
with the GeM/ALCOVE similarity func­
tion shown in Figure 9.1. This similarity 
function has some attractive characteristics, 
one being that individual featural matches 
can have disproportionately strong influence 
on overall similarity. This is revealed in Fig­
ure 9.2 as the "ridges" where either Xl = Yl 
or X2 = Y2. Another useful property of the 
similarity function is that self-Similarity (i.e., 
when Y = x) can vary from exemplar to ex­
emplar if they have different thresholds or 
gains. In particular, the self-Similarity can 
be less than 1.0 when the threshold e is , , 
high. Finally, when there are more dimen­
sions on which the stimuli match, then the 
similarity is larger. This can be inferred from 
Equation 9.9: When there are more dimen­
sional Si (x, y) terms contributing to the sum, 
the overall sex, y) is larger. Thus, APPLE's 
similarity function operates on continuously 
scaled stimuli and is affected by the number 
of matching dimensions, even for identical 
stimuli. Therefore, it is listed in Table 9.1 in 
the lower right cell. 

When the continuously scaled dimen­
sions assumed by APPLE are reduced to 
present/absent features represented by 1/0 
values, the similarity function can be ex­
pressed in terms of the number of matching 
and differing features. Simplify by assuming 
C'ti = 1 for all i, then Equations 9.8 and 9.9 
imply 

seX, Y) = Sig ( n XnY + nxnY 

+}(nx~y+ny~x);g,e) (9.10) 

where e = 2 .718 is the base of the expo­
nential function. Clearly, this similarity is 
a function of both the number of match­
ing features and the number of mismatching 
features . 
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APPLE: g=7, (k1, a=(O.5,O.5) 
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Figure 9.2. Similarity function in Approximately ALCOVE (APPLE), from Equations 9.8 
and 9.9, using specific parameter values indicated in the title of the figure. Compare with 
Figure 9.1. 

2.2.3. NOMINAL SCALE, SENSITIVE TO 

DIFFERENCES ONLY 

Whereas the GCM, ALCOVE, and APPLE 
apply to stimuli represented on continuous 
scales, there are also many models of cate­
gorization that apply to stimulus represen­
tations composed of nominally scaled di­
mensions. This section reviews several such 
models that are sensitive only to stimulus 
differences, not to stimulus commonalities 
(analogous to GCM/ ALCOVE). A later sec-' 
tion addresses similarity functions in which 
commonalities do have an influence (analo­
gous to APPLE). 

Lee and Navarro (2002) discussed a fea­
tural ALCOVE model in which stimuli are 
represented as features derived from addi­
tive clustering techniques. Let Xi denote the 
presence or absence of feature i in stimu-

Ius x, such that Xi = 1 if x has features i, 
and Xi = 0 otherwise. The distance between 
exemplar x and stimulus y is given by 

d(x, y) = 2.: a i [Xi(l- yJ + (1 - Xi)Yd· 

(9 .11 ) 

Notice in Equation 9.11 that the term inside 
the square brackets is simply 1 if feature i 
mismatches and 0 otherwise. The distance 
is algebraically equivalent to Li ai IXi - Yi I, 
which is an expression seen before in Equa­
tion 9.1 and which will be seen again in 
Equation 9.14. Lee and Navarro (2002) pre­
ferred to express the distance as shown in 
Equation 9.11 because it suggests discrete 
values for Xi and Yi rather than continuous 
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values. Lee and Navarro (2002) then de­
fined similarity as the usual exponentially 
decaying function of distance. In the spe­
cial case that C¥i = 1 for all i, the similar­
ity function becomes exactly Equation 9 .7. 
This similarity function is not sensitive to 
matching features, so this model is listed in 
the upper left cell of Table 9.1. Lee and 
Navarro (2002) collected human learning 
data for stimuli that were well described by 
present/absent features, and found that AL­
COVE with the featural representation fit 
the data better than the original continuous­
scaled ALCOVE. 

2.2+ NOMINAL SCALE, SENSITIVE 

TO MATCHES 

Several models are considered in this sec­
tion. This section first describes models that 
assume binary valued (present/absent) fea­
tures and then moves on to models that as­
sume features with m values. Within each of 
those, the discussion first addresses models 
that are sensitive to the number of matching 
features only when at least one mismatch 
is present and then addresses models that 
are sensitive to the number of matching fea­
tures, even when there are no mismatching 
features. 

Pearce (1987) developed a model in 
which similarity is a function of both match­
ing and distinctive features. He defined the 
similarity of two stimuli, X and Y, to be 

(X Y) = f(Xn Y)f(Xn Y) 
s , f(X)f(Y) (9.12) 

where f (X) is a monotonic function of the 
number of features in X and of the individ­
ual saliences of the features. 

Pearce (1994) proposed a specific version 
of that function in his configural model of 
associative learning. First, restrict consider­
ation to a situation where all features are 
equally salient. Let the number of features 
in stimulus X be denoted nx. When exem­
plar X is perceived, its features compete for 
limited attention, such that each feature is 
activated to a level 1/.foX. This level of ac­
tivation implies that the sum of the squared 

activations is unity. Every distinct stimulus 
recruits a copy of that stimulus activation in 
exemplar memory. Pearce (1994) referred 
to those exemplars as configurations of fea­
tures, hence, the moniker of the configural 
model. 

The similarity of a memory exemplar and 
a stimulus was then defined to be simply 
the sum over features of the products of 
the feature activations . Because absent fea­
tures have zero activation, the sum over 
all features reduces to a sum over match­
ing present features; hence, the similarity is 
given by: 

seX, Y) 

= L _1 __ 1_ 

iEXnY Fx ..fiiY 

1 1 
= nXnY----

Fx ..fiiY 

[
nxnY nxny ] 1/2 

- (nxny+nx~y) (nxny+ny~x) . 

(9.13) 

Notice that the similarity increases when the 
number of matching features increases, as 
long as there is at least one differing feature. 
Hence, the configura 1 model is listed in the 
middle-left cell of Table 9.1. 

Young and Wasserman (2002) compared 
Pearce's (1994) model and ALCOVE on a 
task involving learning about stimuli with 
present/absent features. ALCOVE was not 
designed for present/absent features, and 
Pearce's model does not have selective 
attention. Young and Wasserman (2002) 
found that neither model accurately cap­
tured the learning trends in their set of cate­
gory structures, but suggested that it might 
be possible to modify the attentional capac­
ity constraints in the models to address their 
findings. 

Lamberts (1994) explored another sim­
ilarity function that is sensitive to match­
ing features and distinctive features. Again, 
consider features that are binary valued, ei­
ther present or absent, and coded as 1 or 0, 
respectively. In Lamberts 's Weighted Ratio 
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Model (WRM), the similarity of exemplar x 
to stimulus y is given by 

s(x,y) 

= I-'-·L ai(l -IXi - yil) + (1 - 1-'-) Li ailXi - yil 

(9.14) 

where (1 - IXi - Yi I) is 1 if and only if the 
exemplar and stimulus match on dimen­
sion i, and IXi - yil is 1 if and only if the ex­
emplar and stimulus differ on dimension i. 
The value of fJ.- (between 0 and 1) in Equa­
tion 9.14 determines the influence of match­
ing features relative to differing features. 
As in previous sections, Cii is the attention 
allocated to dimension i. Lamberts (1994) 
explored some aspects of this similarity 
function in model fitting, but the similarity 
function has not been extensively pursued 
in subsequent work. 

Notice that in Equation 9.14, the compo­
nent of the denominator that measures feat­
ural differences, Li Cii IXi - Yi I, is the same as 
Equation 9.1 and is algebraically equivalent 
to Equation 9.11 used by Lee and Navarro 
(2002). The WRM goes beyond the GeM 
by including the influence of matching fea­
tures in addition to mismatching features. 
The number of matching features only af­
fects the similarity, however, when there is 
at least one mismatch; therefore, the WRM 
is listed in the middle-left cell of Table 9.1. 
Again it is worth emphasizing that, despite 
the comparison of the WRM with the GeM, 
the GeM applies to continuous dimensions, 
whereas the WRM applies to present-absent 
features. 

The similarity function of the WRM 
can be expressed in terms of the number 
of matching and differing features. Just as 
Pearce (1994) assumed equal salience for all 
features, set Cii = 1 for all i, which implies 
that Li Cii (1 - IXi - Yi I) = nxnY + nxnY and 
Li CiilXi - yil = nX~Y + ny~x· When fJ.- = 
0.5, Equation 9.14 becomes 

() 
nxnY + nxnY 

s x,Y = 
nXnY + nxny + nX~Y + ny~X 

(9.15) 

Equation 9.14 reduces to the similarity func­
tion of the configural model under slightly 
different special circumstances. First, sup­
pose that n-xny = 0; second, set fJ.- = 2/3, 
that is, put twice as much weight on match­
ing features than differing features; third, 
suppose nX~Y = ny~x. Then the WRM sim­
ilarity of Equation 9.15 becomes 

nXnY 
sex, y) = ----

nXnY + nX~Y 
nXnY 

(9.16) 

When those final two (equal) expressions 
in Equation 9.16 are multiplied times each 
other and square-rooted, the result is an ex­
pression that matches the configural model's 
similarity in Equation 9.13. In their general 
forms, however, the WRM similarity allows 
differential salience (i.e., attention) to fea­
tures and differential weighting of matching 
and differing features, whereas the configu­
ral model predicts that the effect of increas­
ing nX~Y can be different than the effect of 
increasing ny~x. 

The Sparse Distributed Memory (SDM) 
model of Kanerva (1988) can be interpreted 
as a form of exemplar model. In SDM, stim­
uli are assumed to be represented as points 
in a high-dimensional binary-valued space, 
such thatYi E {I, O}. Memory exemplars are 
represented by weights such that Xi = 1 for 
a present feature, but, unlike previous mod­
els, Xi = -1 for an absent feature (and Xi = 0 
for a feature about which the exemplar is in­
different, but such a case will not be consid­
ered here). A memory exemplar is activated 
when Li XiYi > ex, where ex is the thresh­
old of the exemplar. This activation can be 
interpreted as the similarity of the stimulus 
to the exemplar; here, the similarity has just 
two values. Thus, 

if Li Xi Yi ::: ex 
otherwise 

= step (n xny - ny~X - ex) (9.17) 

where step(n) = 1 when n::: 0 and 
step(n) = 0 when n < o. Clearly, the sim­
ilarity function in SDM is sensitive to both 
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matching and differing features, and it is 
listed in the lower-left cell of Table 9.1. 
SDM has not been extensively applied to 
many behavioral phenomena, but it is in­
cluded here as an example of the variety of 
possible similarity functions . 

Verguts et aL (2004) developed a varia­
tion of ALCOVE that they called Additive 
ALCOVE (ADDCOVE) because the first 
step in its similarity computation is an addi­
tive weighting of features. Specifically, sup­
pose a stimulus consists of features Xi. The 
corresponding exemplar in memory is given 

feature weights Wi = Xii JLj xJ = Xi/llxll · 
When presented with stimulus y, a baseline 
exemplar activation is computed by adding 
weighted features as follows: 

(9.18) 

When x and y consist of 011 bits, Equa­
tion 9. 18 becomes 

1 
a(x, y) = L r.;;-;; 

iE)(nY v nx 

= nxnd-JitX, (9.19) 

which is like the configural model (Equa­
tion 9.13), except that here, Yi = I, not 
lifo· 

These baseline activations are then nor­
malized relative to other exemplar activa­
tions. Included in the set of other exemplar 
activations is a novelty detector, which has 
aN(Y) = ellyll = fowithe close to 1.0, for 
example, 0.99. The similarity of exemplar x 
to stimulus y is then given as 

sex, y) = a(x, Yl' / [ ~ ark, yl' + aN(Y)'] 

(9.20) 

where the index, k, varies over all exemplars 
in memory. When x and y consist of all bits, 

Equation 9 .20 becomes 

sex, y) 

- [LK(nKnd.foK)4> + (8.JnY) 4> ] 

(nxnd .Jnxny + nX~y )4> 

= [LK(nKny/.JnKnY + nK~y) 4> + (8.JnY)4> ] · 

(9.21) 

As can be gleaned from Equation 9.2 1, 
this similarity function depends on both the 
shared and the distinctive features between 
the exemplar and the stimulus. 

Notice that the similarity function of 
Equation 9.21 can be asymmetric: sex, y) #­
s(y, x) when X-, Y #- Y-,X In other words, 
if a memory exemplar has, say, one feature 
that a stimulus does not have, but that stim­
ulus has two features that the memory ex­
emplar does not have, then the similarity 
of the stimulus to the exemplar is differ­
ent from the similarity of the exemplar to 
the stimulus. This asymmetry might be use­
ful for addressing analogous asymmetries in 
human similarity judgments. (Another ex­
ample of an asymmetric similarity function 
can be found in Sun, 1995, p. 258.) Inter­
estingly, moreover, the similarity in Equa­
tion 9.21 also depends on what other ex­
emplars are currently in memory. Thus, a 
stimulus might be fairly similar to an ex­
emplar at one moment, but after another 
highly similar exemplar is added to mem­
ory, the similarity to the first exemplar will 
be reduced. 

The SUSTAIN model of Love et aL (2004) 
employs a similarity function that oper­
ates on multivalued (not just binary valued) 
nominal dimensions. Different nominal di­
mensions can have different numbers of val­
ues. For example, the dimension of marital 
status might have three values (single, mar­
ried, divorced), and the dimension of politi­
cal affiliation might have four values (Demo­
crat, Republican, Green, Libertarian). If di­
mension i has mi values, then a stimulus is 
represented by a bit vector of length Li m i 

that has l 's in positions of present features 
and a's elsewhere. 
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In SUSTAIN, what is here being referred 
to as "exemplars" are not just copies of in­
dividual stimuli, but are instead central ten­
dencies of clusters of stimuli. In certain con­
ditions, SUSTAIN could recruit a cluster 
node for every presented instance and could 
therefore become a pure exemplar model. 
The representation for a cluster is also a vec­
tor of Li n1i values, but the values are the 
means (between 0 and 1) of the instances 
represented by the cluster. The components 
of the vectors are denoted Xiu, where the 
subscript indicates the v th element of the i th 

dimension. The similarity of a cluster node 
x to a stimulus y is then defined as 

x Lai exp (-.sai L IXiu - Yiul' 
I U8 ~ 

(9.22) 

where y ::: 0 governs the relative dominance 
of the most attended dimension over the less 
attended dimensions. Notice that if x = Y 
then sex, y) = 1 regardless of how many di­
mensions are involved. 

It should be noted that Love et al. (2004) 
never asserted that Equation 9.22 is a model 
of similarity; rather, they simply defined the 
activation of a cluster node when a stimulus 
is presented. It is merely by analogy to other 
models that it is here being called similar­
ity. Moreover, the final activation of cluster 
nodes in SUSTAIN is another step away: 
There is competition and then only the win­
ner retains any activation at all. Because the 
SUSTAIN model incorporates several other 
mechanisms that distinguish it from other 
exemplar models, it is not clear which as­
pects of the specific formalization in Equa­
tion 9.22 are central to the model's behavior. 
The function is described here primarily as 
an example of how similarity can be defined 
on multivalued nominal dimensions . 

SUSTAIN's similarity function can be re­
lated to previous approaches that assumed 
binary valued features. Suppose that ev-

ery feature is binary valued, suppose that 
ai = 1 for all features, and suppose that 
clusters represent single exemplars (so that 
Xi E {O, 1 D. Then Equation 9.22 becomes 

(n xny + nxny) + .!.(nx~Y + ny~x) 
sex, y) = e 

(nxny + nxny) + (nx~y + ny~x) 
(9.23) 

where e = 2.718 is the base of the exponen­
tial function. This special case of the sim­
ilarity function clearly decomposes the in­
fluence of matching and differing features. 
The numerator of this equation appeared 
before, specifically in Equation 9.10, which 
expressed the APPLE model when applied 
to the special case of binary features. The 
APPLE model compresses the range of that 
numerator by passing it through a sigmoidal 
squashing function. The SUSTAIN model 
compresses the range of that numerator by 
dividing by the total number of features. 
However, unlike APPLE, the ratio in SUS­
TAIN is only sensitive to the number of 
matching features when there is at least one 
mismatching feature; hence, SUSTAIN is 
listed in the center cell of Table 9.l. 

Another approach to similarity, and the 
last that will be considered here, is provided 
by the rational model of Anderson (1990, 
1991). Like SUSTAIN, the rational model 
recruits cluster nodes as training progresses. 
In the limit, it can recruit one cluster per 
(distinct) exemplar and behave much like 
the GCM (Nosofsky, 1991). 

The rational model takes a Bayesian ap­
proach, which entails fundamental onto­
logical differences from the previous ap­
proaches. (For a discussion of Bayesian 
models more generally, see Chapter 3 in 
this volume.) The goal of the rational model 
is to mimic the probability distribution of 
features observed in instances. Each clus­
ter node represents the probability of sam­
pling any particular feature value, and the 
model overall represents the probability of 
instances as a mixture of cluster-node dis­
tributions. But that statement does not cap­
ture an important subtlety of the Bayesian 
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approach: Each cluster node represents an 
entire distribution of beliefs about possible 
probabilities of features values. 

For example, suppose a cluster node is 
representing the distribution of heads and 
tails (i.e., the feature values) in a sequence 
of coin flips (i.e., the instances). Denote the 
underlying probability of heads as (h and the 
probability of tails as e2 (= 1 - el). One pos­
sible belief about the underlying probability 
of heads is that e] = 0.5, that is, the coin 
is fair. But there are other possible beliefs 
that the coin is biased, such as e] = 0.1 or 
el = 0.9. The cluster node represents the 
degree of belief in every possible value of 
e] and e2. By assumption, the model be­
gins (before seeing any instances) with be­
liefs spread out uniformly over all possible 
values of e. Gradually, the model loads up 
its beliefs onto those values of e that best 
mimic the observed values, simultaneously 
reducing its belief in values of e that do not 
easily predict the observed values. Figure 9.3 
illustrates this process of updating belief dis­
tributions. 

In general, when a feature has V values, 
any particular belief specifies the probabil­
ity eu of each of the V feature values. A 
cluster node represents a degree of belief 
in every possible particular combination of 
probabilities. The degree of belief is a distri­
bution over the space of all possible values 
of el, ... ,ev. Such a distribution could, in 
principle, be specified in a variety of ways; 
typically, the speCification of the distribu­
tion will involve parameter values. Ander­
son (1990) uses the Dirichlet distribution, 
which has parameters, au, one per feature 
value, that determine the distribution's cen­
tral tendency and shape. In the earlier ex­
ample with two scale values (i.e., heads and 
tails), the Dirichlet distribution has two pa­
rameters, al and a2 (and in this case is com­
monly called the Beta distribution). Exam­
ples of the Dirichlet distribution are shown 
in Figure 9.3. Anderson assumes that clus­
ters begin with unbiased beliefs, parameter­
ized by au = 1 for all values v. With each 
observation of an instance, the distribution 
of beliefs is updated according to Bayes' the­
orem. Conveniently, the updated ("poste-

riar") distribution of beliefs turns out also 
to be a Dirichlet distribution in which the 
a parameter of the observed feature value is 
incremented by one. Again, see the caption 
of Figure 9.3 for an example of this pro­
cess. Thus, after m v instances with value v, 
the parameters of the belief distribution are 
au = mu + 1. 

The value eu is, by definition, the prob­
ability that the feature value would be 
generated by the cluster if the value eu were 
true. So the cluster's predicted probability 
of feature value v is the integral over all 
possible values of eu weighted by the prob­
ability of believing it is true. Thus, p( v) = 
r· -f de]·· ·deveu p(el , "', evla ], ... , av). 
For the Dirichlet distribution, the integral 
simplifies to 

= (mu + 1) / L (mw + 1). (9.24) 
11 ' 

To reiterate, Equation 9.24 provides the 
probability that a cluster would generate 
feature value v within a particular featural 
dimension. 

Stimuli do not usually have just one feat­
ural dimension, however. For example, they 
might have the features of political party, 
marital status, ethnicity, and so forth. The 
rational model assumes that, within any 
cluster, the features are independent of each 
other. Because of this assumed indepen­
dence, the probability of observing value VI 

on feature 1 in conjunction with value V2 

on feature 2, and so forth, is the product 
of their individual probabilities: P({Vd}) = 
Ild P(Vd). Anderson used that overall prob­
ability of the stimulus as a measure of how 
similar the stimulus is to the cluster. For­
mally, for a stimulus y = {Vd} and a cluster 
x = laUd}, the "similarity" of y to x is 

sex, y) = n P(Vd) 
d 

= n mUd + 1 
d L w Ed(m w +l)' 

(9.25) 
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Figure 9.3. Each panel corresponds to the state of a cluster node in Anderson's (1990) rational 
model. Here, the cluster node is representing a single featural dimension that has two possible values. 
In each panel, the horizontal axis shows el , which indicates the probability that the feature takes on 
its first value. (Of course, e2 = 1 - e].) The vertical axis indicates the degree of belief in values of e]. 

Before observing any instances, the cluster begins in the top-left state, believing uniformly in any 
possible value of el, which is parameterized as al = 1 and a2 = 1. If the first observed instance 
displays value I, then the cluster node adjusts its distribution of beliefs to reflect that observation, 
moving to the left-middle state, parameterized as al = 2 and a2 = 1. If the next observed instance 
displays value 2, then the cluster node changes its beliefs to the center state, parameterized as a] = 2 
and a2 = 2. At this point, because 50% of the instances have shown value I, the cluster believes most 
strongly that e] = 0.50, but because there have only been two observations, beliefs are still spread out 
over other possible values of el . 

Anderson intended this as similarity only 
metaphorically and not as an actual model 
of similarity ratings (Anderson, 1990, 
p. 105). 

Consider the special circumstances 
wherein all dimensions are binary valued 
and a cluster represents a single exemplar. 

When the cluster represents a single exem­
plar, it implies that mv = 0 for all v but one. 
If the represented instance occurred r times, 
then mv = r for the feature value that actu­
ally appeared in the instance. In this partic­
ular situation, the similarity formula can be 
expressed in terms of the number of features 
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that match or mismatch between the cluster 
and the stimulus. Equation 9.25 becomes 

( 

r + 1 ) nxny+nxny 

Sex, y) = r + 2 

(9 .26) 

Because similarity of an instance to its corre­
sponding exemplar is influenced by how of­
ten the instance has previously appeared, the 
rational model is listed in the lower-center 
cell of Table 9.1. 

2.2.5 . HYBRID SCALE 

Nosofsky and Zaki (2003) proposed a sim­
ilarity function that incorporates aspects 
of the standard spatial similarity metric of 
Equation 9.2 with coefficients that express 
discrete-feature matching and mismatching. 
Their hybrid similarity function defined sim­
ilarity as 

Sh(X, y) = CD exp( -c d(x, y)) (9.27) 

where C > 1 expresses the boost in similar­
ity from matching features, and 0 < D < 1 
expresses the decrease in similarity from dis­
tinctive features. Notice in particular that 
the similarity of an item to itself is C > 1. 
Nosofsky and Zaki (2003) found that the 
hybrid-similarity model fit their recognition 
data very well, whereas the standard simi­
larity function did not. 

2.2.6. ATTENTION IN SIMILARITY 

Finally, a crucial aspect of similarity that 
has not been yet emphasized is selective 
attention to dimensions or features . Most 
of the models reviewed earlier do explic­
itly allow for differential weighting of di­
mensions. Even the SDM model permits 
differential feature weights (Kanerva, 1988, 
p. 46). Only the configural model (Pearce, 
1994) and the rational model (Anderson, 
1990) do not have explicit mechanisms for 
selective attention.3 This lack of selective at-

3 Anderson (1990, pp. 116- 117) describes a way to 
differentially weigh the prior importance of each 

tention leaves those models unable to gener­
ate some well-established learning phenom­
ena, such as the relative ease of categories for 
which fewer dimensions are relevant (e.g. , 
Nosofsky et a1., 1994). See Chapter 9 in this 
volume for a review that emphasizes the role 
of attention. 

2.2.7. SUMMARY OF SIMILARITY 

FORMALIZATIO S 

One of the contributions of this chapter is 
a review of these various models of similar­
ity in a common notation to facilitate com­
paring and contrasting the approaches. In 
particular, expressions were derived for the 
similarity functions in terms of the number 
of matching and mismatching features when 
the models are applied to the special case of 
present/absent features, with equal atten­
tion on all the features . This restriction to 
a special case permits a direct comparison 
of the similarity functions in terms of the 
influence of the number of features in each 
stimulus, the number of distinctive features, 
and so forth. 

If nothing else, what can be concluded 
from the variety of similarity functions re­
viewed in this section is that the best for­
mal expression of similarity is still an open 
issue. The shared commitment in this vari­
ety is the claim that categorization is based 
on computing the similarity of the stim­
ulus to exemplars in memory. Although 
the review of similarity functions has re­
vealed that there are a variety of formaliza­
tions that different researchers have found 
useful in different circumstances, what is 
lacking is specific guidance regarding which 
formalization is appropriate for which sit­
uation . A general answer to this question 
is a foundational issue for future research. 
A thought-provoking review of how peo­
ple make similarity judgments has been 

featural dimension, but this is opposite from learned 
selective attention. In Anderson's approach, the 
model begins with strong prior selectivity that 
subsequently gets overwhelmed with continued 
learning. But in human learning, the prior state 
is, presumably, noncommittal regarding selectiv­
ity and subsequently gets stronger with continued 
learning. 
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provided by Medin, Goldstone, and Gentner 
(1993). A perspective on similarity judg­
ment, as a case of Bayesian integration over 
candidate hypotheses for generalization, has 
been presented by Tenenbaum and Griffiths 
(2001 a). 

2.3. Learning of Associations 

Exemplar models assume that at least three 
aspects of the model get learned. First, 
the stimulus exemplars themselves must be 
stored. This aspect is discussed in a sub­
sequent section. Second, once the exem­
plars are in memory, the associations be­
tween exemplars and category labels must 
be established. Third, the allocation of at­
tention to stimulus dimensions must be de­
termined. In principle, other aspects of the 
model could also be adjusted through learn­
ing. For example, the steepness of the gen­
eralization gradient (e.g., parameter c in 
Equation 9.2) could be learned, or the de­
cisiveness of choice (e.g., parameter ¢ in 
Equation 9.36) could be learned. These in­
triguing possibilities will not be further ex­
plored here. 

This section focuses on how the associ­
ations between exemplars and category la­
bels are learned. Learned attentional allo­
cation can also be implemented as learned 
associations to attentional gates, and there­
fore attentional learning is also a topic of 
this section. (For a discussion of associative 
learning in humans and animals, see Chapter 
22 in this volume.) 

Associative strengths can be adjusted 
many different ways. Perhaps the simplest 
way is adding a constant increment to the 
weight whenever both its source and tar­
get node are simultaneously activated. More 
sophisticated schemes include adjusting the 
weight so that the predicted activation at 
the target node better matches the true tar­
get activation. These and other methods are 
discussed en route. 

2.3.1. CO-OCCURRENCE COUNTING 

The GCM establishes associations between 
exemplars and categories by simply counting 
the number of co-occurrences. This can be 

understood in the context of Equation 9.3, 
wherein the effective associative influence 
between exemplar x and response r is N-x, 
that is, the number of times that response 
r has occurred with instance x. Somewhat 
analogously, in SDM (Kanerva, 1988), asso­
ciative weights from exemplar nodes to out­
put nodes are incremented (by 1) ifboth the 
exemplar and the output are co-activated, 
and associative weights are decremented 
(by 1) if either is active whereas the other 
is not. 

A related approach is taken by the ra­
tional model (Anderson, 1990, p. 136). 
When implemented in a network architec­
ture, the weight from cluster node k to 
category-label node r can be thought of as 
p(rlk) = (m,. + 1)/ Le(me + I), where me is 
the number of times that category label e has 
co-occurred with an instance of cluster k. 
Thus, the change in the associative weight 
is affected only by the co-occurrence of the 
cluster and the label. (The assignment of the 
stimulus to the cluster is affected by past 
learning, however.) 

In all these models, regardless of whether 
the model is classifying a stimulus well or 
badly, the associative links are incremented 
the same amount. Other models adjust their 
weights only to the extent that there is er­
ror in performance (as described in the next 
section). 

In none of these models is there learned 
allocation of selective attention. In the 
GCM, attention is left as a free parameter 
that is estimated by fits to data. In some early 
work (e.g., Nosofsky, 1984), it was assumed 
that attention is allocated optimally for the 
categorization, but there was no mechanism 
suggested for how the subject learns that op­
timal allocation. 

2.3.2. GRADIENT DESCENT ON ERROR 

ALCOVE uses gradient descent on error 
to learn associative weights and attentional 
strengths. On every trial, the error between 
the correct and predicted categorization is 
determined (see Equation 9.4), and then 
the gradient of that error is computed, fol­
lowed by adjustments in the direction of 
the gradient (see Equations 9.5 and 9.6) . 
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RASHNL also uses gradient descent, iter­
ated to achieve large shifts of attention on 
single trials. 

In the SUSTAIN model of Love et al. 
(2004), only the winning cluster (exemplar) 
node learns, and only its output weights 
learn by gradient descent on categorization 
error. The dimensional attention strengths 
and cluster coordinates learn (almost) by 
gradient ascent on similarity. That is, the 
attention strengths are adjusted to increase 
the similarity of the winning cluster node to 
the stimulus, and the coordinates of the win­
ning cluster node are moved to increase its 
similarity to the stimulus. The particular for­
mulas used in SUSTAIN for learning atten­
tion and cluster coordinates are not exactly 
gradient ascent on similarity, however. The 
goal for the remainder of this section is to 
demonstrate how gradient ascent on simi­
larity yields learning formulas that are much 
like the ones used in SUSTAIN. 

The SUSTAIN model adjusts the win­
ning cluster's coordinates, Xiv, by applying 
a learning formula from Kohonen (1982) : 

(9.28) 

where 1] is a constant of proportionality. 
(The Kohonen learning rule can be derived 
as gradient ascent on a Gaussian density 
function with respect to its mean.) Gradi­
ent ascent on the winning cluster's similar­
ity, with respect to its coordinates, yields 
almost the same formula: 

o 
~Xi v ex --sex, Y) 

oXiv 

= l]i sgn(yiv - Xiv) (9.29) 

where sgn(z) is the sign of z, such that 
sgn(z) = +1 if z> 0, sgn(z) = -1 if 
z < 0, and sgn(z) = 0 if z = O. Equa­
tion 9.29 involves coefficients 1]i that de­
pend on the dimension i: 1]i = .Sa;+l 

exp( -.Sai LVEi IXiv - Yivl)/ Lj a~. 
To adjust attention, Love et al. (2004, 

p. 314, discussion of their Equation 3) con­
sider the gradient of each dimension's in­
dividual similarity with respect to atten-

tion, and heuristically use the formula (their 
Equation 13): 

~a · ex exp(-a·d ·) (1 - a ·d ·) ) ) ) ) ) . (9.30) 

This can be recognized as a truncated form 
of gradient ascent on the winning cluster's 
overall similarity to the stimulus, as follows. 
Computation of the derivative yields 

o 
~aj ex -sex, Y) 

oaj 

= ~laY {exp(-ajdj) 
L...t t 

( Y-l Yd) y-l ( )} x ya j - a j j - ya j s x, Y 

(9.31 ) 

where d j = (1/2) L v; IXj v, - YjuJ In the 
special circumstances when y = 1 and 
L i ai = 1, Equation 9.31 reduces to 

~aj exexp(-a jd j)( I -a jd j )-s(x,y), 

(9.32) 

which is very similar to the formula used by 
Love et al. (2004) . 

In summary, although it is not clear that 
the formulas used by SUSTAIN always in­
crease the similarity of the winning cluster 
to the stimulus (because the formulas do not 
implement gradient ascent), the formulas 
are analogous to true gradient ascent on sim­
ilarity. The goal of the formulas in SUSTAIN 
is to increase the winning cluster's repre­
sentativeness of the instances it wins. True 
gradient ascent on similarity would be one 
way to achieve that goal. Notice, however, 
that increasing the similarity of the winning 
cluster to the stimulus might not necessarily 
reduce error in predicting the category label. 

2.3.3. SYSTEMATIC OR RANDOM 
HILL-CLIMBING 

Error reduction can be achieved without 
explicit computation of the gradient. In 
principle, any method for function opti­
mization could be used. Indeed, if the pa­
rameter space is small enough, a dense 
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search of parameter combinations could be 
undertaken. But when the parameter space 
is large, as in most learning situations, there 
are various "hill-climbing" algorithms that 
probe the error near the current parameter 
values and creep their way down the error 
surface (e.g., Press et a1. 1992, pp. 394-
455). Some algorithms, for example, nu­
merically estimate the gradient of the error 
without an explicit formula for the gradient 
by trying two different values of a parame­
ter, say wand w + ~w; computing the error 
generated by each value, E and E + ~ E; and 
approximating the gradient as ~ E / ~ w. The 
algorithms then use the estimates of gradi­
ent (and sometimes also curvature) to make 
systematic jumps to new parameter values. 

Other algorithms do not bother comput­
ing the gradient at all and simply probe 
nearby values of the parameters, chang­
ing to those values if the error is reduced. 
The algorithms differ in how they de­
cide which nearby values to probe. The 
Stochastic COntext DEpendent Learning 
(SCODEL) model of Matsuka (2005) is a 
noisy hill-climbing algorithm for learning 
associative weights and attention strengths 
in ALCOVE. SCODEL randomly tries new 
values that are close to its current values. If 
a candidate value decreases error, then the 
value is kept. But even if the candidate value 
increases error, there is a nonzero proba­
bility that the change is kept. This proce­
dure can allow the model to jump over local 
minima in the error surface and produces 
large individual differences between differ­
ent runs of the model that may mimic the 
large variance seen in human learners. 

2.3+ BAYESIAN LEARNING 

A rather different approach to learning is 
taken by Bayesian parameter estimation. In a 
Bayesian conceptualization, the mind of the 
learner is conceived to contain a large set of 
hypotheses, with each hypothesis specifying 
particular parameter values. Learning does 
not change the parameter values within each 
hypothesis. Instead, learning changes how 
strongly one believes each hypothesis. 

This type of idea was encountered ear­
lier in the context of the rational model 

(Anderson, 1990). There were various hy­
potheses about the underlying probabilities, 
()v, of encountering feature values v. For ex­
ample, the model could believe strongly that 
a feature value v has probability ()v = 0.2 
and believe only weakly that the feature 
value has probability ev = 0 .9. The degree 
of belief was governed by a parameterized 
(Dirichlet) distribution, and Bayesian learn­
ing adjusted the parameters of the distri­
bution (see the discussion accompanying 
Figure 9.3). 

Instead of entertaining hypotheses about 
feature probabilities, consider hypotheses 
about the magnitude of associative weights 
in an associative network. For example, one 
might have two hypotheses about an associ­
ation between an exemplar and a category. 
Hypothesis H+ specifies an associative 
weight of + I, and hypothesis H - specifies 
an associative weight of -1 . At first, one 
might have no preference for one hypothe­
sis over the other. This state of beliefs can be 
expressed as p(H+) = .5 and p(H-) = .5. 
Suppose that a learning trial is then experi­
enced, in which the instance occurs and is 
taught to be a member of the category. This 
occurrence is consistent with H+, so be­
liefs should shift toward H+; perhaps then 
p(H+) = .9 and p(H-) = .1. Notice that 
none of the associative weights has changed, 
but the degree of belief in each one has 
changed. 

A useful property of Bayesian learning is 
that changes in degree of belief about one 
hypothesis must affect degree of belief in 
other hypotheses. This is because it is as­
sumed that the hypotheses in the hypothe­
sis space are mutually exclusive and exhaust 
all possible hypotheses . So if evidence com­
pels you to believe less strongly in one hy­
pothesis, you must believe more strongly in 
other hypotheses. Conversely, if evidence 
makes you believe more strongly in one 
hypothesis, you must believe less strongly 
in other hypotheses. There has been much 
empirical research demonstrating that peo­
ple are not very accurate Bayesian reason­
ers (e.g., Edwards, 1968; Van Wallendael 
& Hastie, 1990). But in simple situations, 
people do show Bayesian-like trade-offs in 
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beliefs. For example, when you find an ob­
ject d'art fallen from its shelf, you might 
hypothesize that the cause was either the 
cat or the toddler. When you then see the 
cat lying on the shelf where the object d' art 
was, you exonerate the toddler. Conversely, 
if you learn that the cat has the alibi of hav­
ing been outside, the toddler is implicated 
more strongly. 

Bayesian learning of associative weights in 
connectionist networks has been actively ex­
plored in recent years (e.g., MacKay, 2003; 
Neal, 1996). Psychologists have successfully 
applied other Bayesian models of learning 
to associative and causal learning paradigms 
(e.g., Anderson, 1990, 1991; Courville 
et a1., 2004; Courville, Daw, & Touret­
zky, 2004; Dayan & Kakade, 2001; Dayan, 
Kakade, & Montague, 2000; Gopnik et a1., 
2004; Sobel, Tenenbaum, & Gopnik, 2004; 
Steyvers et a1., 2003; Tenenbaum & Grif­
fiths, 2001b, and Chapter 3 in this volume). 

In most existing Bayesian models of cat­
egory learning, the model has a (possibly 
infinite) set of hypotheses in which each 
hypothesis constitutes a complete map­
ping from stimulus to categorical response. 
Bayesian learning consists of updating the 
degree of belief in each of these complete 
mappings. An alternative new approach 
uses Bayesian updating within successive 
subcomponents of the mapping Kruschke 
(2006). For example, a model such as 
ALCOVE can be thought of as a succession 
of two components: The first component 
maps a stimulus to an allocation of attention 
across stimulus dimensions; the second com­
ponent maps attentionally weighted simi­
larities to categorical responses (Kruschke, 
2003a). In a typical globally Bayesian ap­
proach to ALCOVE, a hypothesis would 
consist of particular weights on the atten­
tion in combination with particular weights 
on category associations, that is, a hypothesis 
would be a complete mapping from stim­
ulus to response. In a locally Bayesian ap­
proach, there are hypotheses about atten­
tion weights separate from hypotheses about 
category association weights, and Bayesian 
updating occurs separately on the two hy­
pothesis spaces. The hypothesis space re-

garding category associative weights is up­
dated by using the corrective feedback about 
the categories. But the hypothesis space re­
garding attention strengths needs target at­
tention values, analogous to the target cate­
gory values used for the associative weights. 
The target attention strengths are deter­
mined by choosing those values that max­
imize (or at least improve) the predictive 
accuracy of the current associative beliefs. 
Thus, the internal attentional targets are 
chosen to be maximally consistent with cur­
rent beliefs, and only then are beliefs up­
dated with respect to external targets . The 
approach combines the ability of Bayesian 
updating to exhibit trade-offs among hy­
potheses, with the ability of selective atten­
tion to produce phenomena such as trial­
order effects seen in human learning. See 
Kruschke (2006) for a description of var­
ious phenomena addressed by the locally 
Bayesian approach. 

2.4. Exemplar Recruitment 

The previous section described learning of 
associative strengths, assuming that the ex­
emplars were already in memory. But get­
ting those exemplars into memory is itself 
a learning process. This section describes a 
variety of exemplar recruitment models. 

2+1. NO RECRUITMENT: PRE-LOADED 

EXEMPLARS 

In SDM (Kanerva, 1988), memory consists 
of a set of randomly scattered exemplars, but 
these memory exemplars need not be copies 
of presented instances . Instead, the memory 
exemplars are pre-loaded and form a cov­
ering map of the stimulus space. This idea 
influenced the development of ALCOVE . 
SDM generates interesting behavior because 
it assumes high-dimensional spaces for in­
put, exemplars, and output. 

One interpretation of the GCM assumes 
that every distinct trial instance is pre­
loaded as an exemplar in memory. This sim­
plification, although expedient for illustrat­
ing the power of the model, is logically 
dissatisfying because it assumes knowledge 
is in the model before it could have been 
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learned. The original ALCOVE model fi­
nessed the issue by assuming the stimulus 
space was initially covered by a random cov­
ering map of exemplars as in SDM; that cov­
ering map was the impetus for ALCOVE's 
name. It turned out that fits to selected data 
sets were affected little by whether a ran­
dom covering map or a set of pre-loaded 
exemplars was used, so most reported fits of 
ALCOVE use the exemplar version . 

2+2. INCESSANT RECRUITMENT 

Instead of thinking of the GCM as pre­
loading the exemplars and then increment­
ing their weights on subsequent presen­
tations, the GCM can be thought of as 
recruiting a new exemplar with every train­
ing instance and creating a link that has 
weight + 1 between the newly recruited 
exemplar and the correct category node 
(Nosofsky, Kruschke, & McKinley, 1992, 
p. 215). The associative weights of exem­
plars are unaffected by the specifics of subse­
quent training. In this way, exemplar learn­
ing and associative learning occur with the 
same magnitude on every trial. Denote the 
tth repetition of instance x by xt , where 
the superscript is merely an index, not a 
power. Then Equation 9.3 becomes 

p(RI ) = tJR LXER L~x s(xt, y) . 
y Lr tJr LkEr L~k s(kt, y) 

(9.33) 

This is formally equivalent to constant in­
crements on the associative weights (via co­
occurrence counting), but a benefit is that 
each instance merely recruits a new exem­
plar, rather than having to check if there is 
already an exemplar that matches it. 

2+3. NOVELTY DRIVEN RECRUITMENT 

The ADDCOVE model (Verguts et al., 
2004), described earlier beginning with 
Equation 9.18, has exemplar recruitment. 
When a stimulus occurs that does not match 
an existing exemplar in memory, then a new 
exemplar is recruited into memory that ex­
actly copies the current stimulus. Notice 
that this recruitment process is driven by 

stimulus novelty alone, regardless of the per­
formance of the model. Thus, if a novel stim­
ulus appears, a new exemplar is recruited 
even if the novel item is correctly classified 
by the model (but the newly recruited ex­
emplar might not learn a very large associa­
tive weight to the category nodes if there is 
little error). 

2-4+ PERFORMANCE DRIVEN 

RECRUITMENT 

Incessant recruitment does not solve a ba­
sic problem of frequency counting models : 
They can become entrenched by large num­
bers of repeated items in early training. If the 
correct categorization changes, the model 
can only slowly learn the change by accu­
mulating vast numbers of subsequent coun­
tervailing exemplars. People, however, are 
quick to relearn after shifts in categories. 
One solution to this problem is to allow the 
exemplars to be probabilistically forgotten 
(e.g., Estes, 1994, p. 63) or for the asso­
ciative strengths to decay (Nosofsky et al., 
1992). In either of those approaches, the ini­
tiallearning of any exemplar is full strength. 
As an alternative new approach, suppose 
that the initial learning of exemplars should 
depend on the current performance of the 
model. An exemplar should be recruited for 
a stimulus depending on the degree of error 
generated on that stimulus. 4 When there is a 
large error, there should be a high probabil­
ity of recruiting an exemplar. When there is 
a small error, there should be a small proba­
bility of recruiting an exemplar. A challenge 
to this proposed approach is that probabilis­
tic mappings would continually generate er­
ror and endlessly recruit exemplars. 

The SUSTAIN model of Love et al. 
(2004) recruits new cluster nodes under 
certain conditions, depending on the type 
of training. For supervised training, that 
is, when category labels are provided as 
feedback, a new cluster node is recruited 
when an instance is presented for which the 

4 Previous exemplar theorists have described proba­
bilistic remembering of features or exemplars (e.g., 
Hintzman, 1986, 1988), but not such that the prob­
ability depends on the momentary accuracy of the 
model. 
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maximally activated category label is not the 
correct label. For unsupervised training, a 
new cluster node is recruited when an in­
stance is sufficiently novel, that is, when no 
existing cluster node is strongly activated 
(analogous to ADDCOVE). In the unified 
SUSTAIN (uSUSTAIN) model of Gureckis 
and Love (2003), the recruitment condi­
tion for supervised training is modified to 
be more consistent with the character of the 
unsupervised condition. A new cluster node 
is recruited when no existing cluster node 
for that category label is strongly activated. 
The recruitment rule presumes determin­
istic mappings of instances to category la­
bels, so that there is no ambiguity regarding 
which label a cluster belongs to. 

An attention ally based approach to ex­
emplar recruitment was proposed by Kr­
uschke (2003b, 2003c). In this framework, 
every node in the network has its output 
gated by a corresponding attentional multi­
plier. Even the exemplars are attention ally 
modulated. When an instance is presented at 
the input nodes, a novel candidate exemplar 
node is recruited. Attention is distributed 
to the novel candidate exemplar node, and 
to all previously recruited nodes, according 
to the similarity of the nodes to the input 
and according to any previously learned al­
location of attention. When the corrective 
feedback is provided, the discrepancy be­
tween the correct and predicted output is 
computed, and attention is shifted to reduce 
that discrepancy. If the error-reducing at­
tentional shift causes a shift away from the 
candidate exemplar node, toward previously 
existing nodes, then the candidate is imme­
diately retired. But if the error-reducing at­
tentional shift brings more attention to the 
candidate node, it is retained. 

Another model with performance-based 
exemplar recruitment is the rational model 
of Anderson (1990, 1991). When an in­
stance appears, the rational model computes 
the probability that the instance belongs to 
each cluster and the probability that the 
instance belongs to a novel cluster. If the 
highest probability is for a novel cluster, 
the model recruits a new cluster and assigns 
the instance to that cluster. Equation 9.25 

stated the probability of an instance y = 
{Vd} for a particular cluster node x, that is, 
p({Vd} Ix) = Od Px(Vd)· For cluster recruit­
ment, however, what is needed is the prob­
ability of the cluster given the instance, that 
is, the reverse conditional probability. Bayes' 
theorem provides the relation between re­
versed conditional probabilities: p(xl {Vd}) ex 
p({vd}lx)p(x) where p(x) is the probability 
of the cluster prior to seeing an information 
about the particular instance. 

Anderson (1990, 1991) derived an ex­
pression for the prior cluster probabilities 
analogous to those used for feature values 
within clusters, but now with a free param­
eter called a coupling probability, which is a 
fixed background probability c (0 :s c :s 1) 
that two random instances come from the 
same cluster. The probability that a ran­
dom instance belongs to an existing clus­
ter x, prior to actually having any informa­
tion about the instance, is p(x) = cqx/((l -
c) + cq), where q is the total number of 
instances seen so far, and qx is the num­
ber of instances assigned to cluster x. The 
probability that a random instance belongs 
to a novel cluster XO, prior to actually hav­
ing any information about the instance, is 
p(XO) = (1 - c)/((l - c) + cq). Notice that 
before seeing any instances, when q = 0, the 
probability of assigning the first instance to 
a novel cluster is p(XO) = 1.0. After see­
ing one instance, that is, when q = I, then 
the background probability of another in­
stance being in the same cluster is p(x) = c, 
and the probability of being in a different 
cluster is p(XO) = 1 - c. After seeing many 
instances, qx dominates c, so p(x) ~ qx/q 
and p(xo) ~ O. To recapitulate: A new clus­
ter node is recruited for instance {Vd} when 
p({vd}lxo)p(xo) > p({vd}lx)p(x) for all ex­
isting clusters x. Although p(x) can increase 
across trials as more instances are included 
in the cluster, p({vd}lx) can decrease be­
cause the cluster can become more sharply 
tuned to the specific instances it represents 
(cf. Equation 9.26). In particular, new clus­
ters can be recruited when existing clus­
ters are tuned to particular feature combina­
tions, and the current instance is not similar 
enough to any existing cluster. 
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It might turn out to be the case that an 
entirely different approach mimics human 
performance best. For example, rather than 
explicitly constructing new nodes "from 
thin air," it might be possible to perform 
something functionally analogous in a dis­
tributed representation. In such a scheme, 
there would be a fixed array of represen­
tational nodes, but their various parameter 
values (weights, thresholds, gains, etc .) are 
adjusted such that the array as a whole be­
haves as if a new exemplar node were re­
cruited. Alas, it remains for future research 
to evaluate the relative merits of these vari­
ous recruitment algorithms. 

2.5. Response Probability 

Exemplar models are committed to the no­
tions of exemplar representation and selec­
tive attention to features. They are not com­
mitted to a particular response function, 
however. Different response functions have 
been explored. 

One simple modification to the ratio rule 
(Equation 9.3) is the inclusion of a guessing 
parameter, G: 

p(RIY) = f3R (LxER NRx sex, y) + G) 
Lr f3r (LkEr Nk s (k, y) + G) 

(9.34) 

The guessing parameter keeps the choice 
probabilities early in learning (when the Nrk 

are small) close to chance levels, instead of 
being unduly influenced by just a few cases. 
The guessing parameter also reduces the ex­
tremity of choices when a stimulus is pre­
sented that is not very similar to any mem­
ory exemplars (Nosofsky et aI., 1992). 

Ashby and Maddox (1993) extended the 
original GCM response rule to modulate its 
decisiveness with a power parameter y: 

p(RIY) = (LxER sex, y)r y . 

Lr (LkEr s(k, y)) 
(9.35) 

When y is large, it converts a small advan­
tage in summed similarity to a strong pref­
erence; conversely, when y is small, choice 

probabilities are less extreme. Nosofsky and 
Palmeri (1997) provided a process interpre­
tation of the y parameter in terms of how 
much exemplar-based evidence needs to be 
accumulated before a response is made. The 
y parameter is especially useful for fitting 
data from individual subjects, as opposed to 
group average data (for a review, see Nosof­
sky & Zaki, 2002) and can be crucial for 
fitting other data, such as inferences of miss­
ing features (Kruschke, Johansen, & Blair, 
1999). 

Another variation of the ratio rule for re­
sponse choice was used in the ALCOVE 
model (Kruschke, 1992). There, the re­
sponse function is the normalized exponen­
tial, or softmax rule, 

p(RIY) = exp (¢ Lx WRx sex, y)) 
Lr exp (¢ Lx Wrx sex, y))' 

(9.36) 

which has been used previously in connec­
tionist models (e.g., Bridle, 1990) . The ex­
ponential transformation is especially im­
portant in models for which the summed 
similarities can be negative because of neg­
ative associative weights. This is not an is­
sue in the GCM, but in ALCOVE, it is 
crucial because learned association weights 
can become negative. The ¢ parameter in 
Equation 9.36 governs the decisiveness of 
the model: When ¢ is large, a small advan­
tage in summed similarity translates into a 
big choice preference; conversely, when ¢ is 
small, choice preferences are muted. 

Wills et a1. (2000) examined the ratio rule 
in a general way and presented empirical re­
sults that they argued were difficult for the 
ratio rule to explain. They proposed instead 
a winner-take-all response network, which 
implements competition between response 
nodes in a recurrent network. 

Juslin, Wennerholm, and Winman 
(2001) appended an additional response 
strategy called eliminative inference, which 
supercedes the ratio rule when the stimulus 
is too different from known exemplars. The 
reasoning goes as follows: When a stimulus 
appears that is clearly unlike previously 
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learned stimuli, then the response given to 
it should also be unlike previously learned 
responses. That is, for an unknown stimulus, 
eliminate the known categories, and guess 
at random from the remaining categories. 
There clearly are circumstances in which 
people will spontaneously use this strategy 
(Juslin et al., 2001; Kruschke & Bradley, 
1995), but its impact on categorization 
phenomena more broadly has not been 
demonstrated (Kruschke, 200 1 b). More 
generally, however, this raises the point that 
there are many possible response strategies 
that people could use, in addition to or 
instead of the ratio rule. 

2.6. Response Time and Choice as a 
Function of Time 

The GCM has no temporal dynamics within 
or across trials. ALCOVE and RASHNL 
have dynamics across trials because they 
learn, but they have no dynamics within 
trials. Thus, these models make no predic­
tions about response times after onset of a 
stimulus. 

The Exemplar-Based Random Walk 
model (EBRW; Nosofsky & Palmeri, 1997; 
Nosofsky & Stanton, 2005) addresses the 
dynamics of the response process. In the 
EBRW, exemplars are conceived to be in­
stantly and fully activated by the onset of 
the stimulus, but then the response is gen­
erated by an iterative race to cross response 
thresholds for each category. Think of each 
category as having its own horse, racing to 
cross its response threshold. The race is con­
ceptualized as a series of brief moments of 
time. In each moment of time, a spinner is 
spun that points to one of the exemplars at 
random. The pOinted-at exemplar belongs 
to one of the categories, and the horse for 
that category moves ahead one unit toward 
its response threshold (and the other horses 
move back one unit). The probability of 
the spinner pointing to an exemplar, that 
is, the amount of space an exemplar gets 
on the spinner, is proportional to the exem­
plar's similarity to the stimulus. More ex­
actly, the EBRW is applied to two-category 
situations, and when one horse is moved 
ahead, the other horse is moved backward. 

It is as if there is just one horse, moving ei­
ther toward one threshold for category A or 
moving in the opposite direction toward the 
threshold for category B. The response time 
is assumed to be proportional to the number 
of iterations needed until a category thresh­
old is crossed. If the response thresholds for 
A and Bare y units away from the starting 
position (in opposite directions), then the 
probability of choosing category A turns out 
to be exactly the choice rule described ear­
lier in Equation 9.35 (for a derivation, see 
Nosofsky & Palmeri, 1997). 

Other models of response dynamics in­
clude models with recurrent activation and 
lateral inhibition (Usher & McClelland, 
2001; Wills et al., 2000). These models are 
based on different assumptions than the dif­
fusion/race model assumptions of EBRW. 
Usher and McClelland (2001) compared 
the recurrent activation approach with the 
diffusion model approach (but not the 
EBRW itself). Wills et al. (2000) applied 
a winner-take-all recurrent activation net­
work to responses in category learning, but 
their emphasis was response proportions, 
not response times. 

The EBRW has been applied to domains 
with integral dimensions, where it is not un­
reasonable to suppose that exemplars are 
activated in one fell swoop. When stimu­
lus dimensions are separable, however, then 
issues about the temporal processing of di­
mensions loom large. The EBRW was in­
tended primarily as a model of response time 
dynamics and not so much as a model of per­
ceptual dynamics. 

The Extended Generalized Context 
Model (EGCM) of Lamberts (1995, 1997, 
2000) addresses the dynamics of exemplar 
processing, not just response processing. In 
the EGCM (Lamberts, 1995, 1998), simi­
larity is a function of time: 

set, x, y) = exp (-c ~ ", [n, (t)l" - y, Il) 
(9.37) 

where Ct.; is the utility of dimension i for 
the categorization, just as in the GCM or 
ALCOVE, but a new term, Jri(t), is the 



g ei­
Aor 
1 the 
time 
:lber 
esh­
; for 
ting 
the 
out 
ear-
see 

m­
and 
md, 
are 

dif­
~W. 
.red 
the 
the 
lied 
let­
but 

uns 
.In­
are 
lU­

Len 

di­
in­
ne 
er-

~xt 

}7, 
lar 
In 
:li -

7) 

or 
or 
1e 

MODELS OF CATEGORIZATION 

( cumulative) inclusion probability of dimen­
sion i at time t. Lamberts (1995, 1998) sug­
gests that the inclusion rate for a dimension 
should be constant through time and that 
therefore the cumulative inclusion probabil­
ity can be expressed as 

Jri(t) = 1 - exp( -qit) (9.38) 

where qi is the inclusion rate for dimension i. 
The inclusion rate for a dimension is tied to 
its physical salience, irrespective of the di­
mension's relevance for the particular cate­
gorization. Notice that a dimension with a 
fast inclusion rate has a relatively high prob­
ability of being included in the similarity 
computation. When the time t is small, the 
inclusion probabilities of all dimensions are 
small, so the similarity is close to 1 for all 
exemplars. When the time t is very large, 
the inclusion probabilities of all dimensions 
are nearly 1, so the similarities shrink to the 
values they would be in the basic GCM. 

One of the interesting predictions of the 
EGCM is that categorization tendencies can 
change nonmonotonically after stimulus on­
set. One such situation can occur because 
salient dimensions (i .e., those with high in­
clusion rates) dominate response tendencies 
early in processing, but those salient dimen­
sions might not be the most relevant to the 
categorical distinction. That is, the relevant 
dimensions with high ai might be nonsalient 
dimensions with low Jri when t is small. 
Nonmonotonic response tendencies can also 
be produced when an exemplar of one cat­
egory is set in the midst of several exem­
plars from a different category. Early in pro­
cessing, all the Jri are small, and therefore 
the surrounded exemplar is highly similar 
to its many neighbors that belong to the 
other category. Consequently, it is classified 
as a case of the neighbor's category. Later 
in processing, the Jrj have grown large, and 
the surrounded exemplar is less similar to its 
neighbors. Consequently, it is classified in its 
own correct category. Lamberts and collab­
orators have documented several such non­
monotonicities; for example, Experiment 2 
of Lamberts and Freeman (1999) examined 
a case of a surrounded exemplar. The EBRW 
cannot account for these nonmonotonici-

ties because its similarity values are fixed 
through time, and its random walks are (on 
average) monotonically related to the rela­
tive similarities. 

The EGCM (Lamberts, 1995, 1998) 
models similarity and choice tendency as 
a function of time, but it does not predict 
specific latencies to respond. The EGCM 
Response Time (EGCM-RT) (Lamberts, 
2000) is a model of response time per 
se. It generates RTs by sampling elements 
from separable dimensions, and after each 
sample determining a probability of stop­
ping (i.e., making a response) that is re­
lated to the current summed similarity of the 
stimulus to all exemplars (Lamberts, 2000, 
Equation 14, p. 230). Lambert's mecha­
nism for gradual dimension accumulation 
was combined with the EBRW's response 
race mechanism into a model called "EBRW 
with perceptual encoding" (EBRW-PE) by 
Cohen and Nosofsky (2003). They found 
comparable fits to data by EBRW-PE and 
EGCM-RT, and suggested that although 
future experiments might better distin­
guish the models, the random-walk response 
mechanism in the EBRW-PE is more thor­
oughly studied in the literature than the 
stopping-rule mechanism in EGCM-RT. Fu­
ture research will have to explore potential 
differences between the models; but there 
are yet other possibilities for dynamic mech­
anisms to consider, described next. 

In the connectionist literature, process­
ing analogous to Lamberts's inclusion rate 
can be found in McClelland's cascaded acti­
vation approach (McClelland, 1979) . That 
approach assumes that the i th node's net in­
put accumulates through time, according to 
the temporal integration equation 

neti(t) = K L w;jaj(t) 
j 

(9.39) 

where Wij is the connection weight to node i 
from node j, aj(t) is the activation of node j 
at time t, and K is the cascade rate for 
the node. It can easily be seen from Equa­
tion 9.39 that net; = Lj wija j is a stable 
value: Just plug that into the right side and 
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notice that it comes out again on the left 
side. Moreover, this value is reached asymp­
totically. At each moment in time, the net 
input is (instantaneously) transformed into 
activation by the usual sigmoidal squashing 
function: 

Q.j(t) = 1/[1 +exp(-net1(t))]. (9.40) 

McClelland and Rumelhart (1988, pp. 153-
155,304-305) showed that cascaded activa­
tion networks can produce nonmonotonic 
outputs through time. In particular, con­
sider two hidden nodes that converge on a 
single output node. The first hidden node 
has large positive incoming weights and a 
weak positive outgoing weight to the out­
put node. The second hidden node has small 
positive incoming weights, but a strong neg­
ative outgoing weight to the output node. 
When the input nodes are activated, the 
first hidden node will become activated 
more quickly than the second hidden node, 
because the first hidden node has larger in­
coming weights. Hence, the output node 
will initially feel the positive connection 
from the first hidden node and be acti­
vated. Later, however, the second hidden 
node will become as activated as the first 
hidden node, and then its stronger nega­
tive output weight will be felt at the out­
put. Hence, the output activation will have 
changed from initially growing to asymp­
totically low. Such nonmonotonicities were 
exhibited by a model of memory for arith­
metic described by Dallaway (1992, 1994). 
His network, when queried with "3 x 8 =," 
initially activated a response of 27 before 
settling to the correct response of 24. 

Although it has not been previously de­
scribed in the literature, it would be straight­
forward to implement cascaded activation 
in the ALCOVE or APPLE networks. Sim­
ply let each dimensional distance accumu­
late through time: 

c4(t, x, y) = K adXi - Yil + (1 - K) 

X c4(t - I, x, y). (9.41) 

This formula has dimensional salience al­
ready implicit in the stimulus coordinates, 

because a more salient dimension has feature 
values that are farther apart in psychological 
space. Alternatively, salience could be ex­
plicitly marked by another multiplicative 
factor, analogous to the inclusion rate in the 
ECGM. The cascaded dimensional distance 
is used in the natural ways in ALCOVE 
and APPLE: For ALCOVE, the overall dis­
tance is d(t, x, y) = Li c4(t, x, y) (cf. Equa­
tion 9.1), and for APPLE, Si(t,x,y)= 
exp(-c4(t,x,y)) (cf. Equation 9.8). At 
asymptote, c4 (t, x, y) converges to ai IXi -
Yi I, so asymptotic choice proportions are 
as in the original models. Presumably, the 
cascaded activation versions of the models 
would generate dynamic behaviors much 
like the EGCM, but combined with the ad­
ditional ability to learn associative weights 
and attentional allocations. (Learning takes 
place once the activations have reached 
asymptote, without any change in algo­
rithm.) Analogous cascaded similarity func­
tions could be implemented in a variety of 
models discussed earlier. 

3. Conclusion 

This chapter began with a quick overview of 
the representational options for models of 
categorization. These options included ex­
emplars, prototypes, rules, boundaries, and 
theories. A mutual goal of different formal 
models is to account for detailed quanti­
tative data from laboratory experiments in 
categorization. These data can include in­
formation about what stimuli or categories 
are learned more or less easily, the degree to 
which categorical responses are generalized 
from learned stimuli to novel stimuli and , 
the speed with which categorical responses 
are made. 

Although a variety of representational 
formats have been formalized, exemplar 
models have been especially richly explored 
by many researchers. The main goal of the 
chapter has been to slice across numerous 
exemplar models, to excise their functional 
components, and to examine those com­
ponents side by side. The main functional 
components included the computation of 
similarity, the learning of associations and 
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attention, the recruitment of exemplars, the 
determination of response probability, and 
the generation of response times. This dis­
section revealed a variety of formalizations 
available for expressing any given psycho­
logical process . The analysis also suggested 
numerous directions for novel research . 
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