X = “the data”
f = natural process that produced the data (REALITY)

f(x) = pdf of the natural process f
(ideal abstraction; unknowable “straw man”)

g(x|0) = MODEL used to approximate reality
(6 estimated from data using MLE techniques)

Kullback-Leibler Information Theorem:

All models are WRONG.

Best model demonstrates the minimum loss of

information relative to reality

K-L Information equation can be used to quantify this
loss of information:

10,2 = J footog (R{}Z;;J) dx



K-L Information Loss (or “distance”):

ICf2) = [ fix)og (g{ii‘é}) dx

'/\ REALITY



Akaike’s Extentions to the K-L theorem: (ah-kah-ee-kay)

The general equation

1052 = J Ao teg (R{;E;;J) dx

Could be rewritten as:

I(f, 8) = [flx)log (fix))dx — [f(x)log(g(x | 8))dx

Akaike noted that each of the terms on the right
contained a statistical expectation with respect to
“truth” (i.e., f(x)). Hence, the K-L information equation
could be expressed as a difference of expected values:

1(f, g) = Erllog(fix))] — Esllog(g(x | 6))]

The first expected value above depends solely on
REALITY and reduces to a CONSTANT for a given sample
of data. In practice, this value is unknowable.

Nonetheless, this realization yields the following
insight:
I(f, g) = Constant — E/[log(g(x | 8))]

or
I(f, g) — Constant = — E¢[log(g(x | 8))]

That is: In maxL(g) is PROPORTIONAL to K-L distance !!!



Hence,

For a given sample of data, the RELATIVE INFORMATION
LOSS of two or more models could be derived based
solely on the log maximum likelihood of the models
given that data.

Akaike (ah-kah-ee-kay) “did the math” to show that
such estimates were biased and provided his now
famous correction for that bias:

AIC = -2 In (L(B]x)) + 2K
Where K = number of estimated parameters
Lewandowsky & Farrell (2011) explore the application

of the Akaike Information Criterion for model selections
in Chapter 5 (pages 179-194).



