COGENT 2000 COMMAND SUMMARY
(23 March 2007)

ADDRESULTS
add row of items to results file

 Description:

 Usage:

 ADDRESULTS(field1, field2, field3, ...)

CLEARKEYS
clears all keyboard events

 Description:

 Clears all keyboard events.

 Usage:

 CLEARKEYS

 Arguments:

 NONE

CLEARMOUSE
clears mouse

 Description:

 Clears mouse

 Usage:

 CLEARMOUSE

 Arguments:

 NONE

CLEARPICT
clears a display buffer.

 Description:

 Clears a display buffer to specified colour.

 Usage:

 CLEARPICT - clear backbuffer to default background colour

 CLEARPICT(buf) - clear buffer 'buf' to default background colour

 CLEARPICT(buf, p_i) - clear buffer 'buf' to palette colour p_i

 CLEARPICT(buf, red, green, blue) - clear buffer 'buf' to colour
 [red,green,blue]

Arguments:

 buf - buffer number (0 is the backbuffer, >1 offscreen buffers)

 p_i - palette index (range 0-255)

 red - red component of colour (range 0-1)

 green - green componet of colour (range 0-1)

 blue - blue componet of colour (range 0-1)

Examples:

 CLEARPICT - clear display buffer 0 (back buffer) to default background
colour

 CLEARPICT(5) - clear display buffer 5 to default background colour

 CLEARPICT(3, 1, 0, 0) - clear display buffer 3 to bright red

CLEARSERIALBYTES
clears bytes sent to serial port since last call to READSERIALBYTES

 Description:

 Clears bytes sent to serial port since last call to READSERIALBYTES

 Usage:

 CLEARSERIALBYTES(port)

 Arguments:

 port - port number

CONFIG_DATA
loads data file

 Description:

 Loads specified data file. Get data using the GETDATA command.

 Usage:

 CONFIG_DATA(filename)

 Arguments:

 filename - name of data file

 Examples:

 CONFIG_DATA('test.dat')

CONFIG_KEYBOARD
configures keyboard

 Description:

 Use this function to configure the keyboard before calling START_COGENT.
The device mode should be 'exclusive' for accurate timing. When in
'exclusive' mode no other application (including the Matlab console
window) can access the keyboard.

 Usage:

 CONFIG_KEYBOARD(quelength = 100, resolution = 5, mode = 'exclusive')

 Arguments:

 quelength - maximum number of key events recorded between calls to
READKEYS

 resolution - timing resolution in milliseconds

 mode - device mode (possible values 'exclusive' and
'nonexclusive')

CONFIG_DISPLAY
configures display

 Description:

 Configures display. Call before START_COGENT.

 Usage:

 CONFIG_DISPLAY

 CONFIG_DISPLAY(mode, resolution, background, foreground, fontname,
fontsize, nbuffers, number_of_bits, scale)

 Arguments:

 mode - window mode (0=window, 1=full screen)

 resolution - screen resolution (1=640x480, 2=800x600, 3=1024x768,
4=1152x864, 5=1280x1024, 6=1600x1200)

 background - background colour ([reg,green,blue] or palette index)

 foreground - foreground colour ([reg,green,blue] or palette index)

 fontname - name of font,

 fontsize - size of font,

 number_of_buffers - number of offscreen buffers

 number_of_bits - number of bits per pixel (8=palette mode, 16, 24, 32,

 or 0=Direct mode, maximum possible bits per pixel)

 scale - horizontal size of screen in (visual degrees)

 Examples:

 CONFIG_DISPLAY

 Default display configuration, full screen mode, 640x480 resolution, white
background, black foreground, 50 point Helvetica font, 4 offscreen
buffers.

 CONFIG_DISPLAY(0, 2, [0 0 0], [1 1 1], 'Arial', 25, 4)

window mode, 800x600 resolution, black background, white foreground, 25
point Arial font, 4 offscreen buffers

CONFIG_LOG
configures log file

 Description:

 Sets the name of the log file.

 Usage:

 CONFIG_LOG - log file will be named 'Cogent-YYYY-MM-DD-HH-MM-SS.log'

 CONFIG_LOG('test.log') - log file is named 'test.log'

 Arguments:

 NONE

CONFIG_MOUSE
configures mouse

 Description:

 Configures and sets up mouse

 Usage:

 CONFIG_MOUSE - configure mouse for non-polling mode

 CONFIG_MOUSE(interval) - configure mouse for polling mode

 Arguments:

 interval - sample interval in milliseconds for polling mode

CONFIG_RESULTS
configures results file

 Description:

 Configure results file. If the filename is not specified then the default
filename is 'Cogent-YEAR-MONTH-DAY-HOUR-MIN-SEC.res'

 Usage:

 CONFIG_RESULTS

 CONFIG_RESULTS(filename)

 Arguments:

 filename - name of file for saved results

 Examples:

 CONFIG_RESULTS

 CONFIG_RESULTS('test1.res')

CONFIG_SERIAL
configures serial port

 Description:

 Configure serial port. When START_COGENT is called the port is opened.
When STOP_COGENT is called the port is closed.

 Usage:

 CONFIG_SERIAL(port = 1, baudrate = 9600, parity = 0, stopbits = 0,
bytesize = 8)

 Arguments:

 port - COM port number (1,2,3,4,etc)

 baudrate - (110,300,600,1200,2400,4800,9600,14400,19200,38400,
56000,57600,11520,128000,256000)

 parity - (0-no, 1-odd, 2-even, 3-mark, 4-space)

 stopbits - (0-one, 1-one and a half, 2-two)

 bytesize - (4 bits, 8 bits) NEED TO DISCOVER IF 7 DATA BITS is VALID
 Examples:

 CONFIG_SERIAL - Open COM1 with baudrate=9600, parity=no, stopbits=one and
 bytesize=8.

 CONFIG_SERIAL(2) - Open COM2 with baudrate=9600, parity=no,
 stopbits=one and bytesize=8.

 CONFIG_SERIAL(3, 56000, 1, 2, 8) - Open COM3 with baudrate=56000,
 parity=odd, stopbits=two and bytesize=8.

CONFIG_SOUND
configures sound

 Description:

 Use config sound to setup number of channels, number of bits and frequency
of sounds to play and record.

 Usage:

 CONFIG_SOUND

 CONFIG_SOUND(nchannels = 1, nbits = 16, frequency = 11025,
number_of_buffers = 100)

 Arguments:

 nchannels - number of channels (1 = mono, 2 = stereo),

 nbits - number of bits per sample (8 or 16)

 frequency - number of samples per second (common values are 8000,
11025, 22050 and 44100)

 number_of_buffers - number of sound buffers

 Examples:

 CONFIG_SOUND - mono, 16 bits per sample, 11025 samples per sec,
100 buffers

 CONFIG_SOUND(2, 8) - stereo, 8 bits per sample, 11025 samples per sec,
100 buffers

 CONFIG_SOUND(1, 16, 22050, 10) - mono, 16 bits per sample, 22050
samples per sec, 10 buffers

COUNTDATAROWS
returns number of rows in cogent data file.

 Description:

 Returns number of rows in file specified by CONFIG_DATA

 Usage:

 COUNTDATAROWS

 Arguments:

 NONE

COUNTKEYDOWN
counts the number of key down events read in last call to READKEYS

 Description:

 Counts the number of key down events read in last call to READKEYS

 Usage:

 n = COUNTKEYDOWN

 Arguments:

 n - number of keydown events

COUNTKEYUP
counts the number of key up events read in last call to READKEYS

 Description:

 Counts the number of key up events read in last call to READKEYS

 Usage:

 n = COUNTKEYUP

 Arguments:

 n - number of keyup events

COUNTSERIALBYTES
returns the number of serial bytes read by READSERIALBYTES

 Description:

 COUNTSERIALBYTES returns the number of serial bytes read by

READSERIALBYTES

 Usage:

 n = COUNTSERIALBYTES(port)

 Arguments:

 port - port number

 n - number of serial bytes

DRAWPICT
copies the content of a display buffer to the screen.

 Description:

 Copy display buffer to screen (waits for vertical refresh before copying).

If buffer>0 then the display buffer is transfered to buffer 0 (the back

buffer) before being copy to the screen. So using buffer 0 is the

fastest, but is contens will be overwritten by other DRAWPICT commands.

 If in doubt don't use buffer 0.

 Usage:

 t = DRAWPICT - copy screen buffer 0 (back buffer) to screen

 t = DRAWPICT(buf) - copy screen buffer 'buf' to screen

 Arguments:

 t - time that buffer is displayed

 buf - screen buffer number (0 = backbuffer, >= 1 offscreen buffer)

 Examples:

 DRAWPICT(1) - copy display buffer 1 to screen

 DRAWPICT - copy display buffer 0 (back buffer) to screen

GETDATA
get data item

 Description:

 Get an item of data from the file specified in CONFIG_DATA.

 Usage:

 GETDATA(row) - return row of data as cell array

 GETDATA(row, col) - return data item at (row,col)

 Arguments:

 row - row index of data item

 col - col index of data item

GETKEYDOWN
returns the key IDs and times of key presses read by last call to READKEYS

 Description:

 Returns the key IDs and times of key presses read by last call to READKEYS.
Use GETKEYMAP to determine key IDs.

 Usage:

 [keyout, times, n] = GETKEYDOWN

 [keyout, times, n] = GETKEYDOWN(keyin)

 Arguments:

 keyin - array of key IDs to check for presses

 keyout - array of key IDs of keys that have been pressed

 times - array of time of key presses

 n - number of key presses

 Examples:

 [keyout, times, n] = GETKEYDOWN - get all key presses

 [keyout, times, n] = GETKEYDOWN(1) - get all presses of key 1 (A)

 [keyout, times, n] = GETKEYDOWN([1 2 4])-get all presses of keys 1,
2 and 4 (A,B and C)

 GETKEYMAP

returns key IDs

 Description:

 Return a structure containing key IDs. Structure fields correspond to key
names and field values are key IDs.

 Usage:

 map = GETKEYMAP

 Arguments:

 map - keyboard map

 Examples:

 map = getkeymap; waitkeydown(map.Space); - wait for space key down
 map = getkeymap; waitkeyup(map.A); - wait for release of ‘A’
GETKEYUP
gets the key IDs and times of key releases read in last call to READKEYS or CLEARKEYS

 Description:

 Returns key IDs and times

 Usage:

 [keyout, times, n] = GETKEYUP - return key IDs and times of all key
releases

 [keyout, times, n] = GETKEYUP(keyin) - return key IDs and times of key
releases for specified keys

 Arguments:

 keyin - array of IDs to check for key releases

 keyout - array of IDs of keys that have been released

 times - array of times of the key releases

 n - number of key releases

 Examples:

 [keyout, times, n] = GETKEYUP - get all key releases

 [keyout, times, n] = GETKEYUP(1) - get all releases of key 1 (A)

 [keyout, times, n] = GETKEYUP([1 2 4]) - get all releases of keys 1,
2 and 4 (A,B and C)

GETMOUSE
returns state of buttons and axis as read by READMOUSE

 Description:

 Returns state of buttons and axis as read by READMOUSE

 Axis and button IDs:-

 1 - change in x-axis (left and right) since last call to GETMOUSESTATE

 2 - change in y-axis (up and down) since last call to GETMOUSESTATE

 3 - change in z-axis (mouse wheel) since last call to GETMOUSESTATE

 4 - state of button 1 (0 up, 128 down)

 5 - state of button 2 (0 up, 128 down)

 6 - state of button 3 (0 up, 128 down)

 7 - state of button 4 (0 up, 128 down)

 This state index information can be access by function GETMOUSEMAP.

 Usage:

 [out, value, times] = GETMOUSE(in);

 Arguments:

 out - id of button or axis

 value - value of button or axis

 times - time of change in button or axis

 in - id of button or axis to return

 Examples:

 [value, id, times] = getmouse - get values and times of change of all
 buttons and axis

 [value, id, times] = getmouse([4 5]) - get values and times of change
 of buttons 1 and 2

GETMOUSEMAP

return the mouse map which contains the index of axes and buttons

 Description:

 Returns the mouse map.
 After map=getmousemap the map structure which contains the fields:

 map.X - change in x-axis since last call to GETMOUSESTATE

 map.Y - change in x-axis since last call to GETMOUSESTATE

 map.Z - change in z-axis (mouse wheel) since last GETMOUSESTATE call
 map.Button1 - mouse button 1

 map.Button2 - mouse button 2

 map.Button3 - mouse button 3

 map.Button4 - mouse button 4
 The value of each field is the index of the button or axis in the array
returned by GETMOUSESTATE.

 Usage:

 map = GETMOUSEMAP

 Arguments:

 map - mouse map
 Examples:

 map = GETMOUSEMAP

 state = GETMOUSESTATE

 x = state(map.X)

 y = state(map.Y)

 b1 = state(map.Button1)

GETMOUSESTATE

gets mouse state (i.e. value of mouse buttons and axes)

 Description:

 Return array containing state of mouse. Each array element contains axes
or button values.

 1 - change in x-axis (left and right) since last call to GETMOUSESTATE

 2 - change in y-axis (up and down) since last call to GETMOUSESTATE

 3 - change in z-axis (mouse wheel) since last call to GETMOUSESTATE

 4 - state of button 1 (0 up, 128 down)

 5 - state of button 2 (0 up, 128 down)

 6 - state of button 3 (0 up, 128 down)

 7 - state of button 4 (0 up, 128 down)

 This state index information can be access by function GETMOUSEMAP.

 Usage:

 state = GETMOUSESTATE

 Arguments:

 state - state of mouse

 Examples:

 state = GETMOUSESTATE;

 state(1) % change in x coordinate

 state(2) % change in y coordinate

 if state(4)

 % Button 1 down

 % Do something

 end

GETRECORDING

get recording buffer and return as matrix.

 Description:

 Get current recording and return as a nchannels by nsamples matlab matrix.

 Usage:

 GETRECORDING

 Arguments:

 NONE

GETSERIALBYTES

return values and times of serial bytes read by READSERIALBYTES

 Description:

 READSERIAL bytes reads the values and times of bytes sent to the serial
port. Use GETSERIALBYTES to access these values and times.

 Usage:
 [value, times, n] = GETSERIALBYTES(port)
 [value, times, n] = GETSERIALBYTES(port, bytes)

 Arguments:

 port - port number

 value - array of byte values

 times - array of times

 n - number of serial bytes
 bytes - optional numeric array that contains a list of target serial

 bytes. Input bytes that match one of the items in this list

 will be returned. Bytes that do not have a match in this list

 will be ignored.
GETSOUNDFREQ

sets frequency of sound buffer

 Description:

 Sets frequency of sound buffer in samples per second

 Usage:

 freq = GETSOUNDFREQ(buff)

 Arguments:

 buff - buffer number

 freq - frequency of buffer in sampleds per second

GETSOUNDVOL

gets volume of sound buffer

 Description:

 Returns sound attenuation level in hundredths of decibels (0 to -10000)

 Usage:

 GETSOUNDVOL(buff)

 Arguments:

 buff - buffer number

 vol - volume of buffer in hundredths of decibels (0 to -10000)

HELP_COGENT

lists one-line help on all Cogent functions.

 Cogent 2000 function.

LASTKEYDOWN

returns the key and time of the most recent key press

 Description:

 Returns the key and time of the most recent key press read by READKEYS.

 Usage:

 [key, times] = LASTKEYDOWN

 Arguments:

 key - id of key (0 if no key press)

 times - times of key press(es) (0 if no key press)

LASTKEYUP

returns the key and time of the most recent key release.

 Description:

 Returns the key and time of the most recent key release read by READKEYS

 Usage:

 [key, t] = LASTKEYUP

 Arguments:

 key - id of key (0 if no key released)

 t - time of key press (0 if no key released)

LASTSERIALBYTE

returns the value and time of the last byte to be read by READSERIALBYTES

 Description:

 Returns the value and time of the last byte to be read by READSERIALBYTES.

 If no bytes have been read then value and time are -1.

 Usage:

 LASTSERIALBYTE(port)

 Arguments:

 port - port number

 Examples:

 [byte, t] = LASTSERIALBYTE(1)

LOADLOG

loads a text file and return an array of cell containing text field

 Description:

 Loads a text file and returns an array of cell containing text field of
each line.

 Usage:

 field = LOAD_LOG(filename)

 Fields can be accessed by 'field{row}{col}' e.g. 2nd line 5th word
'field{2}{5}.

 Arguments:

 filename - name of text file

 Examples:

 LOAD_LOG('test.dat')

LOADPICT

loads a bitmap and places the image in a display buffer

 Description:

 Usage:

 LOADPICT(filename) - load bitmap from file 'filename' and place in
centre of back buffer

 LOADPICT(filename, buff) - load bitmap from file 'filename' and place
in centre of buffer 'buff'

 LOADPICT(filename, buff, x, y) - load bitmap from file 'filename' and
 place in buffer 'buff' at

 offset (x,y) from centre of buffer

 LOADPICT(filename, buff, x, y, w, h) - load bitmap from file 'filename'
 and place in buffer 'buff' at

 offset (x,y) from centre of buffer

A=LOADPICT(filename), etc. - load into Matlab workspace variable A

 Arguments:

 filename - file name of bitmap file (can be .bmp, .jpg, .pcx or .tif
 files)

 buff - display buffer(0 is the backbuffer, >1 offscreen buffers)

 x - horizontal offset from the centre of the buffer in pixels

 y - vertical offset from the centre of the buffer in pixels

 w - width to display bitmap

 h - height to display bitmap

 Examples:

 LOADPICT('test.bmp', 1) - draw bitmap 'test.bmp' in centre of buffer 1

 LOADPICT('test.bmp', 2, -100, 100) - draw bitmap 'test.bmp' at offset
 (-100,100) in buffer 2

 LOADPICT('test.bmp', 1, 0, 0, 20, 50) - draw bitmap 'test.bmp' at centre
of buffer 1 as a 20 by 40 image

LOADSOUND

loads a wav file into sound buffer.

 Description:

 Usage:

 LOADSOUND(filename , buf) - load WAV file into buffer 'buf'

 Arguments:

 filename - file name of WAV file be loaded

 buff - buffer number

LOGKEYS

transfers all keyboard events read by READKEYS to log.

 Description:

 Transfer all keyboard events read by READKEYS to log.

 Usage:

 LOGKEYS

 Arguments:

 NONE

LOGSERIALBYTES

transfers serial bytes read by READSERIALBYTES to log file.

 Description:

 Transfers serial bytes read by READSERIALBYTES to log file.

 Usage:

 LOGSERIALBYTES(port)

 Arguments:

 port - port number

LOGSTRING

writes a time tag and string to the console and log file.

 Description:

 Write a time tag and string to the console and log file.

 Usage:

 LOGSTRING(str)

 Arguments:

 str - string to write to console and log file

 Examples:

 LOGSTRING('Hello')

LOOPSOUND

starts a sound buffer playing in a continuous loop

 Description:

Starts a sound buffer playing in a continuous loop. To create this buffer
use commands LOADSOUND or PREPARESOUND. To stop buffer from playing use
command STOPSOUND.

 Usage:

 LOOPSOUND(buff) - play sound in buffer 'buff'

 Arguments:

 buff - buffer number

PALETTEFLICKER

flickers a dartboard

 Description:

 Flickers a previously prepared dartboard.

 Usage:

 PALETTEFLICKER(buffer, frames1, frames2, repeats, grey)

 Arguments:

 buffer - specifies the buffer (or buffers) containing the dartboard

 frames1 - number of frames to display as white/black

 frames2 - number of frames to display as black/white

 repeats - number of times to repeat the above cycle

 grey - background grey level, this is ignored in direct colour mode

 Examples:
 %use dartboard in buffer 1. 8 flicker cycles @ 7.5Hz (=60Hz / (4+4))

 PALETTEFLICKER(1, 4, 4, 8, 32767)
 %use buffers 1 & 2 with direct colour mode, timing as above.

 PALETTEFLICKER([1 2], 4, 4, 8)

PALETTEFLICKERREST

flickers a dartboard and returns to fixation

 Description:

 Flickers a previously prepared dartboard and returns to fixation.

 Usage:

 PALETTEFLICKERREST(buffer, frames1, frames2, repeats, grey)

 Arguments:

 buffer - specifies the buffer (or buffers) containing the dartboard

 frames1 - number of frames to display as white/black

 frames2 - number of frames to display as black/white

 repeats - number of times to repeat the above cycle

 grey - background grey level, this is ignored in direct colour mode

 Examples:
 %use dartboard in buffer 1. 8 flicker cycles @ 7.5Hz (=60Hz / (4+4))

 PALETTEFLICKEREST(1, 4, 4, 8, 32767)

PAUSEKEY

pauses a key has been pressed and waits for another key press.
 PAUSEKEY(key) pauses if specific key has been pressed and waits for another
 key press.

PAUSEMOUSE

execution of script if a mouse button has been press

 Description:

If a mouse button has been pressed since the last READMOUSE of CLEARMOUSE
then script execution will stop until a mouse key is pressed again.

 ***** requires mouse to be in polling mode ****

 Usage:

 PAUSEMOUSE

 Arguments:

 NONE

 Examples:

 PAUSEMOUSE;

PLAYSOUND

plays sound buffer

 Description:

 Plays a sound buffer.
To create this buffer use commands LOADSOUND or PREPARESOUND.

 Usage:

 PLAYSOUND(buff)

 Arguments:

 buff - buffer number

PREPAREDARTBOARD

places a dartboard in a display buffer

 Description:

 Draws one dartboard in the specified buffer - palette mode

 Draws two dartboards in the specified buffers - direct colour mode

 NB there is a delay whilst the dartboards are generated - 4 secs on a
450MHz Pentium III

 Usage:
 %palette mode
 PREPAREDARTBOARD(buffer, min_r, max_r, delta_r, delta_theta)

 %direct color mode
 PREPAREDARTBOARD([buf1 buf2], min_r, max_r, delta_r, delta_theta)
 Arguments:

 buffer - prepare the dartboard in this offscreen buffer

 [buf1 buf2] - prepare two dartboards in these offscreen buffers

 min_r - inner radius of dartboard

 max_r - outer radius

 delta_r - radial square size

 delta_theta - angular square size (degrees)

 Examples:
 %standard dartboard in buffer-1
 PREPAREDARTBOARD(1, 20, 200, 10, 18)

 %null dartboard in buffer-2
 PREPAREDARTBOARD(2, 400, 200, 10, 18)

 %standard dartboard in buffers 1 and 2 (direct color mode)
 PREPAREDARTBOARD([1 2], 20, 200, 10, 18)
PREPAREPICT

draws a Matlab image matrix in a display buffer

 Description:

 Draw a Matlab image matrix in a display buffer at specified offset from
centre of the buffer

 Usage:

 PREPAREPICT(rgb) - draw image in centre of back buffer

 PREPAREPICT(rgb, buff) - draw image in centre of display buffer 'buff'

 PREPAREPICT(rgb, buff, x, y) - draw image at (x,y) offset from centre of
 display buffer 'buff'

 Arguments:

 rgb - rgb image matrix

 buff - display buffer

 x - horizontal offset from the centre of the screen in pixels

 y - vertical offset from the centre of the screen in pixels

PREPAREPURETONE

fill sound buffer with sin wave of specified duration and frequency

 Description:

 Fill sound buffer with sin wave of specified duration and frequency.

 Usage:

 PREPAREPURETONE(frequency, duration, buff)

 Arguments:

 frequency - frequency of sine wave (Hz)

 duration - duration of sine wave (milliscond

 buff - buffer for wave form

 Examples:

 PREPAREPURETONE(500, 1000, 1) - prepare a 500Hz 1000 millisecond sine
 wave in buffer 1

PREPARERECORDING

prepare recording buffer

 Description:

 Prepare recording buffer for mono or stereo recording of specific duration

 Usage:

 PREPARERECORDING(duration) - prepare for mono recording

 PREPARERECORDING(duration, nchannels) - prepare for mono or stereo
recording

 Arguments:

 duration - duration of recording in milliseconds

 nchannels - number of channels (1-mono 2-stereo)

PREPARESOUND

transfers a sound matrix from the matlab workspace to a Cogent sound buffer.

 Description:

 Transfers a sound matrix from the matlab workspace to a Cogent sound
buffer. Each column of the matrix is a channel waveform (1 column for
mono, 2 for stereo). Each waveform element is in the range -1 to 1.

 Usage:

 PREPARESOUND(matrix, buff)

 Arguments:

 matrix - nsamples by nchannels matrix containing sound waveforms, each
 sample ranges between -1 and 1

 buff - buffer number

PREPARESTRING

places a string in a display buffer.

 Description:

 Draws a string in a display buffer at specified offset from the centre of
the buffer. The font and size is determined by CONFIG_DISPLAY or
SETTEXTSTYLE.

 Usage:

 PREPARESTRING(text)

 PREPARESTRING(text, buff)

 PREPARESTRING(text, buff, x, y)

 Arguments:

 text - string to draw on buffer

 buff - display buffer(0 is the backbuffer, >1 offscreen buffers)

 x - horizontal offset from the centre of the screen in pixels

 y - vertical offset from the centre of the screen in pixels

 Examples:

 PREPARESTRING('Hello', 1)-draw Hello in the centre of offscreen buffer 1

 PREPARESTRING('Hello', 2, -100, 100) - draw Hello offset (-100,100) from
 centre of offscreen buffer 2

PREPAREWHITENOISE

fill sound buffer with white noise of specified duration

 Description:

 Fill sound buffer with white noise of specified duration.

 Usage:

 PREPAREWHITENOISE(duration, buff)

 Arguments:

 duration - duration of white noise (millisconds)

 buff - buffer for wave form

 Examples:

 PREPAREWHITENOISE(1000, 1) - prepare 1000 milliseconds of white noise in
 buffer 1

READKEYS

reads all keyboard events since last call to READKEYS or CLEARKEYS

 Description:

 Reads all keyboard events since last call to READKEYS or CLEARKEYS. Key
IDs are defined in the structure returned by GETKEYMAP and the table shown below:

 1 - A

 2 - B

 3 - C

 4 - D

 5 - E

 6 - F

 7 - G

 8 - H

 9 - I

 10 - J

 11 - K

 12 - L

 13 - M

 14 - N

 15 - O

 16 - P

 17 - Q

 18 - R

 19 - S

 20 - T

 21 - U

 22 - V

 23 - W

 24 - X

 25 - Y

 26 - Z

 27 - 0

 28 - 1

 29 - 2

 30 - 3

 31 - 4

 32 - 5

 33 - 6

 34 - 7

 35 - 8

 36 - 9

 37 - F1

 38 - F2

 39 - F3

 40 - F4

 41 - F5

 42 - F6

 43 - F7

 44 - F8

 45 - F9

 46 - F10

 47 - F11

 48 - F12

 49 - F13

 50 - F14

 51 - F15

 52 - Escape

 53 - Minus

 54 - Equals

 55 - BackSpace

 56 - Tab

 57 - LBracket

 58 - RBracket

 59 - Return

 60 - LControl

 61 - SemiColon

 62 - Apostrophe

 63 - Grave

 64 - LShift

 65 - BackSlash

 66 - Comma

 67 - Period

 68 - Slash

 69 - RShift

 70 - LAlt

 71 - Space

 72 - CapsLock

 73 - NumLock

 74 - Scroll

 75 - Pad0

 76 - Pad1

 77 - Pad2

 78 - Pad3

 79 - Pad4

 80 - Pad5

 81 - Pad6

 82 - Pad7

 83 - Pad8

 84 - Pad9

 85 - PadSubtrack

 86 - PadAdd

 87 - PadDivide

 88 - PadMultiply

 89 - PadPeriod

 90 - PadEnter

 91 - RControl

 92 - RAlt

 93 - Pause

 94 - Home

 95 - Up

 96 - PageUp

 97 - Left

 98 - Right

 99 - End

 100 - Down

 101 - PageDown

 102 - Insert

 103 - Delete

 Usage:

 READKEYS

 Arguments:

 NONE

READMOUSE

reads all mouse events

 Description:

 Usage:

 READMOUSE

 Arguments:

 NONE

READSERIALBYTES

reads bytes sent to serial port since last call to READSERIALBYTES or CLEARSERIALBYTES.

 Description:

 Reads bytes sent to serial port since last call to READSERIALBYTES o
CLEARSERIALBYTES. Once read the bytes can be sent to the log using
LOGSERIALBYTES or accessed using GETSERIALBYTES.

 Usage:

 READSERIALBYTES(port)

 Arguments:

 port - port number

RECORDSOUND

start recording sound

 Description:

 Start recording sounds into buffer setup by PREPARERECORDING

 Usage:

 Record sound

 Arguments:

 NONE

SENDSERIALBYTES

send bytes to serial port

 Description:

 Send bytes to serial port.

 Usage:

 SENDSERIALBYTES(port, bytes)

 Arguments:

 port - port number

 bytes - array of bytes

 Examples:

 SENDSERIALBYTES(1, 10) - Send 10 to COM1

 SENDSERIALBYTES(2, [1 2 4 8]) - Send the bytes 1, 2, 4, 8 and 16 (in
sequence) to COM2

SETFORECOLOUR

sets the foreground colour

 Description:

 Sets the foreground colour. This colour is used when drawing text.

 Usage:

 SETCOLOUR(red, green, blue)

 SETCOLOUR(palette_index)

 Arguments:

 red - red component of colour (range 0-1)

 green - green component of colour (range 0-1)

 blue - blue component of colour (range 0-1)

 palette_index - palette index of colour (range 0-255)

 Examples:

 SETFORECOLOUR(1, 0, 0) - set foreground colour to bright red

 SETFORECOLOUR(0, 0.2, 0) - set foreground dark green

 SETFORECOLOUR(0.5, 0.5, 0.5) - set foreground to grey

 SETFORECOLOUR(24) - set foreground to colour 24

SETPALETTECOLOURS

sets the colours used for each palette index

 Description

 Usage:

 SETPALETTECOLOURS(rgb)

 SETPALETTECOLOURS(rgb, index)

 Arguments:

 red - red component of colour (range 0-1)

 green - green component of colour (range 0-1)

 blue - blue component of colour (range 0-1)

 index - palette colour to set (range 0-255)

 Examples:

 SETPALETTECOLOURS([1 1 1]) - set colour 0 to be white

 SETPALETTECOLOURS([0 0 0], 1) - set colour 1 to be black

 SETPALETTECOLOURS([0 0 0; .5 .5 .5; 1 1 1]) - set 3 colours starting at
colour 0 to be black, grey, white

 SETPALETTECOLOURS([1 0 0; 0 1 0; 0 0 1], 3) - set 3 colours starting at
colour 3 to be red, green, blue

SETSOUNDFREQ

sets frequency of sound buffer

 Description:

 Sets frequency of sound buffer in samples per second

 Usage:

 SETSOUNDFREQ(buff)

 Arguments:

 buff - buffer number

 freq - frequency of buffer in sampleds per second

SETSOUNDPOSITION

sets current play position of sound buffer

 Description:

 Sets current play position of sound buffer.

 Usage:

 SETSOUNDPOSITION(buff, pos) - set play position of buffer 'buff'

 Arguments:

 buff - sound buffer number

 pos - play position

SETSOUNDVOL

sets volume of sound buffer

 Description:

 Attenuates volume of sound buffer in hundredths of decibels (0 to -10000)
 e.g., -300 means attenuate sound by 3 dB
 Usage:

 SETSOUNDVOL(buff, vol)

 Arguments:

 buff - buffer number

 vol - volume of buffer in hundredths of decibels (0 to -10000)

SETTEXTSTYLE

sets font name and size

 Description:

 Sets font name and size used by PREPAREASTRING.

 Usage:

 SETTEXTSTYLE(font, size)

 Arguments:

 font - font name (e.g. 'Arial', 'Helvetica')

 size - size of font

 Examples:

 SETTEXTSTYLE('Arial', 50) - set font to 50 point Arial

SOUNDPOSITION

returns current play position of sound buffer

 Description:

 Returns current play position of sound buffer.

 Usage:

 SOUNDPOSITION(buff) - play position of buffer 'buff'

 Arguments:

 buff - sound buffer number

START_COGENT

initialises Matlab for running Cogent 2000 commands.

 Description:

 Start initialise Malab for running Cogent 2000.

 Call this after devices have been configued.

 Usage:

 START_COGENT

 Arguments:

 NONE

STOPSOUND

stops a sound buffer playing.

 Description:

 Stops a sound buffer playing.

 Usage:

 STOPSOUND(buff) - play sound in buffer 'buff'

 Arguments:

 buff - buffer number

STOP_COGENT
returns matlab from Cogent to normal mode.

 Description:

 STOP_COGENT shudown all devices and return Matlab to normal mode

 Usage:

 STOP_COGENT

 Arguments:

 NONE

TIME

returns current time in milliseconds since START_COGENT called.

 Description:

 Returns current time in milliseconds since START_COGENT called.

 Usage:

 t = TIME

 Arguments:

 t - time in milliseconds

WAIT

waits for a specified duration

 Description:

 Wait for a specified duration (milliseconds)

 Usage:

 WAIT(duration)

 Arguments:

 duration - time in milliseconds to wait

 Examples:

 WAIT(1000) - wait for 1000 milliseconds

WAITFRAME

wait for frame update

 Description:

 Wait for a specified number of frame updates then return the time of the
last frame update.

 Usage:

 t = WAITFRAME - wait until frame update

 t = WAITFRAME(n) - wait for 'n' frame updates

 Arguments:

 t - time of last frame update

 n - number of frame updates to wait

 Examples:

 WAITFRAME - wait until a frame update

 WAITFRAME(10) - wait for 10 frame updates

WAITKEYDOWN

waits for a key press

 Description:

 Waits for a key press and returns the key ID and time.

 Usage:
 %wait 'duration' milliseconds for any key press

 [keyout, times, n] = WAITKEYDOWN(duration)
 %wait 'duration' milliseconds for specified key press

 [keyout, times, n] = WAITKEYDOWN(duration, keyin)

 Arguments:

 keyout - IDs of key presses

 times - times of key presses

 keyin - wait for key ID 'keyin' to be pressed

 duration - time in milliseconds to wait for key press before resuming
 execution

 n - number of key presses

 Examples:

 WAITKEYDOWN(1000) - wait 1000 milliseconds for any key press

 WAITKEYDOWN(inf) - wait an indefinite time for any key press

 WAITKEYDOWN(1000, 1) - wait 1000 milliseconds for key 1 (A) to
 be pressed

 WAITKEYDOWN(1000, inf) - wait an indefinite time for key 1 (A) to
 be pressed

 WAITKEYDOWN(1000, [1 2]) - wait 1000 milliseconds for key 1 (A) or
 key 2 (B) to be pressed

WAITKEYUP

waits for a key to be released.

 Description:

 Waits for a key to be released.

 Usage:
 %wait 'duration' milliseconds for any key release

 [keyout, times, n] = WAITKEYUP(duration)
 %wait 'duration' milliseconds for specified key release
 [keyout, times, n] = WAITKEYUP(duration, keyin)
 Arguments:

 keyout - ID of keys that have been released

 times - time of key release

 keyin - wait for key ID 'keyin' to be released

 duration - time in milliseconds to wait for key release before resuming
 execution

 n - number of key releases

 Examples:

 WAITKEYUP(1000) - wait 1000 milliseconds for any key release

 WAITKEYUP(inf) - wait an indefinite time for any key release

 WAITKEYUP(1000, 1) - wait 1000 milliseconds for key 1 (A) to be
released

 WAITKEYUP(1000, inf) - wait an indefinite time for key 1 (A) to be
released

 WAITKEYUP(1000, [1 2]) - wait 1000 milliseconds for key 1 (A) or key 2
(B) to be released

WAITMOUSE

suspends execution until mouse button is clicked (i.e. pressed and then released)

 Description:

 Suspends execution until mouse button is clicked (i.e. pressed and then
released)

 Usage:

 WAITMOUSE;

 WAITMOUSE(key)

 Arguments:

 key - key to wait for

 Examples:

 WAITMOUSE - wait for button1 or button2 to be clicked

WAITRECORD

wait for recording to finish

 Description:

 Wait for recording to finish.

 Usage:

 WAITRECORD

 Arguments:

 NONE

WAITSERIALBYTE

wait for byte to arrive on serial port

 Description:

 Wait for serial byte to arrive at port. The port need to be configured
with CONFIG_PORT before WAITSERIALBYTE can be called.

 Usage:
 %wait 'duration' milliseconds for any byte to arrive at COM port

 [byte, t, n] = WAITSERIALBYTE(port, duration)
 %wait 'duration' milliseconds for byte 'code' to arrive at COM port

 [byte, t, n] = WAITSERIALBYTE(port, duration, code)

 Arguments:

 byte - value of byte read at port

 t - time of byte read

 n - number of serial bytes returns

 port - serial port number

 code - serial bytes to wait for

 duration - duration (in milliseconds) to wait for a serial byte

 Examples:

 WAITSERIALBYTE(1, 1000) - wait 1000 msec for any byte to arrive on COM1

 WAITSERIALBYTE(2, 2000, 10) - wait 2000 msec for byte=10 to arrive on
 COM2

 WAITSERIALBYTE(2, 2000, [10 20]) - wait 2000 msecs for bytes 10 or 20
 to arrive on COM2

 WAITSERIALBYTE(1, inf) - wait for an indefinte amount of time for any
 byte to arrive on COM1

 WAITSERIALBYTE(2, inf, 10) - wait for an indefinte amount of time for
 byte=10 to arrive on COM2

 WAITSERIALBYTE(2, inf, [10 20]) - wait for an indefinte amount of time
 for bytes 10 or 20 to arrive on COM2

WAITSOUND

waits until a sound buffer has stopped playing.

 Description:

 Waits until a sound buffer has stopped playing

 Usage:

 WAITSOUND(buff) - wait until buffer 'buff' has stopped playing

 Arguments:

 buff - buffer number

WAITUNTIL

waits until specified time.

 Description:

 Wait until specified time (as measured by function TIME)

 Usage:

 WAITUNTIL(t)

 Arguments:

 t - time in milliseconds measured by function TIME

 Examples:

 WAITUNTIL(10000) - wait until 10000 milliseconds after START_COGENT

 WAITUNTIL(TIME+1000) - wait for 1000 milliseconds

